Разделение металлов платиновой группы

Обновлено: 21.01.2025

Все платиновые металлы относятся к числу мало распространенных элементов. Содержание каждого из них в земной коре оценивается следующими величинами (в %):

Скопления платиновых металлов встречаются очень редко и содержат их почти исключительно в самородном состоянии, как незначительную примесь к другим продуктам выветривания горных пород. Количество самой платины в подобных россыпях (аналогичных золотым) обычно бывает гораздо больше, чем остальных металлов платиновой группы. Отделение последних от платины и друг от друга представляет значительные трудности, чем отчасти и обусловлена высокая стоимость рассматриваемых элементов.

1) Ежегодная мировая добыча платиновых металлов составляет около 25 т. Значительные количества палладия (и платины) получают не из платиновых месторождений, а как побочный продукт при переработке никелевых руд. Размеры добычи платины и палладия гораздо больше, чем остальных платиновых металлов.

В свободном состоянии элементы платиновой группы представляют собой тугоплавкие и труднолетучие металлы, по плотности разделяемые иногда на легкие (Ru, Rh, Pd) и тяжелые (Os, Ir, Pt). Их важнейшие константы сопоставлены ниже:

Палладий и платина хорошо поддаются механической обработке, тогда как Ru, Rh, Os и Ir более тверды и хрупки. Для большинства элементов платиновой группы характерна способность поглощать некоторые газы, в частности водород.

2) Наименее активен по отношению к водороду осмий, в компактном состоянии практически не поглощающий этого газа. Наиболее активен палладий, один объем которого способен при обычной температуре поглотить более 700 объемов водорода. Металл при этом вспучивается, становится хрупким и покрывается трещинками. Растворимость водорода в платине гораздо меньше, чем в палладии (причем заметна лишь при повышенных –температурах). Напротив, кислород платина растворяет лучше палладия: при 450 °С один объем платины может поглотить около 70 объемов кислорода, а один объем палладия – 0,07 объема.

По отношению к химическим воздействиям элементы платиновой группы чрезвычайно устойчивы. В виде компактных металлов большинство из них (кроме Pd и Pt) нерастворимо не только в обычных кислотах, но и в царской водке. Последняя легко растворяет платину, а палладий растворим также в HNO3 .

Даже наиболее активные металлоиды при обычных температурах на компактные платиновые металлы не действуют. Более или менее энергичное взаимодействие может быть вызвано нагреванием, причем наблюдаются интересные индивидуальные особенности отдельных элементов: по отношению к кислороду устойчивее других металлов платина, по отношению к сере – рутений, по отношению к хлору – иридий, по отношению к фтору – родий. Наиболее энергично реакции протекают у осмия, тонкий порошок которого медленно окисляется на воздухе (до OsO4 ) даже при обычных условиях. Меньшая химическая устойчивость в очень мелко раздробленном состоянии

Наибольшее практическое значение из элементов платиновой группы имеет сама платина. Она служит для выработки отдельных частей аппаратуры химических заводов, нагревательной обмотки электрических печей, приборов для измерения высоких температур и т. д. Весьма важное применение находит она также в качестве катализатора при различных производственных процессах химической промышленности. Однако около половины всей мировой добычи платины тратится малопроизводительно путем использования ее в ювелирном и зубоврачебном деле.

Соединения элементов платиновой группы сколько–нибудь значительного практического применения пока не находят. Они весьма многочисленны и разнообразны по типам, так как у отдельных металлов известны производные, отвечающие самым различным валентностям – от I до VIII. Однако некоторые из последних малохарактерны и встречаются лишь как исключения. Все элементы платиновой группы отличаются чрезвычайно сильно выражений тенденцией к комплексообразованию.

Производные двухвалентных элементов особенно характерны для палладия и отчасти платины. Последняя образует очень большое число комплексных соединений, но лишь немного простых. Напротив, для палладия двухвалентное состояние является наиболее устойчивым и в том и в другом случае.

Из простых соединений Pd 2+ наиболее важны его соли, большая часть которых легкорастворима. В растворе уже при обычной температуре PdCl2 легко восстанавливается до металла под действием окиси углерода:

На этом основано его применение для открытия СО.

Комплексные производные двухвалентных палладия и платины весьма многочисленны и разнообразны по составу. Наиболее устойчивым из них является платиносинеродистая кислота – H2 [Pt(CN)4 ]. Весьма характерны для платины также хлороплатиниты – соли комплексной кислоты H2 [PtCl4 ].

Соединения трехвалентных элементов наиболее характерны для родия и иридия. Их гидроокиси – желтая Rh(OH)3 и зеленая Ir(ОН)3 – практически нерастворимы в воде. Обе они характеризуются слабо выраженными основными свойствами, а при нагревании легко теряют воду, переходя в черные окислы Э2 О3 . Помимо обычных солей, для обоих элементов известно очень много разнообразных комплексных соединений.

Отвечающие четырехвалентным элементам двуокиси ЭО2 известны для всех платиновых металлов (частично – лишь в форме гидратов). Другие производные этой валентности особенно характерны для самой платины. Красно–коричневая Pt(OH)4 растворима ив кислотах и в сильных щелочах, причем продуктами взаимодействия являются, как правило, не простые соли, а комплексные соединения. Например, взаимодействие с NaOH и НСl протекает по схемам:

Образование комплексных аммиакатов характерно лишь для платины, причем большинство их отвечает типам [Pt(NH3 )6 ]X4 и [Pt(NH3) 4X2 ]X2 . Напротив, анионные комплексы общей формулы М2 [ЭХ6 ] (где X большей частью галоид) известны для всех металлов платиновой группы. Устойчивость их наибольшая у производных платины.

Являющаяся обычным продажным препаратом этого элемента свободная платинохлористоводородная кислота (H2 [PtCl6 ]) может быть получена растворением платины в насыщенной хлором соляной кислоте:

Образованием желтых осадков труднорастворимых хлороплатинатов NH4 + , K + , Rb + и Cs + пользуются иногда для открытия перечисленных катионов.

Производные шестивалентных элементов наиболее характерны для осмия и рутения. Оба металла при сплавлении их со щелочами в присутствии окислителей образуют соли осмиевой или рутениевой кислоты общей формулы М2 ЭО4 по схеме, например:

Как осматы, так и рутенаты в обычных условиях довольно неустойчивы, однако типичный для них характер изменений существенно различен. Рутенаты легко восстанавливаются до RuO2 , которая является наиболее устойчивым кислородным соединением рутения. Напротив, осматы легко окисляются до OsO4 .

Соединения восьмивалентных элементов известны только для осмия и рутения. Взаимодействие порошка металлического осмия с фтором около 250°С ведет к образованию бесцветных паров OsF4 , при охлаждении сгущающихся в лимонно–желтые кристаллы (т. пл. 34 °С, т. кип. 48 °С). С химической стороны восьми–фтористый осмий характеризуется резко выраженными окислительными свойствами. Водой он постепенно разлагается по уравнению:

Четырехокись осмия является наиболее устойчивым при обычных условиях окислом этого элемента и медленно образуется из мелко раздробленного металла и его соединений уже при хранении на воздухе. Четырехокись рутения может быть получена обработкой раствора K2 RuO4 избытком хлора (K2 RuO4 + Cl2 = 2KCl + RuO4 ). Обе четырехокиси представляют собой легколетучие кристаллические вещества бледно–желтого (OsO4 ) или золотисто–желтого (RuO4 ) цвета. В воде они довольно хорошо растворимы, причем растворы не показывают кислой реакции на лакмус.

Хотя сильными окислителями являются обе четырехокиси, однако различие их устойчивости проявляется довольно отчетливо. В то время как OsO4 кипит при 131 °С без разложения, четырехокись рутения при нагревании до 108 °С со взрывом распадается на RuO2 и кислород. При обычных условиях и без соприкосновения с восстановителями OsO4 изменениям не подвергается, тогда как RuO4 может сохраняться только в отсутствие света и влаги. Четырехокись осмия хорошо растворима в спирте, причем восстанавливается им до OsO2 лишь медленно, a RuO4 при соприкосновении со спиртом взрывает. В общем, следовательно, RuO4 значительно менее устойчива, чем OsO4 , и ее окислительные свойства выражены резче. Пары обеих четырехокисей весьма ядовиты.

При всем многообразии образуемых элементами платиновойгруппы соединений основное для химии их практическое использование связано с каталитическими свойствами самих металлов. Ускоряя разнообразные химические процессы, они иногдаособенно способствуют реакциям, протекающим при участии газообразного водорода. Наиболее интересен с этой стороны палладий, в присутствии которого водород уже на холоду и в темноте восстанавливает хлор, бром, иод и кислород, переводит SO2 в H2 S, СlO3 в Cl – , FeCl3 в FeCl2 и т. д. При одновременном наличии кислорода и воды насыщенный водородом палладий способен превращать N2 в NH4 NO2 , т. е. осуществлять связывание свободного азота в обычных условиях температуры и давления.

3) Так как каталитическая активность металла тем больше, чем сильнее развита его поверхность, при изготовлении катализаторов стараются по возможности ее увеличить. С этой целью металл часто осаждают на каком–нибудь индифферентном пористом материале, например асбесте. В частности, платинированный асбест может быть получен пропиткой асбеста разбавленным (1–2%) раствором H2 [PtCl6 ] с последующим его прокаливанием (что вызывает распад по уравнению:

Однако металлические катализаторы часто готовят и без индифферентной основы. Та или иная наиболее удобная для каждого конкретного случая степень дробления металла достигается при этом применением различных методов его выделения. Например, губчатая платина может быть получена слабым прокаливанием (NH4 )2 [PtCl6 ], содержащая более мелко раздробленный металл платиновая чернь – восстановлением раствора H2 [PtCl6 ] металлическим цинком

а еще более раздробленная коллоидная платина – восстановлением того же раствора хлористым оловом

Несмотря на многие отдельные различия, платиновые металлы в общем похожи на элементы семейства железа. И те и другие являются серебристо–белыми или серыми металлами, характеризующимися трудной летучестью, причем их температуры плавления в группе изменяются довольно закономерно, уменьшаясь при переходе снизу вверх и слева направо (наиболее тугоплавок осмий, наименее – никель) Для всех металлов VIII группы характерна высокая каталитическая активность. Их ионы проявляют сильно выраженную тенденцию к комплексообразованию. Производящиеся от них соединения в подавляющем большинстве окрашены.

Почти все элементы VIII группы образуют соединения, отвечающие нескольким различным валентностям, причем изменение последних осуществляется сравнительно легко. При переходе в группе снизу вверх и слева направо наиболее типичная для того или иного элемента валентность в общем, как это видно из приводимого сопоставления, понижается:

Между элементами вертикальных столбцов проявляются отдельные черты и более близкого сходства. Например, для всехкленов ряда Со, Rh, Ir (в противоположность остальным элементам группы) характерно образование аммиакатов типа [Э(NН3 )63 . Члены ряда Fe, Ru, Os являются особенно активными катализаторами при синтезе аммиака из элементов, a Ni, Pd и Pt – при реакциях присоединения водорода к органическим соединениям. Для Fe, Ru и Os кислородные соединения характернее сернистых, тогда как в ряду Ni, Pd, Pt наблюдается обратное. В этом, равно как и в некоторых других отношениях, Fe, Ru и Os похожи на Мn, Тс и Re, a Ni, Pd и Pt – на Cu, Ag и Au. По своим химическим свойствам члены VIII группы являются таким образом переходными между примыкающими к ним элементами подгруппы марганца, с одной стороны, и подгруппы меди – с другой.

Способ разделения металлов платиновой группы

Использование: касается аффинажного производства для разделения иридия, рутения и родия. Сущность: из исходного раствора, содержащего иридий, рутений, родий, проводят экстракцию иридия и рутения 0,1 - 0,2 моль/л раствором соли четвертично-аммониевого основания в органическом разбавителе с добавлением 1 - 2,5 об.% жирной кислоты. Последовательно реэкстрагируют из органической фазы иридий 0,5 - 1 моль/л раствором азотнокислого натрия, рутений - 400 моль/л раствором азотной кислоты или другими известными способами. 2 табл.

Изобретение относится к области гидрометаллургии платиновых металлов и может быть использовано в аффинажном производстве для разделения иридия, рутения и родия.

В технологических процессах переработки растворов, содержащих платиновые металлы, наибольшую трудность представляет разделение иридия и рутения. В зарубежной практике для отделения рутения от других платиновых металлов чаще всего используют дистилляцию рутения в виде тетраоксида. Преимущества этого способа заключаются в чистоте и высоком выходе продукта. Недостатком является взрывоопасность и сложность технического решения (как на стадии предварительной подготовки растворов, так и соответственно осуществления процесса дистилляции).

Другая возможность это извлечение рутения в виде [RuNOCl5] 2- анионообменными экстрагентами. В частности, разработана аналитическая методика разделения металлов платиновой группы, в которой рутений отделяют от иридия и родия экстракцией его нитрозохлоридного комплекса раствором 0,1 моль/л бромида тетраоктиламмония в толуоле. Аналогично проводили очистку рутения от примесей платиновых металлов, используя в качестве экстрагента третичный амин. Указывается, что коэффициент разделения рутения и иридия (Ru/Ir= DRu/DIr) около 600. При этом концентрация рутения была на два порядка выше, чем иридия.

Недостатком этого способа разделения рутения и иридия является необходимость перевода рутения в нитрозохлоридный комплекс. Это сопряжено с дополнительными затратами и процедурами, связанными с использованием азотной кислоты, и последующим удалением ее избытка, что приводит к отравлению окружающей среды окислами азота.

Наиболее близким к предлагаемому является способ, заключающийся в следующем.

в окислительных условиях (окислительно-восстановительный потенциал водного раствора составляет 900-1000 мВ) из водного солянокислого раствора, содержащего рутений, иридий и родий, экстрагируют рутений и иридий раствором четвертичного аммониевого соединения (например, марки "Аliquat-336"), имеющего концентрацию 1% (10%), с добавлением в органическую фазу 1-5% высшего спирта изодеканола, родий остается в рафинате; из органической фазы рутений и иридий совместно реэкстрагируют подкисленным раствором восстановителя (гидразина) или путем последовательной обработки экстракта щелочным раствором (раствором NaOH, карбонатом или бикарбонатом щелочного металла) и подкисленным раствором восстановителя с окислительно-восстановительным потенциалом < 600 мВ раствором N2H4, NH4OH, SO2 или H2C2O4.

Способ позволяет извлекать в органическую фазу 97% иридия, 99% рутения и 17% родия. Путем последовательной обработки экстракта раствором NaOH и затем гидразина в 2 моль/л НCl было реэкстрагировано 88% иридия и 86% рутения.

Недостатком изложенного способа являются: частичное извлечение в органическую фазу родия совместно с иридием и рутением; совместная и неполная реэкстракция иридия и рутения.

В настоящее время отсутствуют способы раздельной реэкстракции рутения и иридия из экстрактов на основе анионообменных экстрагентов.

Целью изобретения является раздельная реэкстракция иридия и рутения, повышение степени их извлечения из экстрактов на основе солей четвертичных аммониевых оснований, улучшение показателей разделения иридия, рутения и родия.

Поставленная цель достигается тем, что в окислительно-восстановительных условиях (окислительно-восстановительный потенциал более 900 мВ) из водного солянокислого раствора, содержащего иридий, рутений и родий, экстрагируют иридий и рутений раствором 0,1-0,2 моль/л соли четвертичного аммониевого основания, например, триалкилбензиламмонийнитрата (ТАБАН), где алкил С79, в органическом растворителе в присутствии 1-2,5 об. жирной кислоты (НR), а реэкстракцию из органической фазы, содержащей иридий и рутений (родий остается в водной фазе), проводят последовательно: сначала извлекают иридий раствором 0,5-1,0 моль/л NaNO2, затем рутений раствором 4,0 моль/л HNO3.

Процентное содержание жирной кислоты 1-2,5 об. выбрано на основании изучения зависимости экстракции и реэкстракции иридия и рутения от концентрации HR в органической фазе. При меньшем или большем содержании ухудшаются параметры разделения иридия, рутения и родия.

Концентрация нитрита натрия 0,5-1,0 моль/л является наиболее оптимальной, так как при меньшей концентрации потребуется большее число ступеней реэкстракции, а при большей нецелесообразный расход нитрита натрия, поскольку коэффициент разделения иридия и рутения остается высок и существенно не возрастает.

Реэкстракция рутения раствором 4,0 моль/л HNO3 позволяет регенерировать экстрагент, который без какой-либо дополнительной обработки возвращается на экстракцию иридия и рутения. Использование более разбавленной азотной кислоты приводит к неполное реэкстракции: за один контакт раствором 2,0 моль/л HNO3 реэкстрагировано 21% рутения (при этом DRu=3,8 в отличие от 0,06 для 4,0 моль/л HNO3). Реэкстракцию рутения возможно проводить другими известными способами.

В приведенных примерах показана возможность разделения иридия, рутения и родия в хлоридных средах с использованием солей четвертичных аммониевых оснований, в частности триалкилбензиламмония. Время контакта фаз составляет 30 мин, соотношение объемов водной и органической фаз 1:1, температура 25 о С.

П р и м е р 1. Исходный водный раствор, содержащий 1,335 г/л иридия, 2,581 г/л родия и 0,209 г/л рутения в 4,0 моль/л HCl, контактируют с раствором 0,1 моль/л ТАБАН в заксилольной фракции (ЗКФ). Получают органическую фазу, содержащую 1,33 г/л иридия, 0,006 г/л родия и 0,208 г/л рутения (коэффициенты распределения: DIr= /CIr= 266, DRh= /CRh=0,0023, DRu= /CRu= 208), т.е. извлечено 99,6% иридия, 0,23% родия и 99,5% рутения. Из полученной органической фазы последовательно реэкстрагируют сначала иридий раствором 1,0 моль/л NaNO2. После одного контакта получают органическую фазу, содержащую 0,085 г/л иридия, 0,208 г/л рутения и 0,005 г/л родия, и водную фазу, содержащую 1,245 г/л иридия (DIr=0,07), т.е. реэкстрагировано 93,6% иридия, рутений практически полностью остался в органической фазе. Органическую фазу отделяют и контактируют с 4,0 моль/л HNO3. Получают водную фазу, содержащую 0,207 г/л рутения, 0,0045 г/л родия и 0,07 г/л иридия, т.е. реэкстрагировано 99,5% рутения (DRu=0,05).

П р и м е р 2. Влияние содержания каприловой кислоты в органической фазе на разделение иридия и рутения при реэкстракции раствором 1,0 моль/л NaNO2 представлено в табл. 1. Как видно, с ростом концентрации НR в органической фазе коэффициенты распределения металлов резко уменьшаются (особенно для рутения), что приводит к ухудшению их разделения.

П р и м е р 3. Влияние концентрации нитрита натрия на разделение иридия и рутения представлено в табл.2. Как видно, коэффициент разделения остается высок ((5-10) . 10 3 ) и существенно не изменяется при СNaNO2 1 моль/л. Поэтому нецелесообразно использовать для реэкстракции растворы с большим содержанием нитрита натрия.

П р и м е р 4. Экстракт на основе 0,1 моль/л ТАБАН в ЗКФ+1,5 об. каприловой кислоты, содержащий 3,79 г/л рутения и 0,57 г/л иридия, контактируют с раствором 0,5 моль/л NaNO2. В результате за один контакт получают водную фазу, содержащую 0,565 г/л иридия и 0,063 г/л рутения, и органическую фазу, содержащую 0,005 г/л иридия и 3,727 г/л рутения, т.е. реэкстрагировано 99,1% иридия и 1,7% рутения. При этом DIr=0,009, DRu=59,2 и коэффициент разделения рутения и иридия Ru/Ir=6578.

П р и м е р 5. Раствором 0,2 моль/л ТАБАН в ЗКФ+1,5 об. НR экстрагируют рутений и иридий из производственного раствора после отделения платины и палладия, содержащего иридий, рутений, родий и неблагородные металлы (окислительно-восстановительный потенциал водного раствора 915 мВ, концентрация НCl 4,0 моль/л). В результате получают органическую фазу, содержащую 0,22 г/л иридия и 0,57 г/л рутения, которую последовательно контактируют дважды с раствором 1,0 моль/л NaNO2, реэкстрагируя при этом 98,7% иридия и 3,1% рутения, затем с раствором 4,0 моль/л HNO3, реэкстрагируя 96,1% рутения и 0,5% иридия.

Таким образом, предлагаемый способ позволяет улучшить отделение иридия и рутения от родия на стадии экстракции, так как переход родия в органическую фазу составляет менее 1% (в отличие от 17% в прототипе), и провести разделение иридия и рутения на стадии реэкстракции.

СПОСОБ РАЗДЕЛЕНИЯ МЕТАЛЛОВ ПЛАТИНОВОЙ ГРУППЫ, включающий экстракцию рутения и иридия солями четвертичных аммониевых оснований из солянокислых растворов, содержащих иридий, рутений и родий, и последующую реэкстракцию иридия и рутения из органической фазы, отличающийся тем, что, с целью повышения степени извлечения и разделения иридия, рутения и радия, экстракцию проводят 0,1-0,2 моль/л раствором соли четвертично-аммониевого основания в органическом разбавителе в присутствии 1-2,5 об. жирной кислоты и последовательно реэкстрагируют из органической фазы иридий 0,5-1,0 моль/л раствором азотистокислого натрия, рутений 4,0 моль/л раствором азотной кислоты.

Способ извлечения и разделения металлов платиновой группы

Изобретение относится к технологии платиновых металлов и их соединений. Концентрат платиновых металлов очищают от примесей. Отделяют рутений и осмий. Растворяют. Из раствора экстрагируют золото. Оставшиеся в растворе платиновые металлы очищают экстракцией от железа, сурьмы и олова. Из рафината экстрагируют палладий. Оставшиеся в водной фазе платиновые металлы осаждают электролизом. Сплав растворяют. Из раствора экстрагируют платину. Из полученного рафината вновь осаживают сплав платиновых металлов электролизом. Из раствора, полученного после растворения сплава выделяют иридий и родий экстракцией. Палладий и платину из реэкстрактов осаждают непосредственно в виде металлов электролизом. Электролиты после выделения платины и палладия, а также реэкстракт олова и железа подвергают электрохимической доочистке от платиновых металлов. В результате получают сбросные растворы. Результат изобретения - исключение образования маточных растворов, требующих переработки, упрощение способа. 1 ил.

Изобретение относится к области переработки сырья, содержащего платиновые металлы, и предназначено для их извлечения.

Платиновые металлы обычно содержатся в комплексных рудах и концентратах, в анодных шламах, в виде смеси металлов. Они также могут содержать серебро, золото, селен, теллур, а также примеси неблагородных металлов: медь, никель, железо, мышьяк, сурьма, олово, свинец, висмут, кремний и др.

Извлечение платиновых металлов (МПГ) и их разделение представляет собой сложную задачу.

Для решения ее были разработаны способы экстракции.

Известен способ экстракции благородных металлов из водных хлоридных растворов.

Вначале окисляют рутений и осмий до тетроксидов и удаляют их из раствора. Затем дибутилкарбитолом экстрагируют золото. Платину и палладий из рафината удаляют экстракцией алкилсульфидом и трибутилфосфатом соответственно. Затем восстанавливают иридий, который предварительно окислили до четырехвалентного состояния, и экстрагируют его трибутилфосфатом. Наконец, извлекают родий.

Однако для любого из металлов предусмотрено выделение его из раствора после экстракции химическим осаждением соединения и затем восстановление до металла (см. патент US 4390366, C 01 G 7/00, 28.07.1983).

Это сильно усложняет процесс, приводит к образованию большого количества маточных растворов, требующих дальнейшей переработки, т.к. содержание в них платиновых металлов не позволяет сбрасывать эти растворы. Кроме того, в процессах экстракции и реэкстракции необходимо проводить дополнительную доочистку от примесей, которые извлекаются с благородными металлами.

Задачей изобретения является создание такого способа, который позволит осуществлять комплексную переработку сырья, исключить образование маточных растворов за счет исключения стадий химического осаждения соединений МПГ, упростить способ.

Для решения этой задачи в способе извлечения и разделения металлов платиновой группы, включающем очистку от примесей, отделение рутения и осмия, экстракцию золота с получением металлического золота и раствора рафината металлов платиновой группы (МПГ), селективную экстракцию палладия с получением реэкстракта, содержащего палладий, и рафината, содержащего остальные МПГ, выделение палладия из реэкстракта и селективную экстракцию платины из рафината с получением реэкстракта, содержащего платину, и раствора иридия и родия, выделение платины из реэкстракта и разделение иридия и родия, рафинат после экстракции золота доочищают от примесей железа, олова и сурьмы экстракцией с получением реэкстракта, из которого электрохимически доизвлекают МПГ, и рафината МПГ, направляемого на селективную экстракцию палладия, выделение палладия из реэкстракта осуществляют электролизом с получением порошка палладия и раствора, который доочищают от МПГ электролизом, экстракцию платины проводят из раствора, полученного после растворения МПГ, осажденных электрохимически из рафината процесса экстракции палладия, выделение платины из реэкстракта осуществляют электролизом с получением порошка платины и раствора, который доочищают от МПГ электролизом, а разделение иридия и родия проводят из раствора, полученного после растворения МПГ, осажденных электрохимически из рафината процесса экстракции платины, и ведут его экстракцией с последующей электрохимической доочисткой раствора иридия.

Процесс электрохимического извлечения платиновых металлов из растворов известен из уровня техники.

Для этого используют электролизер с катионообменной мембраной. Анолитом служит серная кислота или сульфат натрия, а католитом - раствор платинового металла в виде хлоридного комплекса с pH 0-2. При плотности тока 1-100 А/дм 2 происходит осаждение родия, рутения, осмия, иридия, платины или их сплава на катоде (см. заявку DE 4227179, C 25 C 1/20, 04.11.93).

Однако никогда ранее процесс электролиза с выделением на катоде благородных металлов не проводился из растворов, полученных в процессе экстракции и, возможно, загрязненных органикой.

Заявленный способ осуществляют следующим способом.

Концентрат платиновых металлов, например КП-1, очищают от примесей мышьяка, селена, теллура, олова, сурьмы известными способами. Затем отгоняют рутений и осмий. Полученный остаток растворяют гидрохлорированием.

Из полученного раствора экстрагируют золото дибутилкарбитолом или трибутилфосфатом. Золото осаждают восстановителем из органической фазы и направляют на переработку.

Водная фаза (рафинат) после извлечения золота содержит платиновые металлы (МПГ). Однако она загрязнена железом, свинцом, оловом.

Очистку от железа, свинца и олова проводят экстракцией их трибутилфосфатом. При этом основная масса МПГ остается в рафинате.

Реэкстракты железа и олова также содержат незначительное количество МПГ и, следовательно, не подлежат сбросу. МПГ из них выделяют электролизом. Сбросные растворы содержат не более 2 мг/л МПГ.

Рафинат после отделения железа, сурьмы и олова направляют на экстракцию палладия сульфоксидом.

Из реэкстракта палладий выделяют непосредственно в виде порошка металла, минуя стадию осаждения хлорпалладозамина.

Электролит после выделения палладия доочищают от МПГ электролизом на волокнистом катоде.

Сбросные растворы, содержащие не более 1 мг/л МПГ, направляют на нейтрализацию.

Из рафината процесса экстракции палладия электролизом осаждают платиновые металлы. Это позволяет сконцентрировать их для последующей переработки. Осадок растворяют гидрохлорированием и из раствора экстрагируют платину сульфоксидом.

Из реэкстракта платину осаждают в виде порошка электролизом.

Электролит после выделения платины доочищают от МПГ электролизом на волокнистом угольном катоде и сбросные растворы направляют на нейтрализацию.

Рафинат после выделения платины вновь концентрируют для последующего извлечения родия и иридия.

Это осуществляют путем электрохимического осаждения и растворения МПГ. В результате получается иридиево-родиевый концентрат.

Иридий и родий разделяют экстракцией. Иридий переходит в органическую фазу, а родий остается в рафинате. Реэкстракт иридия доочищают от примесей электролизом Все МПГ, осажденные из маточников и электролитов для их доочистки, направляют на передел переработки, как концентрат платиновых металлов.

Схема процесса приведена на чертеже.

Следующий пример позволяет проиллюстрировать способ и показать распределение МПГ по операциям.

Раствор, полученный после очистки концентрата платиновых металлов от примесей мышьяка, селена, теллура, сурьмы и олова, отделение рутения и осмия и его растворения направляют на экстракцию золота. Золото восстанавливают из органической фазы.

Водная фаза (рафинат) содержит Pd - 100 г/л, Pt - 20 г/л, Ir - 300-500 мг/л, Rh - 400-600 мг/л.

Рафинат очищают от примесей железа, олова, сурьмы экстракцией.

Содержание суммы платины и палладия в реэкстракте олова и железа не превышает 500 мг/л.

Металлы из реэкстракта осаждают электролизом, получая концентрат чистых платиновых металлов и сбросный раствор (содержание МПГ < 2 мг/л).

В результате очистки от железа, олова и сурьмы получается чистый раствор (рафинат) МПГ, содержащий Pd 90-95 г/л, Pt 15-18 г/л, Ir 250-450 мг/л. Rh 350-550 мг/л, примеси < 30 мг/л.

Из этого раствора экстракцией выделяют палладий. Раствор после реэкстракции палладия содержит Pd - 40 г/л, Pt < 25 мг/л, Ir и Rh < 5 мг/л.

Из раствора осаждают порошок палладия высокой чистоты электролизом на катоде.

Электролит после осаждения палладия содержит Pt 2-10 мг/л, Pd 100-200 мг/л.

Эти металлы осаждают на трехмерном угольном катоде.

Получают чистый концентрат платиновых металлов и сбросный раствор (МПГ < 1 мг/л).

Рафинат процесса выделения палладия содержит Pd 500-800 мг/л, Pt 15-16 г/л, Ir~400 мг/л, Rh~500 мг/л.

Его направляют на экстракцию платины.

Для того, чтобы сконцентрировать платину, вначале из рафината электролизом осаждают платиновые металлы в виде сплава, а электролит, содержащий не более 1-2 мг/л МПГ направляют на нейтрализацию и сброс.

Сплав МПГ растворяют гидрохлорированием и получают концентрированный раствор, содержащий Pt~100 г/л, Pd~4 г/л, Ir~2,8 г/л, Ph~3,5 г/л.

Из этого раствора экстрагируют платину.

Реэкстракт платины содержит Pt - 60 г/л, Pd < 30 мг/л, Ir и Rh < 5 мг/л.

Платину из реэкстракта осаждают в виде порошка электролизом. Электролит после осаждения платины содержит Pt < 200 мг/л, Pd ~25 мг/л.

МПГ из электролита доосаждают электролизом на трехметном катоде, получая чистый концентрат платиновых металлов и сбросной раствор.

Рафинат процесса извлечения платины содержит Pt~200 мг/л, Pd~3,5 г/л, Ir~2,5 г/л, Rh~3,0-3,2 г/л.

Этот раствор вновь концентрируют, осаждая на катоде МПГ.

Электролит очищают электролизом с получением чистого концентрата МПГ и сбросного раствора.

Осадок МПГ растворяют и направляют на экстракционное разделение родия и иридия.

Родий после экстракции остается в рафинате, который представляет собой 50% концентрат родия в палладии.

Их разделение осуществляют известными способами, например, экстракцией.

Представленный пример показывает, что только данная последовательность операций, совмещение экстракции и электролиза, позволяет осуществлять комплексную переработку сырья платиновых металлов с их разделением и очисткой с высоким извлечением без образования маточных растворов.

Способ извлечения и разделения металлов платиновой группы, включающий очистку от примесей, отделение рутения и осмия, экстракцию золота с получением металлического золота и раствора рафината металлов платиновой группы(МПГ), селективную экстракцию палладия с получением реэкстракта, содержащего палладий, и рафината, содержащего МПГ, выделение палладия из реэкстракта и селективную экстракцию платины из рафината с получением реэкстракта, содержащего платину, и раствора иридия и родия, выделение платины из реэкстракта и разделение иридия и родия, отличающийся тем, что рафинат после экстракции золота доочищают от примесей железа, олова и сурьмы экстракцией с получением реэкстракта, из которого электрохимически доизвлекают МПГ, и рафината МПГ, направляемого на селективную экстракцию палладия, выделение палладия из реэкстракта осуществляют электролизом с получением порошка палладия и раствора, который доочищают от МПГ электролизом, экстракцию платины проводят из раствора, полученного после растворения МПГ, осажденных электрохимически из рафината процесса экстракции палладия, выделение платины из реэкстракта осуществляют электролизом с получением порошка платины и раствора, который доочищают от МПГ электролизом, а разделение иридия и родия проводят из раствора, полученного после растворения МПГ, осажденных электрохимически из рафината процесса экстракции платины, и ведут его экстракцией с последующей электрохимической доочисткой раствора иридия.

Большая Энциклопедия Нефти и Газа

Разделение платиновых металлов принадлежит к числу сложных аналитических задач. Хотя для этой цели были предложены некоторые методы, основанные на применении ионитов, подробные исследования до последнего времени не публиковались. [1]

Разделение платиновых металлов при помощи хроматографии на бумаге в настоящее время все больше привлекает внимание аналитиков, так как имеет два очень важные преимущества по сравнению с другими способами - быстроту и малое количество испытуемого вещества. [2]

Разделение платиновых металлов по этой схеме неприменимо для определения малых количеств платиновых металлов в присутствии больших количеств неблагородных металлов. Осадки гидроокисей адсорбируют платину, что приводит к большому числу переосаждений, вызывающих потери платиновых металлов. [3]

Разделение платиновых металлов сопряжено с некоторыми трудностями, обусловленными сходством свойств этих элементов. [4]

Разделение платиновых металлов по этой схеме неприменимо для определения малых количеств платиновых металлов в присутствии больших количеств неблагородных металлов. Осадки гидроокисей адсорбируют платину, что приводит к большому числу переосаждений, вызывающих потери платиновых металлов. [5]

Для разделения платиновых металлов используют гидролитический метод / 8 9 /, основанный на том, что из платиновых металлов все, кроме платины, образуют нерастворимые гидроокиси. [6]

Этот метод разделения платиновых металлов , находящихся в маточном растворе, полученном после осаждения хлористым аммонием хлороплатината I сорта, основан на различном действии сероводорода на растворы солей платиновых металлов при различных температурах. При действии сероводорода сульфиды палладия и платины выпадают без нагревания, родий осаждается при 80 - 90 С, а иридий вовсе не образует при этих условиях осадков с сероводородом. [7]

Получается при разделении платиновых металлов в виде [ Pd HsbClj ], который прокаливают при 800 - 900 и восстанавливают водородом. [8]

Методы отделения и разделения платиновых металлов , в том числе и палладия, описаны в разделе, посвященном платине ( стр. [9]

Методы отделения и разделения платиновых металлов рассмотрены в разделе Платина ( стр. [10]

Разработанные отечественными учеными методы разделения платиновых металлов имеют исключительное значение для промышленного их получения. [11]

Разработанные отечественными учеными методы разделения платиновых металлов сыграли большую роль в деле усовершенствования технологических процессов их получения. [12]

Ниже описывается систематический ход разделения платиновых металлов в отсутствие золота и других металлов, а также методы определения каждого из шести элементов платиновой группы. Реакции, используемые в методах разделения, были описаны в разделе Методы разделения ( стр. [14]

Ниже описывается систематический ход разделения платиновых металлов в отсутствие золота и1 других металлов. Реакции, используемые в методах разделения, были описаны в разделе Методы разделения ( стр. [15]

Платиновые металлы

Пл а тиновые мет а ллы, платиноиды, химические элементы второй и третьей триад VIII группы периодической системы Менделеева. К ним принадлежат: рутений (Ruthenium) Ru, родий (Rhodium) Rh, палладий (Palladium) Pd (лёгкие платиновые металлы, плотность ~12 г/см 3 ); осмий (Osmium) Os, иридий (Iridium) lr, платина (Platinum) Pt (тяжёлые платиновые металлы, плотность ~22 г/см 3 ). Серебристо-белые тугоплавкие металлы; благодаря красивому внешнему виду и высокой химической стойкости платиновые металлы наряду с Ag и Au называют благородными металлами.

Историческая справка. Имеются указания, что самородная платина в древности была известна в Египте, Эфиопии, Греции и Южной Америке. В 16 в. исп. конкистадоры обнаружили в Южной Америке вместе с самородным золотом очень тяжёлый белый тусклый металл, который не удавалось расплавить. Испанцы назвали его платиной — уменьшительным от исп. plata — серебро. В 1744 исп. морские офицер Антонио де Ульоа привёз образцы Pt в Лондон. Они вызвали живой интерес учёных Европы. Самостоятельным металлом Pt, которую первоначально считали белым золотом, была признана в середине 18 в.

В 1803 английский учёный У. Х. Волластон обнаружил в самородной платине палладий, получивший это название от малой планеты Паллады (открытой в 1802), и родий, названный так по розовато-красному цвету его солей (от греч. rh ó don — роза). В 1804 английский химик Смитсон Теннант в остатке после растворения самородной Pt в царской водке открыл ещё 2 металла. Один из них получил название иридий вследствие разнообразия окраски его солей (от греч. í ris, род. падеж í ridos — радуга), другой был назван осмием по резкому запаху его четырёхокиси (от греч. osm á — запах). В 1844 К. К. Клаус при исследовании остатков от аффинажа (очистки) уральской самородной Pt в Петербургском монетном дворе открыл ещё один платиновый металл — рутений (от позднелат. Ruthenia — Россия).

Распространение в природе. Платиновые металлы принадлежат к наиболее редким элементам, их среднее содержание в земной коре (кларки) точно не установлено, ориентировочные значения приведены в таблице. Самые редкие в земной коре — Rh и lr (1 × 10 -7 % по массе), наиболее распространён Os (5 × 10 -6 %). Содержание платиновых металлов повышено в ультраосновных и основных изверженных породах, происхождение которых связано с глубинными магматическими процессами. К этим породам приурочены месторождения платиновых металлов. Ещё выше среднее содержание платиновых металлов в каменных метеоритах, которые считаются аналогами средней мантии Земли (кларки платиновых металлов в каменных метеоритах составляют n × 10 -4 — n × 10 -5 % по массе). Для земной коры характерно самородное состояние платиновых металлов, а у Rh, Pd, Os и Pt известны также немногочисленные соединения с серой, мышьяком и сурьмой. Установлено около 30 минералов платиновых металлов, больше всего их у Pd (13) и Pt (9). Все минералы образовались на больших глубинах при высоких температурах и давлениях (см. Платиновые руды, Платина самородная). Платина и другие платиновые металлы встречаются в виде примеси во многих сульфидах и силикатах ультраосновных и основных пород. Геохимия платиновых металлов в биосфере почти не изучена, их содержание в гидросфере и живом веществе не установлено. Некоторые осадочные марганцевые руды обогащены Pt (до 1 × 10 -3 %), в углях наблюдалась концентрация Pt и Pd (1 × 10 -6 %); повышенное содержание платиновых металлов отмечалось в фосфоритах (вятских), в золе деревьев, растущих на месторождениях Pt.

Физические и химические свойства. Физические и механические свойства платиновых металлов сопоставлены в таблице. В дополнение необходимо указать, что Ru и Os очень тверды и хрупки (возможно вследствие присутствия примесей). Rh и lr обладают меньшими твёрдостью и хрупкостью, а Pd и Pt ковки, поддаются прокатке, волочению, штамповке при комнатной температуре. Интересна способность некоторых платиновых металлов (Ru, Pd, Pt) поглощать водород. Особенно это свойственно Pd, объём которого поглощает до 900 объёмов H2. При этом Pd сохраняет металлический вид, но растрескивается и становится хрупким. Все платиновые металлы парамагнитны. Магнитная восприимчивость c s × 10 -6 электро-магнитных единиц при 18 °С равна 0,05 у Os; 0,50 у Ru; 5,4 у Pd; у Rh, lr и Pt она несколько более 1,0.

Согласно давно установившейся традиции, платиновые металлы принято помещать в VIII группу периодической системы элементов. В соответствии с этим следовало ожидать, что все платиновые металлы должны иметь высшую степень окисления +8. Однако это наблюдается только у Ru и Os, прочие же платиновые металлы проявляют валентность не выше +6. Объясняется это тем, что у атомов Ru и Os остаются незаполненными соответственно внутренние подуровни 4f и 5f. Поэтому для атомов Ru и Os возможно возбуждение не только с подуровней 5s и 6s на подуровни 5p и 6p, но и с подуровней 4d и 5d на подуровни 4f и 5f. Вследствие этого в атомах Ru и Os появляется по 8 непарных электронов и валентность +8. Электронные конфигурации атомов Rh, lr, Pd, Pt такой возможности не допускают. Поэтому в некоторых вариантах таблицы Менделеева эти элементы (а также Со и Ni) выносят за пределы VIII группы. Все платиновые металлы легко образуют комплексные соединения, в которых имеют различные степени окисления и различные координационные числа. Комплексные соединения платиновых металлов, как правило, окрашены и очень прочны.

Химические свойства платиновых металлов имеют много общего. Все они в компактном виде (кроме Os) малоактивны. Однако в виде т. н. черни (мелкодисперсного порошка) платиновые металлы легко адсорбируют S, галогены и др. неметаллы. (Чернь обычно получают восстановлением платиновых металлов из водных растворов их соединений.) Компактные Ru, Rh, Os, lr, будучи сплавлены с Pt, Zn, Pb, Bi, переходят в раствор при действии царской водки, хотя она не действует на эти платиновые металлы, взятые отдельно.

Семейство платиновых металлов можно разделить на 3 диады (двойки), образованные двумя стоящими один под другим лёгким и тяжёлым платиновыми металлами, а именно: Ru, Os; Rh, lr; Pd, Pt.

При нагревании с O2 и сильными окислителями Ru и Os образуют легкоплавкие кристаллы — четырёхокиси (тетроксиды) — оранжевую RuO4 и желтоватую OsO4. Оба соединения летучи, пары их имеют неприятный запах и весьма ядовиты. При действии восстановителей превращаются в низшие окислы RuO2 и OsO2 или в металлы. Со щелочами RuO4 образует рутенаты, например рутенат калия K2RuO по реакции:

При действии хлора K2RuO4 превращается в перрутенат калия:

Четырёхокись OsO4 даёт с KOH комплексное соединение K2[OsO4(OH)2]. С фтором и др. галогенами Ru и Os легко реагируют при нагревании, образуя соединения типа RuF3, RuF4, RuF5, RuF6. Осмий даёт подобные же соединения, кроме OsF3; существование OsF8 не подтверждено. Весьма интересны комплексные соединения Ru с ксеноном Xe [RuF6] (канадский химик Н. Бартлетт, 1962), а также с молекулярным азотом — [(NO)(NH3)4 N2Ru (NH3)4 NO] CI (советский химик Н. М. Синицын, 1962) и [Ru (NH3)5N2] Cl2 (канадский химик А. Аллен, 1965).

На компактные Rh и lr царская водка не действует. При прокаливании в O2 образуются окислы Rh2O3 и Ir2O3, разлагающиеся при высоких температурах.

Pd легко растворяется при нагревании в HNO3 и концентрированной H2SO4 с образованием нитрата Pd (NO3)2 и сульфата PdSO4. На Pt эти кислоты не действуют. Царская водка растворяет Pd и Pt, причём образуются комплексные кислоты — тетрахлоропалладиевая кислота H2[PdCl4] и гексахлороплатиновая — коричнево-красные кристаллы состава H2[PtCl6] × 6H2O Из её солей наибольшее значение для технологии платиновых металлов имеет хлороплатинат аммония (NH4)2[PtCl6] — светло-жёлтые кристаллы, малорастворимые в воде и почти не растворимые в концентрированных растворах NH4CI. При прокаливании они разлагаются по реакции:

При этом Pt получается в мелкораздробленном виде (т. н. платиновая губка, или губчатая платина).

Получение. Разделение платиновых металлов и получение их в чистом виде очень сложно вследствие большого сходства их химических свойств; это требует большой затраты труда, времени, дорогих реактивов. Для получения чистой Pt исходные материалы — самородную платину, платиновые шлихи (тяжёлые остатки от промывки платиноносных песков), лом (негодные для употребления изделия из Pt и её сплавов) обрабатывают царской водкой при подогревании. В раствор переходят: Pt, Pd, частично Rh, lr в виде комплексных соединений H2[PtCl6], H2[PdCl4], Нз [RhCl6] и H2[IrCl6], а также Fe и Cu в виде FeClз и CuCl2. Нерастворимый в царской водке остаток состоит из осмистого иридия, хромистого железняка (FeCrO2), кварца и др. минералов.

Из раствора осаждают Pt в виде (NH4)2[PtCl6] хлористым аммонием. Но чтобы в осадок вместе с Pt не выпал lr в виде аналогичного нерастворимого соединения (NH4)2[lrCl6] (остальные платиновые металлы NH4Cl не осаждает), предварительно восстанавливают Ir (+4) до Ir (+3) (например, прибавлением сахара C12H22O11 по способу И. И. Черняева). Соединение (NH4)3[IrCl6] растворимо и не загрязняет осадка.

Хлороплатинат аммония отфильтровывают, промывают концентрированным раствором NH4CI (в котором осадок практически не растворим), высушивают и прокаливают. Полученную губчатую платину спрессовывают, а затем оплавляют в кислородно-водородном пламени или в электрической печи высокой частоты. Из фильтрата, оставшегося после осаждения (NH4)2[PtCl6], и из осмистого иридия извлекают прочие платиновые металлы путём сложных химических операций. В частности, для перевода в растворимое состояние нерастворимых в царской водке платиновых металлов и осмистого иридия используют спекание с перекисями BaO2 или Na2O2. Применяют также хлорирование — нагревание смеси Pt-концентратов с NaCl и NaOH в струе хлора.

В результате аффинажа получают труднорастворимые комплексные соединения: гексахлорорутенат аммония (NH4)3[RuCl6], дихлорид тетрамминдиоксоосмия [OsO2(NH3)4] Cl2, хлорпентамминдихлорид родия [Rh (NH3)5CI] Cl2, гексахлороиридат аммония (NH4)2[lrCl6] и дихлордиаммин палладия [Pd (NH3)2] Cl2. Прокаливанием перечисленных соединений в атмосфере H2 получают платиновые металлы в виде губки, например

Губчатые платиновые металлы сплавляют в вакуумной электрической печи высокой частоты.

Применяют и др. способы аффинажа, в частности основанные на использовании ионитов.

Основным источником получения платиновых металлов служат сульфидные медно-никелевые руды, месторождения которых находятся в СССР (Норильск, Красноярский край), Канаде (округ Садбери, провинция Онтарио), ЮАР и др. странах. В результате сложной металлургической переработки этих руд благородные металлы переходят в т. н. черновые металлы — нечистые никель и медь. Платиновые металлы собираются почти полностью в черновом Ni, a Ag и Au — в черновой Cu. При последующем электролитическом рафинировании Ag, Au и платиновые металлы осаждаются на дне электролитической ванны в виде шлама, который отправляют на аффинаж.

Читайте также: