Растяжение металла от температуры
Методом статических испытаний на растяжение при комнатной (20±5°) температуре по ГОСТ 1497—84 определяют: пределы пропорциональности σпц, упругости σуп, условный σ0,2и физический σт пределы текучести, временное сопротивление разрыву σв, относительное удлинение б и сужение Ψпосле разрыва. Основной тип образца — цилиндрический с рабочим диаметром 10 мм, применяют также образцы других диаметров — d0 (часто диаметром 5 мм), плоские образцы толщиной 0,5 мм и более. Начальная расчетная длина l0 должна составлять 5,65√F0 или 11,3√F0 , где F0— площадь поперечного сечения рабочей части образца до разрыва. Рабочая длина цилиндрических образцов должна быть в пределах от l0 + 0,5d0 до l0 + 2d0, плоских образцов толщиной 4 мм и более — от l0 + 1,5√F0 до l0 + 2,5√F0.
При арбитражных испытаниях рабочая длина образцов должна соответствовать верхним из указанных пределов. Основные требования, предъявляемые к установке образцов: способ крепления не должен допускать проскальзывания образцов в захватах, смятия опорных поверхностей, деформацию головок и разрушение образца в местах перехода от рабочей части к головкам и в головках. Разметку расчетной длины образца следует выполнять с точностью до 1%.,
Измерение образцов до испытания проводят не менее чем в трех местах (в середине образца и по краям рабочей части), площадь поперечного сечения вычисляют по наименьшим из полученных размеров. При проведении испытаний необходимо соблюдать надежное центрирование образца в захватах испытательной машины плавность нагружения. Скорость перемещения подвижного захвата не должна превышать 0,1 при испытании до предела текучести и за пределом текучести быть не менее 0,4 длины расчетной части образца при выражении ее в миллиметрах в минуту. Могут быть предложены и другие скорости. При определении пределов упругости и текучести с помощью тензометров цена деления шкалы приборов не должна превышать 0,002 и 0,02 мм соответственно. Точность отсчета нагрузки при испытании — одно наименьшее деление шкалы силоизмерителя. Порядок проведения испытаний и расчет показателей механических свойств регламентированы в ГОСТ 1497—84.
Кратковременные статические испытания на растяжение при повышенных температурах (до 1200 °С) проводят в соответствии с ГОСТ 9651—84. Определяют: предел текучести (σ t 0,2) временное сопротивление разрыву (σв),относительное удлинение (δ t ) и сужение (Ψ t )- Методика испытаний аналогична испытаниям при нормальной температуре. Отличие состоит в форме и размерах образца, наличии соответствующего нагревательного устройства и оборудования для контроля и поддержания заданного температурного режима испытаний. Для «горячих» испытаний применяются пропорциональные цилиндрические образцы с резьбовыми головками и с расчетной длиной рабочей части l0 = 5,65√F0 (короткий) и l0 = 11,3√F0 (длинный).
Нагревательное устройство (печь) должно обеспечивать равномерный нагрев до заданной температуры по всей рабочей длине образца и сохранять температуру в установленных пределах на протяжении всего испытания. Температуру измеряют одной термопарой, установленной в средней части образца, и приборами класса точности не ниже 0,5%. Приборы подлежат систематической поверке в соответствии с инструкциями Госстандарта СССР. Допустимые отклонения от заданной температуры приведены ниже:
Продолжительность нагрева до температуры испытания не должна превышать 1 ч, а время выдержки 20—30 мин, если нет других указаний в НТД. Запись диаграмм выполняют в масштабе по оси деформации 12 : 1 или более подробном. Испытания на растяжение при отрицательных температурах проводятся сравнительно редко.
осуществляют на стандартных образцах пяти типов (рис. 1), в основном применяют тип 1. Образцы клеймят номером плавки и порядковым номером на боковых сторонах или на стороне,противоположной надрезу. Расстояние клейма от торца—не более 15 мм. К испытаниям не допускают образцы с дефектами изготовления (размеры, следы обработки на поверхности надреза в виде поперечных рисок, трещины, заусенцы на ребрах, клеймо на опорной поверхности) и металла. В термически обработанных образцах канавки прорезают после термообработки. Образец помещают на опоры станины маятникового копра надрезом внутрь, правильность установки проверяют специальным шаблоном. Расстояние между опорами должно составлять 404:0,5 мм, а между осями ножа и надреза образца — не превышать 0,2 мм. Перед каждой серией испытаний копер проверяется на свободном полете маятника от верхнего и нижнего положений. Показатель работы в обоих случаях должен соответствовать нулю с точностью до 1 Дж (точность определения работы удара). Скорость ножа маятника в момент удара должна быть в пределах 4—7 м/с, что соответствует его подъему на высоту 0,8—2,5 м (для копров с максимальной энергией в 300 Дж). После испытаний оценивают структуру излома.
Для испытаний при повышенных (до 1200 °С) температурах используют трубчатые печи, которые устанавливают так, чтобы направляющий желоб трубки вплотную подходил к опорам копра и находился на одном уровне с ними. Горизонтальное положение ограничителя должно фиксировать такое положение образца, при котором он после нагрева в печи надежно встанет в установленное до испытания положения. После проверки установки ограничителя образец помещают в нагретую до заданной температуры печь, а ограничитель продвигают вплотную к направляющему желобу опоры копра. По истечении 10-мин выдержки образец с помощью металлического стержня выталкивается из печи на опоры копра до упора задней стенки ограничителя в фиксатор. Время от извлечения образца до удара маятника практически не превышает 5 с. Испытание образцов из сильно окисляющихся сталей проводят в нейтральных средах.
Для испытания при пониженных (до кипения жидкого азота) температурах вблизи копра устанавливают термостат для охлаждения образцов. Вся партия образцов, испытываемых при одной и той же температуре, должна подаваться на копер в одинаковых условиях. Перед испытанием один образец из партии с заточенным торцом устанавливают к фиксатору так, чтобы ось надреза образца и ось ножа маятника совпадали. Ограничитель фиксируется в положении образца, при котором последний после охлаждения в термостате встанет в установленное для испытаний положение.
После установки ограничителя на копре эталонный образец и всю сверенную с ним партию (2—10 шт.) помещают в термостат заточенными торцами в одну сторону, а ограничитель вплотную придвигают к направляющему желобу опоры копра. Хладоагентом в термостате является смесь спирта с жидким азотом или один жидкий азот. В связи с некоторым повышением температуры смеси после закладки образцов в термостат необходимо небольшими порциями при непрерывном помешивании доливать жидкий азот, пока температура не достигнет заданной. Отрицательные температуры измеряют платиновым пирометром сопротивления, работающим в паре с электронным мостом. После достижейия температуры термостата образец выдерживают 15 мин и затем быстро переносят в направляющий желоб заточенным торцом вперед. С помощью металлического стержня образец выталкивается на опоры до упора задней стенки органичителя в фиксатор, время от извлечения образца из термостата до удара маятника не должно превышать 5 с. Все испытания на ударную вязкость должны проводиться в течение од-го удара маятника.
Сопряжение головки и рабочей части образца должно быть плавным. Допустимое отклонение в величине площади поперечного сечения по всей расчетной длине образца ±0,5%; допустимое биение рабочей части поверхности образцов при проверке в центрах, а также отклонение от номинального диаметра — не более 0,03 мм. При испытаниях должны обеспечиваться постоянство нагрузки в течение всего времени испытания, плавность нагружения и разгружения, надежное центрирование и равномерный нагрев образца до заданной температуры и ее сохранение на протяжении всего испытания. Отклонение от заданной нагрузки на образец не должно превышать ±1%.
Контроль температуры образца осуществляется тремя термопарами, две из которых прикрепляют к концам рабочей части образца, а третью (регулирующую) — к верхнему захвату машины. В процессе испытаний температура непрерывно записывается электронными потенциометрами класса точности 0,5%; кроме того, ежечасно замеряют температуру с помощью переносного потенциометра того же класса точности и не реже одного раза в 15 мин контролируют работу каждой группы машин. Результаты измерений и наблюдений заносят в операционные карты, составляемые на каждый образец, и в операционный журнал. Контрольные термопары систематически проверяются с помощью образцовой термопары II разряда, их заменяют через каждые 500 ч работы при температурах испытания 500—800 °С; при испытаниях до 850—1000 °С термопары заменяются через каждые 100 ч.
Отклонения от заданной температуры не должны превышать ±3 °С при температуре испытания до 600 и ±4 °С при испытании в диапазоне 600—900 °С. Для лучшей организации работы по измерению температуры в ЛКИ должен быть участок КИП. Время испытания, проведенного при температурах с отклонениями более допустимых, исключают из общей продолжительности испытания. При вынужденном перерыве испытания образец необходимо разгрузить, устранить причину перерыва, снова нагреть до заданной температуры, выдержать при ней и плавно нагрузить. В этом случае результаты испытаний считаются действительными, если суммарная продолжительность их под нагрузкой при заданной температуре не ниже требований НТД. Результаты считаются недействительными при разрыве образца в галтели (за исключением случая, когда продолжительность испытания достигла значений, соответствующих требованиям НТД) и при разрыве образца по дефектам металлургического происхождения.
Испытание металла на ползучесть — это разновидность испытаний на длительную прочность. Оно служит для определения нарастания деформации образца во времени при постоянных нагрузке и температуре. Применяют образцы: цилиндрические d0 = 10,/ = 100 и 200 мм с резьбой М16; плоские — шириной 15, /о = 100 мм и толщиной, соответствующей толщине листа. Требования к качеству образцов, аппаратуре и машинам, порядку проведения испытания на ползучесть и точности измерений температуры в целом аналогичны рассмотренным. Отличие состоит в том, что после нагрева и выдержки в течение 1 ч к образцу плавно прилагают нагрузку в размере 10% общей нагрузки и снимают показания для измерения деформации (приборы для измерения деформации должны обеспечивать точность отсчета не менее 0,002 мм). Если температура и деформация остаются в течение 5 мин постоянными, прилагают остальную нагрузку и ступенями — через каждые 5, 10, 15 (чаще — через 60) мин ведут отсчет деформации. Продолжительность, температуру и степень деформации устанавливают НТД. По окончании испытания образец разгружают до величины предварительной нагрузки и определяют абсолютную величину остаточного удлинения.
предназначено для оценки технологической пластичности металла при температурах до 1200 °С (иногда — выше) по двум показателям — числу скручиваний образца до его разрушения и максимальному крутящему моменту, выраженному в ньютонах, умноженных на метр. Применяются цилиндрические образцы do=10 мм и /0 = 40 мм. Головки образца имеют резьбу Ml6. Испытательные машины снабжают потенциометрами, обеспечивающими контроль температуры образца (класс точности — 0,5%), замер крутящего момента и числа скручиваний. Во время испытания недопустимо продольное перемещение образца и его биение. Частота вращения активного захвата — не менее 60 об/мин. Обмеренный с точностью до 0,1 мм образец монтируют в удлинителях, помещают в нагретую печь, закрепляют в захватах машины и нагревают (прогрев 30, выдержка 10—15 мин). Машину включают после окончания нагрева. По диаграмме на шлейфе потенциометра определяют величину крутящего момента с точностью до 10 Нм и число скручиваний с точностью до 0,5 оборота. Для обеспечения правильной работы испытательной машины и надежности результатов по специальной методике для различных марок или групп марок стали строятся тарировочные графики: крутящий момент — в ньютонах, умноженных на метр (он же — в единицах шкалы потенциометра).
Основные требования к условиям проведения этих испытаний изложены в ГОСТ 2860—65. Определяют предел усталости путем воздействия на вращаемый образец одной или двух изгибающих сил, вызывающих в образце напряжения (растяжение, сжатие), изменяющиеся по симметричному циклу. Для испытаний используют машины типа НУ с частотой вращения образца 3000 об/мин. База испытания — 10 млн. циклов. Предел усталости новых марок стали, а также любых сталей, для которых необходимо установить действительный предел выносливости, определяют на шести образцах и более. Для испытания первого образца подсчитывают постоянное напряжение, равное 0,6% предела прочности при растяжении. Для второго и последующих образцов напряжение каждый раз повышается или понижается на 20 или 40 МПа в зависимости от числа циклов, разрушивших первый образец. Если первый образец не разрушился, на последующих образцах делается прирост напряжения на одну и ту же величину (20 или 40 МПа) до разрыва образца. Разность между напряжениями для двух последних образцов (разрушившегося и неразрушившегося) не должна превышать 20 МПа. Испытывают образцы с do, равными 7,5 и 10 мм, с надрезом или без него (рис. 19), последнее определяется НТД. Размеры образцов проверяют с помощью инструментального микроскопа с коническими щупами с точностью 0,01 мм. Конусность цилиндрического образца не должна превышать 0,005 мм, биение в центрах 0,03 мм. Если в процессе испытания машина отключалась, то это испытание считается несостоявшимся. Повторно образец не испытывают.
Испытание на изгиб хрупких материалов проводят с целью определения склонности стали и других материалов к хрупкому разрушению. Дисковые образцы диаметром 60 и высотой 10 мм или образцы прямоугольного сечения (10х10х60 мм) испытывают на гидравлической машине (например, типа «Амслер») со шкалами нагрузок 100 или 200 кН. Образцы устанавливаются на две опоры, расстояние между которыми равно 40 мм, и подвергают действию медленно возрастающей нагрузки (~2 мм/мин). Определяют наибольшую нагрузку в момент разрушения образца (Р) и подсчитывают сопротивление изгибу по следующим формулам:
где l — расстояние между опорами; В — ширина прямоугольного образца; h— высота прямоугольного образца; d— диаметр дискового образца. С помощью прогибомера измеряют стрелу прогиба (точность 0,5 мм), по внешнему виду образцов определяют характер разрушения.
В соответствии с ГОСТ 7268—67 чувствительность стали к механическому старению определяют сравнением ударной вязкости образцов стали в исходном состоянии и подвергнутых деформации и последующему нагреву по специальным режимам. Из отобранных по ГОСТ 7564—73 заготовок вырезают две полосы, одна из которых предназначена для деформирования, другая — для изготовления ударных образцов в исходном состоянии. Полосу с нанесенной на нее расчетной длиной 120 или 160 мм деформируют растяжением для получения 10±0,5% остаточного удлинения. Расстояние от захватов до расчетной длины должно быть не менее 10 мм. Из деформированной полосы вырезают заготовки для ударных образцов так, чтобы место вырезки не выходило за пределы расчетной длины полосы. Форма и размеры ударных образцов соответствуют ГОСТ 9454—78. Готовые деформированные образцы подвергают равномерному нагреву при 250±10 °С с выдержкой 1 ч и охлаждению на воздухе. Нормативно-технической документацией на металлопродукцию может предусматриваться другой режим старения и количество испытуемых образцов. Если такое указание отсутствует, то испытывают шесть образцов: три — в состоянии поставки металла и три — после старения. Показатель чувствительности определяют по формуле, %:
где (ан)исх — среднее арифметическое значение ударной вязкости в исходном состоянии; (ан)ст — то же, после старения.
Испытание на изгиб полосовой и другой стали служит для определения способности металла выдерживать заданную пластическую деформацию, характеризуемую изломом изгиба, или для оценки предельной пластичности при изгибе. В соответствии с ГОСТ 14019—80 испытанию на изгиб подвергают ленты полосового, широкополосного, листового, сортового фасонного и периодического профилей, прокат из металлов и сплавов, а также поковки и отливки. Места вырезки заготовок для изготовления образцов определяются
ГОСТ 7564—73. При испытании сортовой стали толщиной до 35 мм поперечное сечение образцов должно быть равно поперечному сечению проката. При испытании стали более крупных профилей изготавливают цилиндрические образцы диаметром 25 мм с сохранением полоски поверхности проката или простроганные с одной стороны образцы толщиной 20 и шириной не менее 30 мм. Качество поверхности образца должно соответстовать классу 4 по ГОСТ 2789—73. Испытание полосовой, широкополосной и листовой стали проводят на плоских образцах. При толщине проката до 30 мм образцы изготавливают с сохранением поверхностных слоев проката. Ширина образцов должна быть не менее двух толщин проката. Из проката толщиной более 30 мм изготавливают простроганные образцы толщиной 20 и шириной не менее 30 мм также с сохранением на одной стороне поверхности проката, которая при изгибе должна находиться снаружи. Общая длина образца для испытания на изгиб должна составлять 160—170 мм.
изгиб на двух горизонтальных параллельных опорах до заданного угла между одной стороной образца и продолжением другой (рис. 20, а);
изгиб на двух горизонтальных параллельных опорах до появления первой трещины, видимой невооруженным глазом (рис. 20, б). Угол измеряют после снятия нагрузки;
изгиб до параллельности сторон, предварительно образец загибают на угол не менее 150°, затем устанавливают прокладку и образец догибают до соприкоснования с ней (рис. 20, в);
изгиб до соприкосновения сторон образца с образованием петли, предварительный загиб — на угол не менее 150° (рис. 20, г).
Результаты испытаний определяют по НТД. Если специальных указаний нет, годными признаются образцы, не имеющие излома, расслоений, надрывов и трещин, видимых невооруженным глазом.
Перечисленные методы испытаний являются традиционными и наиболее распространенными при определении механических показателей качества металлопродукции [44]. На металлургических и машиностроительных предприятиях применяют также ряд других испытаний, вт. ч. испытание сварных соединений на растяжение и загиб (ГОСТ 6996—66), определение предела прочности огнеупорных изделий сжатием (ГОСТ 4071—89), испытание металла на кручение (ГОСТ 3565—80), на срез (по отраслевым нормам), сжатие (ГОСТ 1497—84), устойчивость при высоких температурах (ГОСТ 9651—84), твердость (ГОСТ 9012—59, ГОСТ 9013—59, ГОСТ 2999—75). Развитие машиностроения вызвало необходимость разработки новых методов испытания механических свойств по целому ряду нетрадиционных характеристик, связанных с оценкой прочности деталей и конструкций, работающих в весьма широком диапазоне температур, деформаций и в агрессивных средах. Методы испытаний в этих и других условиях приводят в НТД и специальных руководствах. Получают распространение комплексные синергетические методы.
Растяжение металла от температуры
Нужен полный текст и статус документов ГОСТ, СНИП, СП?
Попробуйте профессиональную справочную систему
«Техэксперт: Базовые нормативные документы» бесплатно
Метод испытания на растяжение при температурах от минус 100 до минус 269 °С
Metals. Method for tension tests at the temperature - 100 up to - 269 °C
Дата введения 1979-01-01
1. РАЗРАБОТАН Центральным научно-исследовательским институтом черной металлургии им. И.П.Бардина (ЦНИИЧМ), Институтом проблем прочности АН УССР (ИПП АН УССР), Государственным институтом прикладной химии (ГИПХ)
ВНЕСЕН Министерством черной металлургии СССР
С.А.Голованенко, Д.В.Лебедев, Р.И.Колясникова, В.М.Постнов, Н.В.Новиков, Н.И.Городыский, Н.П.Антропов, И.Л.Серушкин
2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 23.09.77 N 2296
3. ВВЕДЕН ВПЕРВЫЕ
4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ
Обозначение НТД, на который дана ссылка
5. Ограничение срока действия снято по протоколу N 7-95 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 11-95)
6. ИЗДАНИЕ (август 2000 г.) с Изменением N 1, утвержденным в апреле 1988 г. (ИУС 7-88)
Настоящий стандарт распространяется на черные и цветные металлы, сплавы и изделия из них и устанавливает метод статического испытания на растяжение для определения при температурах от минус 100 до минус 269 °С следующих механических характеристик:
- предела текучести физического;
- предела текучести ycловного;
- относительного равномерного удлинения;
- относительного удлинения после разрыва;
- относительного сужения поперечного сечения после разрыва.
Стандарт не устанавливает метод статического испытания на растяжение проволоки, труб, листового металла и ленты толщиной менее 0,5 мм.
Обозначения, понятия и определения приведены в приложении 1.
(Измененная редакция, Изм. N 1).
1. ОТБОР ПРОБ И ИЗГОТОВЛЕНИЕ ОБРАЗЦОВ
1.1. Пробу для образцов вырезают любым способом, предусматривая припуски на зону металла с измененными свойствами при нагреве или наклейке.
Места и направления вырезки проб (заготовок) для образцов, их количество и величины припусков при вырезке должны быть указаны в нормативно-технической документации на правила отбора проб или на металлопродукцию.
1.2. Для испытаний на растяжение применяют цилиндрические образцы с начальным диаметром рабочей части от 3 мм и более и плоские образцы с начальной толщиной 0,5 мм и более и с начальной расчетной длиной =5,65 или =11,3. Размеры образцов приведены в приложениях 2 и 3.
Образцы с начальной расчетной длиной
* Текст документа соответствует оригиналу. - Примечание изготовителя базы данных.
1.1, 1.2. (Измененная редакция, Изм. N 1).
1.3. Форма и размеры головок плоских и цилиндрических образцов, а также размеры переходных частей от головок образца к его рабочей части не являются обязательными, а определяются способом крепления образцов в захватах машины и свойствами испытуемого материала (черт.1-3, табл.1-3 приложения 2 и черт.1-3
приложения 3). Форма головки образца и конструкция захватного приспособления должны обеспечить центрирование образца в процессе испытаний и не допускать смятия опорных поверхностей, проскальзывания, деформацию и разрушение головок, не допускать разрушение образца в местах перехода от рабочей части к головкам.
1.4. Образцы должны быть обработаны на металлорежущих станках. Глубина резания при последнем проходе рабочей части не должна превышать 0,1 мм. Шероховатость рабочей части цилиндрических образцов должна быть =0,63-0,32 мкм, а плоских образцов - =2,5-1,25 мкм по ГОСТ 2789.
Допускается испытывать цилиндрические образцы с шероховатостью рабочей части =2,5-1,25 мкм и плоские образцы с шероховатостью боковых поверхностей рабочей части не более =5 мкм при условии обеспечения норм механических свойств.
2. АППАРАТУРА И МАТЕРИАЛЫ
2.1. В качестве испытательных машин применяют разрывные и универсальные машины всех систем при условии соответствия их требованиям ГОСТ 28840. Рабочее пространство машины должно позволять устанавливать криостаты и удлинительные штанги.
2.2. Испытательная машина должна обеспечивать:
- центрирование испытуемого образца;
- плавность возрастания нагрузки при нагружении образца;
- скорость перемещения подвижного захвата - не более 0,1 начальной расчетной длины образца, выраженная в миллиметрах в минуту.
В нормативно-технической документации на конкретную продукцию скорость испытания может быть уточнена и должна быть указана в протоколе испытания.
Для одновременного охлаждения партии образцов рекомендуется применять многообразцовые кассетные или перезарядные устройства.
2.3. В качестве охладителей применяют жидкие азот (температура кипения минус 196 °С), водород (минус 253 °С) и гелий (минус 269 °С). Промежуточные температуры получают за счет дозированной автоматической подачи парожидкостной смеси азота в интервале температур от минус 100 до минус 196 °С, парожидкостной смеси водорода - от минус 100 до минус 253 °С и парожидкостной смеси гелия - от минус 196 до минус 269 °С. Применение водорода допускается в условиях, обеспечивающих полную безопасность работы. Рекомендуется выбирать охладитель, исходя из условий работы изделий.
Не допускается применять:
- жидкий кислород и жидкий воздух в качестве охладителя;
- агрессивные или токсичные жидкости в смеси с жидким охладителем;
- жидкий технический азот по ГОСТ 9293, содержащий кислород в количествах, превышающих 10%.
2.4. Криостат должен обеспечивать охлаждение образцов и возможность поддержания постоянства заданной температуры образца (образцов) при испытании. Наименьший уровень жидкого охладителя должен быть не ниже 15 мм от торца поверхности головки образца. Криостаты, в которых для охлаждения образца (образцов) используется жидкий гелий, должны работать по замкнутому циклу. Гелиевый криостат вакуумируется; обеспечивается сбор газообразного гелия. Запрещается проводить испытания на машинах, не оснащенных оборудованием для сбора газообразного гелия.
Криостаты, в которых для охлаждения образца (образцов) используется жидкий водород, должны обеспечивать безопасность проведения работ.
2.5. Для измерения температуры образца применяют термопары и термометры сопротивления с приборами класса точности не ниже 0,5%. Уровень жидкого охладителя измеряют полупроводниковыми датчиками сопротивления, механическими уровнемерами поплавкового типа и другими приборами. Допустимая погрешность определения уровня жидкого охладителя в криостате - не более ±5 мм.
2.6. Распылители паров и жидкого охладителя должны обеспечивать равномерное охлаждение всей рабочей длины образца до заданной температуры.
2.7. Приборы измерения линейных размеров должны соответствовать требованиям: штангенциркули - ГОСТ 166, микрометры - ГОСТ 6507, тензометры, линейки металлические - ГОСТ 427.
(Введен дополнительно, Изм. N 1).
3. ПОДГОТОВКА К ИСПЫТАНИЮ
3.1. Начальную расчетную длину, определенную по формулам 5,65и 11,3, округляют в большую сторону до ближайшего числа, кратного соответственно 5 или 10.
Начальная расчетная длина ограничивается отметками на поверхности образца с точностью до 1% от ее значения. Рекомендуется наносить отметки мягким материалом, не повреждая поверхности образца.
Начальную и конечную расчетную длину измеряют до 1-го знака (мм) после запятой, кратного 1.
Для возможности пересчета удлинения с отнесением места разрыва к середине рекомендуется наносить по всей рабочей части образца отметки через каждые 5 или 10 мм.
3.2. Измерения поперечных размеров образцов до испытания производят в миллиметрах:
- до 2-го знака после запятой, кратного 1, - при измерении диаметра цилиндрического образца и толщины до 2 мм плоского образца;
- до 2-го знака после запятой, кратного 5, - при измерении толщины плоского образца свыше 2 мм и ширины плоского образца.
3.3. Каждое измерение производят в трех местах (в средней части и по краям) расчетной длины образца.
Полный текст этого документа доступен на портале с 20 до 24 часов по московскому времени 7 дней в неделю .
Также этот документ или информация о нем всегда доступны в профессиональных справочных системах «Техэксперт» и «Кодекс».
1. МЕТОД ОТБОРА ОБРАЗЦОВ
1.1 . Типы и размеры пропорциональных плоских и цилиндрических образцов приведены в приложении.
При наличии указаний в нормативно-технической документации на металлопродукцию допускается применение пропорциональных образцов других типов и размеров.
(Измененная редакция, Изм. № 1).
1.2 . Требования к изготовлению образцов, их предельным отклонениям в размерах рабочей части, маркировке - по ГОСТ 1497-84 .
2. АППАРАТУРА
2 .1 . Аппаратура - по ГОСТ 1497-84 с дополнениями.
2.1.1 . Рабочее пространство испытательных машин должно позволять устанавливать нагревательное устройство с удлинительными штангами для крепления образцов, которые должны обеспечивать надежное центрирование образца в захватах испытательной машины.
2.1.2 . Нагревательное устройство должно обеспечивать равномерный нагрев образца по его рабочей части до заданной температуры испытания и поддержание этой температуры с учетом предельных отклонений, указанных в п. 4.2 настоящего стандарта, на протяжении всего испытания.
2 .1.4. Регулирующие и измерительные приборы должны соответствовать требованиям ГОСТ 7164-78 , ГОСТ 9245-79 , ГОСТ 9736-91 и иметь класс точности не ниже 0,5.
3. ПОДГОТОВКА К ПРОВЕДЕНИЮ ИСПЫТАНИЯ
3.1 . Измерение размеров образца, определение его начальной площади поперечного сечения F 0 , установление, нанесение и измерение начальной расчетной длины l 0 - по ГОСТ 1497-84 .
3.2 . Для измерения температуры на образец устанавливают:
два первичных термопреобразователя (термопары) - при l 0 ≤ 100 мм (у меток, ограничивающих начальную расчетную длину образца l 0 );
три первичных термопреобразователя (термопары) - при l 0 > 100 мм (у меток, ограничивающих начальную расчетную длину образца l 0 и в середине ее ).
За исключением разногласий в оценке качества металла, допускается устанавливать на образце с начальной расчетной длиной l 0 до 50 мм один первичный термопреобразователь (термопару) в средней части начальной расчетной длины образца l 0 .
3.3 . Рабочий конец первичного термопреобразователя (термопары) должен иметь надежный контакт с поверхностью образца и быть изолированным от радиационного нагрева.
4. ПРОВЕДЕНИЕ ИСПЫТАНИЯ
4.1 . Образец, находящийся в нагревательном устройстве и нагретый до заданной температуры, после установленного времени выдержки подвергают испытанию.
4.2 . Предельные отклонения от установленной температуры испытания в точках замера по длине расчетной части образца без учета погрешностей измерения температуры, обусловленных термоэлектрическим преобразователем и вторичными приборами, не должны превышать:
± 5 ° С - при температуре испытания до 600 °С;
± 7 °С - при температуре испытания свыше 600 до 900 °С;
± 8 °С - при температуре испытания свыше 900 до 1200 °С.
При разногласиях в оценке качества металла предельные отклонения температуры от установленной при испытании в любой точке расчетной длины образца должны быть на 2 °С ниже.
Допускаются предельные отклонения от установленной температуры:
± 3 °С - при температуре испытания до 600 °С;
± 4 °С - при температуре испытания свыше 600 до 800 °С;
± 5 °С - при температурах испытания свыше 800 до 1000 °С,
4.3 . Продолжительность нагрева образца до температуры испытания и время выдержки при этой температуре указываются в нормативно-технической документации на металлопродукцию. При отсутствии таких указаний продолжительность нагрева до температуры испытания должна составлять не более 1 ч, время выдержки - от 20 до 30 мин.
4.4 . При наличии указаний в нормативно-технической документации на металлопродукцию допускается проводить испытания в защитной (нейтральные газы) атмосфере.
Продолжительность нагрева образца до температуры испытания в защитной атмосфере и время выдержки указываются в нормативно-технической документации на металлопродукцию.
4.5 . Остальные требования к проведению испытания, обработке результатов - по ГОСТ 1497-84 .
Для указания температуры испытания к обозначению определяемой характеристики механических свойств добавляют соответствующий цифровой индекс.
Пример: σ0,2/450, σв/450, δ5/450, ψ45 0 - предел текучести условный с допуском на величину остаточной деформации 0,2 %, временное сопротивление, относительное удлинение после разрыва образца с , относительное сужение поперечного сечения после разрыва, определенные при температуре испытани я 450 °С.
Надежность металлоизделий наряду с конструктивными факторами в значительной мере определяется структурой и свойствами используемых материалов, зависящих от их технологической обработки и температурных условий эксплуатации (южные, средние и северные широты). В процессе изготовления деталей большинство металлов и сплавов подвергаются различным видам и режимам технологической обработки, среди которых наиболее распространенным является пластическое деформирование. В автомобильной и других отраслях промышленности широко используются штампуемые листовые конструктивные малоуглеродистые стали. Однако сведения по влиянию видов и режимов их технологической обработки на механические свойства при различных температурах ограничены и разрозненны. В работе приводятся результаты исследования влияния степени объемной пластической деформации на механические свойства листовых конструкционных сталей и их сварных соединений при разных температурах. Установлено, что с увеличением степени предварительной деформации величины условного предела текучести и предела прочности материалов возрастают, а относительных сужения и удлинения – уменьшаются. Получены конкретные экспериментальные данные прочностных и механических свойств при разных эксплуатационных температурах некоторых широко применяемых в автомобильной и машиностроительной промышленности деформированных с разной степенью листовых сталей, позволяющие повысить точность оценки эксплуатационной надежности металлоизделий при снижении в ряде случаев их металлоемкости.
1. Власов В.А., Пачурин Г.В., Гуслякова Г.П. Коррозионная усталостная прочность пластически обработанных материалов // Автомобильная промышленность. – 1996/ – № 8. – С. 24–25.
2. Пачурин Г.В. Долговечность листовых штампованных материалов на воздухе и в коррозионной среде // Материаловедение. – 2003. – № 7. – С. 29–32.
3. Пачурин Г.В. Долговечность штампованных конструкционных материалов на воздухе и в коррозионной среде // Заготовительные производства в машиностроении. – 2003. – № 10. – С. 21–27.
4. Пачурин Г.В. Повышение долговечности листовых штампованных деталей из высокопрочных сталей и сплавов // КШП. ОМД. – 2003. – № 11. – С. 7–11.
5. Пачурин Г.В. Долговечность на воздухе и в коррозионной среде деформированных сталей // Технология металлов. – 2004. – № 12. – С. 29–35.
9. Пачурин Г.В. Долговечность пластически деформированных коррозионно-стойких сталей // Вестник машиностроения. – 2012. – № 7. – С. 65–68.
10. Pachurin G.V. Ruggedness of structural material and working life of metal components // Steel in Translation. – 2008. – № 3. – Т. 38. – P. 217–220.
Надежность металлоизделий наряду с конструктивными факторами в значительной мере определяется структурой и свойствами используемых материалов, зависящих от вида и режима их технологической обработки, а также температурными условиями эксплуатации (южные, средние и северные широты).
В автомобильной и машиностроительной промышленности широко используются штампуемые листовые конструктивные малоуглеродистые стали. Однако сведения по влиянию видов и режимов их технологической обработки на механические свойства при различных температурах ограничены и разрозненны [3, 8, 9].
Поэтому исследование влияния технологического пластического деформирования на изменение механических характеристик листовых сталей в области различных эксплуатационных температур является весьма актуальным.
Методика проведения исследований
С целью выполнения поставленной задачи в работе выбраны стали 08Ю, 08кп, 08пс, 08ГСЮТ, 07ГСЮФТ и сварные соединения из сталей 08 пс, 08 кп, 20 кп, 07ГСЮФ, 08ГCЮФ. Предварительная деформация осуществлялась при комнатной температуре растяжением образцов на универсальной разрывной машине УМЭ-10ТМ со скоростью деформации 2·10–3 с–1 (табл. 1). При этом осадке подвергался не весь образец, а только его участок в опасном сечении.
Испытания на статическое растяжение образцов проводились на разрывной машине ZD 10/90 со скоростью деформации 2·10–3 с–1. При этом записывалась диаграмма растяжения, начальные и конечные размеры образцов, определялись прочностные (σв, σ0,2) и пластические (δ, ψ) характеристики материалов в состоянии поставки и после технологической обработки. На каждую экспериментальную точку одновременно обрабатывалось по 4 образца.
Низкая температура (–50 °С) испытания обеспечивалась криостатом, который представляет собой открытый сосуд диаметром 70 мм и высотой 190 мм. В этот сосуд заливался ацетон, охлажденный до –50 °С путем добавления углекислой кислоты. Образец подвергался растяжению, находясь в жидкой среде. Температура измерялась при помощи ртутного термометра.
По результатам статических испытаний строились кривые упрочнения в координатах lgσϊ (σϊ – истинное напряжение) – lgεϊ, (εϊ – истинная деформация), которые позволяют определить показатель степени А в уравнении кривой деформационного упрочнения [7] исследованных материалов в состоянии поставки и после технологической обработки
где σϊ – истинное напряжение течения при истинной деформации εϊ = lg(1 + δϊ), МПа;
σо – постоянная, равная истинному напряжению течения при εϊ = 1, МПа.
Изучение микроструктуры материалов образцов и фрактографический анализ их изломов проводились с помощью оптический компоратора «МИР-12», оптического «AKASHI» и электронного «Джеол Т-20» микроскопов.
Результаты исследования и их обсуждение
В табл. 1 представлены результаты испытания при комнатной температуре предварительно пластически деформированных с разной степенью плоских образцов из листовых материалов.
Механические свойства листовых материалов для различных режимов технологической обработки
Режим технологической обработки
Выявлено, что с ростом степени предварительной деформации (εпр.д) материалов их ycловный предел текучести σ0,2 и предел прочности σв возрастают, а показатели пластичности (относительные удлинение δ и сужение ψ) снижаются. Ранее было показано [1], что эта зависимость проявляется тем значительней, чем ниже энергия дефектов упаковки (э.д.у.) материала. При этом кривые упрочнения для каждого материала располагаются тем выше, чем больше степень их предварительной деформации [2, 4]. Зависимость «истинное напряжение – истинная деформация» предварительно деформированных металлических материалов иногда оказывается немонотонной, то есть кривые имеют перегиб. В этом случае показатели А1 и А2 характеризуют наклон кривой упрочнения соответственно до и после перегиба А1 < А2. Величина параметров А1 и A2 уменьшается с ростом степени предварительного растяжения. Из сопоставления кривых упрочнения для различных сплавов при равных относительных степенях предварительной деформации (εпр.д/εi где εi – истинная деформация до разрушения при статическом растяжении) следует, что их наклон возрастает с понижением энергии дефекта упаковки материала, где э.д.у. (Дж/м2). Эта зависимость особенно выражена в области малых степеней предварительной деформации.
Микроструктура стали 20кп на уровне зеренного представления (увеличение хЗ00) практически одинаковая как у исходных, так и у деформированных образцов. При этом увеличение степени предварительного наклёпа от 0 до 17 % обусловливает повышение прочностных характеристик σт, σ0,2 и σв и понижение характеристик пластичности δ, ψ и δР.
Исходная микроструктура сталей 08кп, 08ГСЮТ и 08ГСЮФТ состоит преимущественно из зёрен феррита и небольшого количества перлита для 08кп, а также карбидных включений для 07ГСЮФТ и 08ГСЮТ [4]. Размер зерна феррита сталей 08кп и 08ГСЮТ равен 10…30 мкм, а для стали 07ГСЮФТ – 20…40 мкм.
Микрофрактограммы поверхностей разрыва при растяжении листовых образцов из сталей 07ГСЮФТ, 08кп и 08ГСЮТ свидетельствуют о вязком характере разрушения [5]. В изломе сталей 08ГСЮТ и 07ГСЮФТ чётко видны карбидные частицы (размером ≈ 4 мкм), расположенные преимущественно в ямках поверхности разрыва.
Результаты испытания на статическое растяжение плоских образцов со сварным швом показали, что околошовная зона (зона термического влияния) образцов после различных режимов предварительной пластической обработки деформируется одинаково с обеих сторон шва с образованием подобных шеек, а кривые упрочнения для обеих околошовных зон совпадают.
Результаты на статическое растяжение при разных температурах цельных и сварных образцов исследованных стальных материалов приведены в табл. 2 и 3.
Механические свойства листовой стали 08пс при разных температурах для различных режимов технологической обработки
Температура испытания, °С
Степень предварительной деформации, %
Из анализа кривых деформационного упрочнения сваренных листовых образцов из сталей 20кп, 08кп, 08ГСЮТ 07ГСЮФТ [6] следует, что критическая степень деформации, соответствующая перелому кривых, составляет ~ 2–5 %. По окончании этой стадии начинается интенсивное упрочнение с высоким значением величины показателя А. Исходя из представления, что в общем случае кривые деформационного упрочнения имеют сигмообразный (_/¯) вид с тремя стадиями упрочнения, можно кривые упрочнения предварительно деформированных образцов отнести к третьей стадии затухающего, предшествующего разрушению, упрочнения с низким показателем А.
С ростом температуры испытания от –50 до + 70°С стали 08пс параметры прочности σт, σ0,2, σв уменьшаются, а пластичности ψ – увеличиваются. При этом возрастание степени предварительной деформации εпр.д до 17…18 % обусловливает повышение прочностных и понижение пластических характеристик во всем вышеуказанном диапазоне температур статического нагружения.
Величина показателя А2 у кривых деформационного упрочнения образцов из стали 08пс при температурах + 70 и –50 °С несколько ниже, чем при комнатной температуре. Однако для всех температур с ростом степени предварительной деформации εпр.д А существенно уменьшается, особенно при –50 °С.
Механические свойства сварных стальных листовых образцов при разных температурах
Деформационное поведение сварных образцов из сталей 08кп и 08ГСЮТ характеризуется примерно одинаковым (0,23 и 0,22 соответственно) показателем А2, у стали 07ГСЮФТ он ниже (0,16…0,19). При этом если у первых двух сталей перелома на кривых упрочнения практически нет, то у стали 07ГСЮФТ он явно выражен, и первая стадия деформации у неё имеет довольно значительную протяженность (~ 5 %).
При исследованных температурах испытания –50, 20, и 70 °С у предварительно растянутых образцов из стали 20кп пределы текучести σ0,2 и σт и прочности σв выше, а относительные удлинение δк (до разрушения) и δр (равномерное) ниже, чем у образцов в исходном состоянии, хотя относительное сужение ψк и предел прочности до разрушения σк практически остаются постоянными.
Охлаждение до –50 °С увеличивает прочностные характеристики при сохранении пластичности стали 20кп (на уровне 20 °С), что свидетельствует об отсутствии ее охрупчивания при этих температурах.
Анализ кривых деформационного упрочнения стали 20кп и ее сварных соединений при вышеуказанных температурах показал, что при растяжении цельных и сварных образцов, предварительно деформированных до одной и той же степени (17…18 %), относительное удлинение (равномерное δр и общее δк) при –50 °С значительно выше, чем при 70 °С. Это может быть обусловлено различием атомных механизмов, контролирующих пластическую деформацию. Так, при –50 °C усиливается влияние поперечного скольжения винтовых дислокаций по сравнению с движением краевых дислокаций, что обеспечивает некоторое повышение пластичности стали 20кп.
При растяжении исходных (предварительно не деформированных) образцов (εпр.д. = 0 %) в начале наблюдается стадия инкубационного деформирования (ε @ 1…2 %) с низким значением показателя А1, а затем начинается интенсивное упрочнение с высоким значением А2. С понижением температуры испытания продолжительность стадии инкубационного упрочнения увеличивается, что отражается на величине общего и равномерного удлинения.
Величина показателя упрочнения А наклепанных образцов из стали 20кп при всех исследованных температурах практически одинакова А = 0,02, в то время как при растяжении исходных цельных и сварных образцов для температур 70 и –50 °С показатель А несколько ниже, чем при 20 °С.
Микроструктура стали 20 кп, деформированной при 20, 70 и –50 °С, практически не изменяется.
У сварных образцов из стали 08ГСЮТ наблюдаются более высокие прочностные свойства σв и σ0,2 по сравнению со сталями 08кп и 07ГСЮФТ, у которых они практически одинаковые. Более высокая пластичность у стали 08кп, у сталей 08ГСЮТ и 07ГСЮФТ параметры δ и δр примерно одинаковы, a ψ различается незначительно [10].
Из анализа кривых деформационного упрочнения при 20, 70 и –50 °С сваренных встык образцов из сталей 08кп, 08ГСЮТ и 07ГСЮФТ следует, что критическая степень деформации, соответствующая перелому кривых, составляет ~ 2…5 %. У сталей 08кп и 08ГСЮТ показатель А2 выше (0,23 и 0,22 соответственно), чем у стали 07ГСЮФТ (0,16…0,19).
Исходная микроструктура листовых сталей 08кп, 07ГСЮФТ и 08ГСЮТ состоит преимущественно из зерен феррита и небольшого количества перлита для 08кп, а также с карбидными включениями у стали 07ГСЮФТ и 08ГСЮТ. Размер зерна феррита стали 07ГСЮФТ равен 20…40 мкм, а сталей 08кп и 08ГСЮТ – 10…30 мкм.
Структура листовой стали 08пс преимущественно состоит из зерен α-твердого раствора, которые в результате пластической деформации получают определенную вытянутость, что отражается на повышении в связи с этим прочностных характеристик и снижении показателя упрочнения.
Как и в случае ферритной, в ферритно-перлитных сталях 08кп, 07ГСЮФТ и 08ГСЮT с величиной зерна 10…40 мкм происходит внутризеренное, относящееся к разным системам, неоднородное скольжение, отличительной особенностью которого является наличие следов механизмов пересечения и поперечного скольжения. С увеличением степени деформации скольжение становится множественным, а плотность следов скольжения возрастает. Момент появления микротрещин и последующее разрушение обусловливаются сдвиговыми актами внутри зерен феррита в условиях сильно развитого множественного скольжения. Стали 07ГСЮФТ и 08ГСЮT имеют карбидные включения, которые препятствуют движению дислокаций при пластическом деформировании и с ростом степени деформации повышают прочностные характеристики. Однако они являются также источниками образования микротрещин при растяжении.
Фотографии поверхностей разрыва при растяжении образцов из сталей 07ГСЮФТ, 08кп и 08ГСЮТ, испытанных при 20, 70 и –50 °С, свидетельствуют о вязком характере разрушения. Марка стали и температура испытания практически не изменяют морфологию поверхности разрыва образцов. При этом в изломе сталей 08ГСЮТ и 07ГСЮФТ четко наблюдаются карбидные частицы размером около 4 мкм, расположенные преимущественно в ямках поверхности разрыва.
1. Установлено, что влияние степени предварительной деформации исследованных материалов на их механические характеристики зависит от температуры испытания.
2. С увеличением степени предварительной деформации величины условного предела текучести и предела прочности материалов возрастают, а относительных сужения и удлинения – уменьшаются. При этом кривые упрочнения располагаются выше и становятся положе.
3. С понижением температуры испытания сталей величина показателей прочности (σв и σ0,2), как правило, возрастает, а показателей пластичности (δ и ψ) – уменьшается. Эта закономерность усиливается по мере увеличения степени предварительного пластического деформирования образцов.
4. Более высокие значения параметров пластичности ферритной стали 08кп характеризуют ее лучшую штампуемость по сравнению с низколегированными сталями 08ГСЮТ и 07ГСЮФТ, что имеет место на практике.
5. Получены конкретные экспериментальные данные прочностных и механических свойств при разных эксплуатационных температурах некоторых широко применяемых в автомобильной и машиностроительной промышленности деформированных с разной степенью листовых сталей, позволяющие повысить точность оценки эксплуатационной надежности металлоизделий при снижении в ряде случаев их металлоемкости.
Рецензенты:
Лоскутов А.Б., д.т.н., профессор, зав. кафедрой «Электроснабжение и электроэнергетика» (ЭСиЭ), Нижегородский государственный технический университет им. Р.Е. Алексеева (НГТУ), г. Нижний Новгород;
Кузьмин Н.А., д.т.н., профессор, зав. кафедрой «Автомобильный транспорт», Нижегородский государственный технический университет им. Р.Е. Алексеева (НГТУ), г. Нижний Новгород.
Читайте также: