Расчет усилия вальцовки листового металла

Обновлено: 07.01.2025

За последнее время ко мне было несколько обращений от читателей блога за помощью в решении одной и той же задачи: как при работе на трехвалковых листогибочных вальцах и профилегибах определить окончательное местоположение среднего ролика (валка).

. относительно положения крайних роликов (валков), которое обеспечит гибку (вальцовку) заготовки с определенным заданным необходимым радиусом? Ответ на этот вопрос позволит повысить производительность труда при гибке металла за счет уменьшения количества прогонов заготовки до момента получения годной детали.

В этой статье вы найдете теоретическое решение поставленной задачи. Сразу оговорюсь – на практике я этот расчет не применял и, соответственно, не проверял результативность предлагаемого метода. Однако я уверен, что в определенных случаях гибка металла может быть выполнена гораздо быстрее при использовании этой методики, чем обычно.

Чаще всего в обычной практике окончательное местоположение подвижного центрального ролика (валка) и количество проходов до получения годной детали определяется «методом тыка». После длительной (или не очень) отработки технологического процесса на пробной детали определяют координату положения центрального ролика (валка), которую и используют при дальнейших перенастройках вальцев, изготавливая партию этих деталей.

Метод удобен, прост и хорош при значительном количестве одинаковых деталей – то есть при серийном производстве. При единичном или «очень мелкосерийном» производстве, когда необходимо гнуть разные профили или листы разной толщины разными радиусами, потери времени на настройку «методом тыка» становятся катастрофически огромными. Особенно эти потери заметны при гибке длинных (8…11м) заготовок! Пока сделаешь проход…, пока проведешь замеры…, пока перестроишь положение ролика (валка)… — и все сначала! И так десяток раз.

Расчет в Excel местоположения подвижного среднего ролика.

Запускаем программу MS Excel или программу OOo Calc, и начинаем работу!

С общими правилами форматирования электронных таблиц, которые применяются в статьях блога, можно ознакомиться здесь .

Прежде всего, хочу заметить, что листогибочные вальцы и профилегибы разных моделей могут иметь подвижные крайние ролики (валки), а могут — подвижный средний ролик (валок). Однако для нашей задачи это не имеет принципиального значения.

На рисунке, расположенном ниже изображена расчетная схема к задаче.

Схема гибки на трехвалковых вальцах с формулами

Вальцуемая деталь в начале процесса лежит на двух крайних роликах (валках), имеющих диаметр D . Средний ролик (валок) диаметром d подводится до касания с верхом заготовки. Далее средний ролик (валок) опускается вниз на расстояние равное расчетному размеру H , включается привод вращения роликов, заготовка прокатывается, производится гибка металла, и на выходе получается деталь с заданным радиусом изгиба R ! Осталось дело за малым – правильно, быстро и точно научиться рассчитывать размер H . Этим и займемся.

Исходные данные:

1. Диаметр подвижного верхнего ролика (валка) /справочно/ d в мм записываем

в ячейку D3: 120

2. Диаметр опорных с приводом вращения крайних роликов (валков) D в мм пишем

в ячейку D4: 150

3. Расстояние между осями опорных крайних роликов (валков) A в мм вводим

в ячейку D5: 500

4. Высоту сечения детали h в мм заносим

в ячейку D6: 36

5. Внутренний радиус изгиба детали по чертежу R в мм заносим

в ячейку D7: 600

Расчет местоположения подвижного среднего ролика (валка) при гибке на трехвалковых вальцах

Расчеты и действия:

6. Вычисляем расчетную вертикальную подачу верхнего ролика (валка) Hрасч в мм без учета пружинения

в ячейке D9: =D4/2+D6+D7- ((D4/2+D6+D7)^2- (D5/2)^2)^(½) =45,4

Hрасч = D /2+ h + R — (( D /2+ h + R )^2- ( A /2)^2)^(½)

7. Настраиваем вальцы на этот размер Hрасч и делаем первый прогон заготовки. Измеряем или высчитываем по хорде и высоте сегмента получившийся в результате внутренний радиус, который обозначим R0 и записываем полученное значение в мм

в ячейку D10: 655

8. Вычисляем какой должна была бы быть расчетная теоретическая вертикальная подача верхнего ролика (валка) H0расч в мм для изготовления детали с радиусом R0 без учета пружинения

в ячейке D11: =D4/2+D6+D10- ((D4/2+D6+D10)^2- (D5/2)^2)^(½) =41,9

H0расч = D /2+ h + R0 — (( D /2+ h + R0 )^2- ( A /2)^2)^(½)

9. Но деталь с внутренним радиусом изгиба R0 получилась при опущенном верхнем валке на размер Hрасч, а не H0расч. Считаем поправку на обратное пружинение x в мм

в ячейке D12: =D9-D11 =3,5

x = Hрасч — H0расч

10. Так как радиусы R и R0 имеют близкие размеры, то можно с достаточной степенью точности принять эту же величину поправки x для определения окончательного фактического расстояния H , на которое необходимо подать вниз верхний ролик (валок) для получения на вальцованной детали внутреннего радиуса R .

Вычисляем окончательную расчетную вертикальную подачу верхнего ролика (валка) H в мм c учетом пружинения

в ячейке D13: =D9+D12 =48,9

H = Hрасч+ x

Задача решена! Первая деталь из партии изготовлена за 2 прохода! Найдено местоположение среднего ролика (валка).

Особенности и проблемы гибки металла на вальцах.

Да, как было бы всё красиво и просто – надавил, прогнал – деталь готова, но есть несколько «но»…

1. При вальцовке деталей с малыми радиусами в целом ряде случаев нельзя получить необходимый радиус R за один проход по причине возможности возникновения деформаций, гофр и надрывов в верхних (сжимаемых) и нижних (растягиваемых) слоях сечения заготовки. В таких случаях назначение технологом нескольких проходов обусловлено технологической особенностью конкретной детали. И это не исключительные случаи, а весьма распространенные!

2. Одномоментная без прокаток подача среднего ролика (валка) на большое расстояние H может быть недопустимой из-за возникновения значительных усилий, перегружающих сверх допустимой нормы механизм вертикального перемещения вальцев. Это может вызвать поломку станка. В аналогичной ситуации перегрузки при этом оказаться может и привод вращения роликов (валков)!

3. Концы заготовки, если их предварительно не подогнуть, например, на прессе, останутся прямолинейными участками при гибке на трехвалковых вальцах! Длина прямолинейных участков L чуть больше половины расстояния между нижними роликами А /2.

4. При движении среднего ролика (валка) вниз в сечении заготовки, подверженном изгибу, постепенно нарастают нормальные напряжения, которые вызывают вначале пружинную деформацию. Как только напряжения в крайних верхних и нижних волокнах сечения достигнут предела текучести материала детали σт , начнется пластическая деформация – то есть начнется процесс гибки. Если средний ролик (валок) отвести обратно вверх до начала возникновения пластической деформации, то заготовка отпружинит следом и сохранит свое первоначальное прямолинейное состояние! Именно эффект обратного пружинения вынуждает увеличить размер вертикальной подачи Hрасч на величину x , так как участки заготовки отпружинивают и частично распрямляются, выходя из зоны гибки, расположенной между роликами (валками).

Мы нашли эту поправку x опытным путем. Обратное пружинение или остаточную кривизну детали можно рассчитать, но это непростая задача. Кроме величины предела текучести материала σт значимую роль при решении этого вопроса играет момент сопротивления изгибу поперечного сечения вальцуемого элемента Wx . А так как часто профили особенно из алюминиевых сплавов имеют весьма замысловатое поперечное сечение, то расчет момента сопротивления Wx выливается в отдельную непростую задачу. К тому же и фактическое значение предела текучести σт часто значительно колеблется даже у образцов, вырезанных для испытаний из одного и того же листа или одного и того же куска профиля.

В предложенной методике сделана попытка уйти от определения обратного пружинения «методом научного тыка». Для пластичных материалов, например алюминиевых сплавов, значение x будет очень небольшим. Для сталей – в зависимости от марки, конечно, немного больше.

Вопросы, касающиеся гибки металла, рассматриваются так же в целом ряде весьма популярных у читателей этого блога статей: «Расчет усилия листогиба», «Расчет длины развертки», «Изготовление гнутого швеллера», «Всё о гнутом швеллере», «Всё о гнутом уголке».

Для получения информации о новых статьях и для скачивания рабочих файлов программ прошу Вас подписаться на анонсы в окне, расположенном в конце каждой статьи или в окне вверху страницы.

Не забывайте подтвердить подписку кликом по ссылке в письме, которое тут же придет к вам на указанную почту (может прийти в папку «Спам»).

Прошу уважающих труд автора скачивать файл с расчетом после подписки на анонсы статей!

Ссылка на скачивание файла: raschet-mestopolozheniia-rolika (xls 32,0KB).

Вальцовка листового металла

В одной из статей блога два с половиной года назад была затронута тема расчета геометрии деталей, получающихся в процессе вальцовки. В этой публикации речь пойдет об определении усилий, возникающих при вальцовке листового металла. Тема интересная.

. и важная не только для специалистов эксплуатирующих листогибочные вальцы, но и для всех, кто, так или иначе, связан с процессом гибки на листогибочных и обычных прессах.

Во всех расчетных формулах для определения усилия гибки листов в качестве одних из главных определяющих параметров фигурируют или предел прочности, или предел текучести металла листовой заготовки. Известно, что в процессе изгиба область, подверженная деформации, упрочняется. Но на сколько? Иногда это упрочнение учитывают повышающим предел текучести постоянным коэффициентом, как, например, в статье о V-образной гибке. В программе, представленной в этой статье, повышение прочности будет определено и учтено аналитически по расчетной кривой деформационного упрочнения.

В паспортах листогибочных валковых машин в последнее время обычно указывается максимальная ширина и толщина изгибаемой листовой заготовки из стали С255 и наименьший радиус вальцовки. А на практике постоянно возникает вопрос – «потянут» ли вальцы менее широкий, но более толстый лист, да еще, возможно, и из другой марки стали? Вопрос не праздный – ошибка может привести к поломке станка и дорогостоящему последующему ремонту.

Включаем MS Excel и начинаем рассмотрение решения озвученной задачи на примере вальцовки листового металла на трехвалковой листогибочной машине.

Расчет в Excel моментов и сил при вальцовке.

Задача:

Определить возможность гибки и правки обечайки диаметром 1600 мм и длиной 1500 мм из листовой стали С345 (09Г2С) толщиной 18 мм на вальцах марки И2222.

Из паспортных данных машины известно, что на ней можно изготовить обечайку минимальным диаметром 440 мм и длиной 2000 мм из листовой стали С255 (Ст3 сп5) толщиной 16 мм.

Вальцовка листового металла на трехвалковой машине с подвижным в вертикальной плоскости верхним валком показана на схеме, из которой очевидно, что наиболее нагруженным является верхний валок.

Вальцовка листового металла - схема

Задачу решим следующим образом:

1. Определим в расчете №1 усилие на верхнем валке при гибке и правке обечайки с предельными размерами из паспорта. То есть узнаем возможности листогибочной машины И2222.

2. В расчете №2 вычислим силы, действующие на наиболее нагруженный верхний валок при гибке и правке интересующей нас короткой трубы из стали С345.

3. Сравним значения сил и сделаем выводы.

Расчет №1:

Расчет в Excel усилий при вальцовке -1-49m

Расчет №2:

Расчет в Excel усилий при вальцовке -2-49m

Вывод:

Так как усилия на верхнем валке в расчете №2 немного меньше усилий из расчета в Excel №1, то следует вывод: на вальцах И2222 можно изготовить трубу из стали 09Г2С диаметром 1600 мм, длиной 1500 мм с толщиной стенки 18 мм.

Формулы, использованные в расчете:

12. ε т = [σт] / E +0,002

13. m =lg( [σв] / [σт] )/lg( εв / εт )

14. A = [ σв ] /(g* εв m )= [ σт ] /(g* εт m )

15. n = A *2 (2,59- m ) /( E /g *(2+ m ))

16. R о = R + s /2

17. r о = Rо / s

18. R г = Rо /(1+ n * r о (1- m ) )

19. M г =( A * b * s (2+ m ) )/(2 ( m +1) *(2+ m )* Rг m )* g

20. α г =arcsin (( L /2)/( Rг + D /2+ s /2))

21. P г =2* M г /( R г *tg ( αг ))

22. R пр = k ф * Rг

23. M пр =( A * b * s (2+ m ) )/(2 ( m +1) *(2+ m )* Rпр m )* g

24. α пр =arcsin (( L /2)/( Rпр + D /2+ s /2))

25. P пр =2* π * M пр /( R пр *((π- αпр )*tg ( αпр )+1-1/cos ( α пр )))

Заключение.

Расчет в Excel был выполнен без учета веса верхнего валка. Если учесть этот момент, возможности листогибочной машины увеличатся на 2…3%.

Механические свойства сталей в пунктах 4…7 расчета можно найти в ГОСТ 27772-88 ( εт5).

При правке заваренных обечаек изгибающий момент и усилие на верхнем валке возрастают из-за неправильной геометрии подогнутых краев заготовки и усиления сопротивления замкнутого контура.

Коэффициент формы обечайки kф в пункте 11 можно определить по подсказке в примечании к ячейке D13.

Этот коэффициент зависит от способа подгибки краев заготовки:

kф =0,75…0,85 – при вальцовке без подкладного листа с плоскими краями;

kф =0,80…0,90 — при вальцовке без подкладного листа по радиусу;

kф =0,85…0,95 — при вальцовке с подкладным листом:

kф =0,95…1,00 – при гибке на прессе в штампе.

В завершении статьи определим коэффициент упрочнения, о котором упоминалось в самом начале, для каждого из рассчитанных выше вариантов.

K1 = Mг1 /( Wx1 * [σт]1 )=37783899/(2000*16 2 /6*245)=1,81

K2 = Mг2 /( Wx2 * [σт]2 )=42658644/(1500*18 2 /6*325)=1,62

С уменьшением радиуса гибки листа логично нарастает упрочнение. Используя параметры кривой деформационного упрочнения, можно более точно определять усилия и при V-образной гибке на листогибочных прессах.

Смею предположить, что при использовании предложенной программы вальцовка листового металла станет для вас более понятной и безопасной.

Прошу уважающих труд автора скачивать файл с расчетной программой после подписки на анонсы статей в окне, расположенном в конце каждой статьи или в окне вверху страницы!

Гибка металла на вальцах

Расчет усилия вальцовки листового металла


Нужен полный текст и статус документов ГОСТ, СНИП, СП?
Попробуйте профессиональную справочную систему
«Техэксперт: Базовые нормативные документы» бесплатно

РУКОВОДЯЩИЙ ТЕХНИЧЕСКИЙ МАТЕРИАЛ

РАСЧЕТ УСИЛИЙ НА ВАЛКАХ ТРЕХ- И ЧЕТЫРЕХВАЛКОВЫХ ЛИСТОГИБОЧНЫХ МАШИН

PAЗРАБОTAH И ВНЕСЕН Всесоюзным научно-исследовательским и проектным институтом технологии химического и нефтяного аппаратостроения (ВНИИПТхимнефтеаппаратуры)

Зав. отделом холодной обработки металлов давлением канд. техн. наук

ПОДГОТОВЛЕН К УТВЕРЖДЕНИЮ Центральным проектно-конструкторским и технологическим бюро научной организации производства, труда и управления (ЦПКТБ НОТ)

Заведующий головным отделом стандартизации

СОГЛАСОВАН с Техническим управлением Министерства химического и нефтяного машиностроения

УТВЕРЖДЕН Министерством химического и нефтяного машиностроения

Начальник Технического управления канд. техн. наук

Васильев А.М., 16.02.1973 г.

ВВЕДЕН В ДЕЙСТВИЕ письмом Министерства химического и нефтяного машиностроения

Настоящий руководящий технический материал содержит методику расчета усилий на валках при подгибке кромок, гибке и правке цилиндрических и конических обечаек следующих видов валковых листогибочных машин:

а) четырехвалковой листогибочной машины с наклонной регулировкой боковых валков, симметрично расположенных относительно верхнего валка, и вертикальной регулировкой нижнего валка;

б) трехвалковой листогибочной машины с симметричным расположением приводных боковых валков и регулируемым по высоте верхним валком;

в) трехвалковой листогибочной машины с симметричным расположением приводных боковых валков, регулируемых по высоте.


Условные обозначения

- толщина изгибаемого листа, мм;

- длина образующей цилиндрической или конической обечайки (ширина листа), мм;

- момент инерции поперечного сечения валка, мм;

- радиус изгиба слоя, проходящего через центр тяжести поперечного сечения, при гибке листа и подгибке кромок, мм;

- радиус изгиба слоя, проходящего через центр тяжести поперечного сечения, при правке обечайки, мм;

- остаточный радиус изгиба, мм;

- внутренний радиус обечайки, мм;

и - остаточные внутренние радиусы в торцевых сечениях конической обечайки, мм;

- остаточный радиус изгиба слоя, проходящего через центр тяжести поперечного сечения листа в плоскости, перпендикулярной оси нормального конуса и делящей высоту конуса пополам, мм;

- приведенный остаточный радиус в среднем сечении, перпендикулярном образующей конуса, мм;

- относительный остаточный радиус;

- относительный радиус изгиба;

- угол конусности, град;

- изгибающий момент упруго-пластической деформации с упрочнением, кгс·мм;

- изгибающий момент упругой деформации, кгс·мм;

; ; - усилия при гибке листа на верхнем, боковом и нижнем валках, кгс;

; ; - усилия при подгибке кромок на верхнем, боковом и нижнем валках, кгс;

; ; - усилия при правке обечайки на верхнем, боковом и нижнем валках, кгс;

- нормальное напряжение, кгс/см;

- предел текучести материала листа, кгс/мм;

- предел прочности при растяжении материала листа, кгс/мм;

- относительное упругое удлинение материала листа;

- относительное равномерное удлинение материала листа;

- модуль упругости, кгс/мм;

- максимальное нормальное напряжение в крайних волокнах изгибаемого бруса, кгс/мм;

, ; - рабочие диаметры верхнего, нижнего и бокового валков, мм;

; ; - вес верхнего, нижнего и бокового валков, кгс;

; ; - диаметры цапф валков соответственно верхнего, нижнего и бокового, мм;

- расстояние между опорами валков, мм;

- расстояние от оси верхнего валка до точки пересечения направлений перемещения боковых валков в четырехвалковой листогибочной машине, мм;

- угол наклона валков, град;

- угол между направлением перемещения боковых валков и вертикальной осью верхнего валка, град;

- угол между направлениями действия усилий на верхнем и боковых валках.

1. ОПРЕДЕЛЕНИЕ ВЕЛИЧИНЫ ИЗГИБАЮЩЕГО МОМЕНТА И УСИЛИЙ НА ВАЛКАХ ЧЕТЫРЕХВАЛКОВОЙ ЛИСТОГИБОЧНОЙ МАШИНЫ ПРИ ГИБКЕ ЛИСТА, ПОДГИБКЕ КРОМОК И ПРАВКЕ ЦИЛИНДРИЧЕСКИХ ОБЕЧАЕК

1.1. Определение констант уравнения кривой упрочнения

В валках листогибочной машины заготовка претерпевает упруго-пластическую деформацию. Поэтому для гибки и правки обечаек в холодном и нагретом состояниях принята степенная зависимость напряжений и деформаций вида:

где и - параметры, зависящие от механических свойств материала листа при данной температуре заготовки и определяемые по формулам:


- берется из таблиц механических характеристик материала листа [3];

Значения и для материалов, наиболее распространенных в аппаратостроении, приведены в табл.1.

Читайте также: