Расчет на прочность изгибаемых металлических конструкций

Обновлено: 22.01.2025

Элементы металлических конструкций в процессе эксплуатации подвергаются действию растяжения, сжатия, изгиба, кручении и различных комбинаций этих воздействий. Рассмотрим методы расчета на прочность элементов металлических конструкций т.е. методы расчета по первому предельному состоянию.

Центрально-сжатые и центрально - растянутые элементы. Ранее для вычисления напряжений в этом случае была выведена формула ( 3.1 ). Эту формулу легко превратить в соотношение для проверки прочности.

где Аn - площадь поперечного сечения элемента за вычетом ослаблений; N - усилие от действия расчетных нагрузок; γc - коэффициент условий работы; R - расчетное сопротивление. Если расчет ведется по упругой стадии, R = Ry. Если расчет ведется для условий, когда возможна эксплуатация конструкции и после достижения материалом напряжений текучести, в качестве расчетного сопротивления выбирается максимальное значение из величин Ry и Ru / γu . Здесь Ry и R u - расчетные сопротивления материала, соотвественно, по пределу текучести и по временному сопротивлению;

γu = 1,3 - коэффициент надежности по материалу при расчете конструкций по временному сопротивлению.

Относительно разницы между растяжением и сжатием. Формула (4.1) для растяжения абсолютно корректна. Что же касается сжатия, то это соотношение справедливо только для коротких стержней. Известно, что стержни при сжатии, до исчерпания прочности самого сечения, могут потерять устойчивость, см. рис.4.1. Следует заметить, что хотя это напряженное состояние называется «центральным сжатием» на практике оно никогда не реализуется. Происходит это по многим причинам. Во-первых, нагрузка никогда не может быть приложена точно в центре сечения, так как все конструктивные элементы выполняются с допусками. Во-вторых, материал в сечении и по длине стержня всегда неоднороден. Эти и другие причины приводят к тому, что сжимающая сила оказывается всегда приложенной с некоторым эксцентриситетом к центру тяжести поперечного сечения и этот эксцентриситет создает дополнительный изгибающий момент, приводящий в итоге к потере устойчивости.


Рис. 4.1. Работа центрально сжатого стержня:

а - стержень и его расчетная схема, б – зависимость между нагрузкой и прогибом стержня,

в - сжатие короткого стержня.

Такое напряженное состояние стержня при действии сжимающей силы называется продольным изгибом. Поэтому формула проверки прочности стержня при сжатии будет

выглядеть так: σ = N / ( φ A ) ≤ Ry γc , ( 4.2 )

где: φ - коэффициент продольного изгиба; A – площадь поперечного сечения стержня. Коэффициент φ всегда меньше 1 и зависит от гибкости стержня λ. Гибкость стержня зависит от способа его закрепления по концам и от геометрических характеристик сечения: λ =

где - расчетная длина стержня; μ - коэффициент расчетной длины;

i =

При действии изгиба производится проверка по нормальным и касательным напряжениям. При расчете по упругой стадии проверка нормальных напряжений производится по соотношению преобразованному из соотношения ( 3.2 ):

где M - расчетный изгибающий момент; Wn,min - момент сопротивления сечения

с учетом ослаблений; σmax - напряжение в крайних волокнах поперечного сечения.

Касательные напряжения проверяются на основании формулы Н.Г. Журавского:

τ = Q S / ( J t ) ≤ Rs γc , ( 4.5 )

где Q - поперечная сила от действия расчетных нагрузок; S - статический момент сдвигаемой части сечения относительно нейтральной оси; J - момент инерции сечения относительно нейтральной оси; t - толщина стенки в плоскости сдвига; Rs - расчетное сопротивление металла сдвигу.

При действии изгибающих моментов в двух плоскостях ( случай косого изгиба) проверка нормальных напряжений выполняется по соотношению:

где Mx , My, Wnx, Wny - изгибающие моменты и моменты сопротивления сечения относительно осей изгиба X и Y.

По мере роста нагрузки в сечении изгибаемого элемента могут развиваться пластические деформации. Развитие пластических деформаций в сечении изгибаемого элемента иллюстрируется эпюрами на рис. 4.2.


Рис.4.2. Изменение эпюры напряжений в изгибаемом элементе при развитии

пластических деформацйий в материале

а – в упругой стадии, б – в упруго-пластической, в – шарнир пластичности, г – при ограниченной пластичности

При проверке прочности с учетом пластических деформаций, формула получается из соотношения ( 4.4 ) заменой величины Wn на величину Wn,пл = C Wn .

где коэффициент c учитывает увеличение момента сопротивления и определяется по нормам. Кроме того это соотношение разрешается применять только для случаев

когда τ ≤ 0,9 Rs . А проверка прочности на сдвиг в этом случае производится только в опорных сечениях разрезных балок, там где изгибающие моменты равны нулю. Для тавровых балок проверка производится при τ ≤ 0,5 Rs по соотношению

где t - толщина стенки; h - высота балки.

Для случая косого изгиба при τ ≤ 0,5 Rs проверка производится по соотношению:

где Сx и Сy коэффициенты зависящие от формы сечения; β - коэффициент меньший единицы и зависит от величины касательного напряжения τ. При работе элементов металлических конструкций возможны случаи сложного напряженного состояния когда совместно действуют изгиб и усилия растяжения или сжатия. В общем случае, когда действует осевая сила N и моменты в двух направлениях Mx и My предельную несущую способность проверяют по формуле:

где An , Wnx , Wny - площадь и соответстующие моменты сопротивления нетто поперечного сечения стержня; Сx и Сy - коэффициенты, учитывающие увеличение несущей способности материала при развитии пластических деформаций; n - показатель степени. Три последние величины принимаются в соответстии с действующими нормами. Для конструкций работающих в упругой стадии и в случаях когда развитие пластических деформаций недопустимо, в проверочной формуле следует положить n = Сx = Сy= 1 и соотношение ( 4.10 a ) перейдет в соотношение для проверки по упругой стадии работы материала при действии нормальной силы и изгиба в двух плоскостях:

В случае действия сжимающей силы и изгиба в двух направлениях может также произойти потеря устойчивости и при этом необходимо произвести соответствующие проверки. Потеря устойчивости может произойти как в плоскости действия момента, так и из плоскости, это зависит от соотношения гибкостей стержня в этих плоскостях. Формула проверки устойчивости в этом случае аналогична формуле проверки для случая продольного изгиба: N / ( φe A ) ≤ Ry γc , ( 4.11 )

Однако коэффициент потери устойчивости φe зависит в данном соотношении от приведенной гибкости ef . Способ вычисления этих величин приведен в нормах. Проверка на устойчивость из плоскости действия момента производится по формуле:

Расчет изгибаемых элементов

Изгибаемые элементы рассчитывают по первой группе предель­ных состояний, когда проверяют их прочность и устойчивость, и по второй группе предельных состояний, когда проверяют их жесткость (прогиб). Расчеты на прочность и устойчивость ведут по расчет­ным нагрузкам, а расчет на прогиб — по нормативным.

Прочность изгибаемых элементов проверяют по нормальным касательным и приведенным напряжениям. Если балка работает на изгиб в одной из главных плоскостей (рисунок ниже, слева) в пределах упруго­сти, то в сечениях балки получается треугольная эпюра нормаль­ных напряжений (рисунок ниже, справа).

Работа балки на изгиб

1 - 0054

а — расчетная схема и эпюры моментов и поперечных сил; б— поперечное сечение и эпюры нормальных и касательных напряжений

Максимальное значение этих напряжений в крайних волокнах

где М—расчетный изгибающий момент; Wnmin — наименьшее зна­чение момента сопротивления с учетом ослаблений.

Касательные напряжения в изгибаемых элементах проверяют в местах наибольшей поперечной силы Q но формуле

где Q — расчетная поперечная сила; Sx — статический момент сдви­гаемой части сечения относительно нейтральной оси; Jx — момент инерции (брутто) всего поперечного сечения балки; tω — толщина элемента в месте, где проверяют касательные напряжения (обычно толщина стенки по нейтральному слою); Rs ≈ 0,58Ry — расчетное сопротивление стали на сдвиг.

При ослаблении стенки балки отверстиями для болтов значе­ния τ в формуле ниже следует умножать на коэффициент:

Здесь а — шаг отверстия; d — диаметр отверстий.

Для стенок балок, рассчитываемых по формуле выше делают про­верку по приведенным напряжениям с учетом совместного действия нормальных и касательных напряжений. В металлических конструк­циях эту проверку производят по энергетической теории прочности.

1 - 0055

где σх = M / J n x · y — нормальные напряжения в срединной плоскости стенки, параллельные оcи балки; σy. — то же, перпендикулярные оси балки, в том числе σloc, определяемое по формуле выше;

τ = Q / tωh - среднее касательное напряжение с учетом коэффициента ослаблений α (здесь t = tω и h= hω) — соответственно толщина и высота стенки).

Общую устойчивость изгибаемых элементов проверяют по первой группе предельных состояний.

Под влиянием нагрузки, расположенной в плоскости одной из главных осей инерции поперечного сечения, балка изгибается в этой плоскости лишь до достижения нагрузкой некоторого критическо­го значения. Затем балка выходит из плоскости изгиба и начинает закручиваться. Это явление называют потерей общей устойчивости балки, а соответствующий ему изгибающий момент — критичес­ким моментом. Форму потери общей устойчивости балки называ­ют изгибно-крутильной (рисунок ниже). В поясах потерявшей устойчи­вость балки развиваются пластические деформации, и она быстро теряет несущую способность при нагрузке, незначительно превосходящей критическую.

Потеря общей устойчивости консольной двутавровой балки (а) и влияние места приложения нагрузки (б)

1 - 0056

Проверка общей устойчивости сводится к сравнению возникаю­щих напряжений с критическими: σ=M/W< σсr Критические напря­жения связаны с расчетным сопротивлением материала через коэф­фициент (называемый «фи балочный»), в результате чего формула для проверки общей устойчивости изгибаемого элемента имеет вид:

где φb — коэффициент снижения несущей способности.

Для элементов, изгибаемых в двух плоскостях, прочность про­веряют по формуле:

где х и у — координаты рассматриваемой точки сечения относи­тельно главных осей.

При этом значения напряжений в стенке балки должны быть проверены по формулам выше в двух плоскостях изгиба.

Расчет в опорном сечении балок (при М = 0; Мх = 0; Мy= 0) следует выполнять по зависимости:

Расчет стальных изгибаемых элементов по второй группе пре­дельных состояний сводится, в первую очередь, к проверке условия:

где f— фактический прогиб, определяемый от действия норматив­ных нагрузок по правилам сопротивления материалов без учета ос­лаблений отверстиями для болтов и без учета коэффициента дина­мичности; l = lef— расчетный пролет изгибаемого элемента; fu/l — предельно допустимый относительный прогиб, принимаемый для промышленных и гражданских зданий.

Прогиб балок от нормативных нагрузок определяют по форму­лам строительной механики, пренебрегая ослаблением отверстия­ми для болтов.

Если балка подвергается изгибу в двух главных плоскостях (ко­сой изгиб), то ее прочность

Расчет изгибаемых элементов металлических конструкций

В изгибаемых эл-тах возникает неск-ко видов напр-ия. Все случаи работы д.б. рассчитаны по предел сост-ям. Для 1-ой группы – вязкое или усталостное разрушение, потеря устой-ти, текучесть мат-ла. Для 2-ой группы – достижение предельных перемещ-й.

σ – норм напр-ия, образуются от действия изгиб м-та; τ – касат напр-ия, образуются от действия попер сил; σlok – мест напр-ия, образуются в месте приложения крупной сосредоточ силы или опорной р-ии.

Кроме того при расчете д.б. учтено совместное действие норм и касат напр-ий, под действием к-ых возникает сложное напряжен сост-ие, несущее в себе новые кач-ва.

1.Расчет по норм напр-ям. Расчет на проч-ть изгибаемых эл-тов, раб-щих в пределах упругих деф-ций, при изгибе в одной из гл пл-стей вып-ют по формуле: , - изгиб м-т, определенный по расч нагрузкам; - м-т сопр-ния ослабленного сечения, определенный по упругой стадии работы эл-та. Расчет на проч-ть эл-тов с учетом развития пластич деф-ций, изгибаемых в одной из гл пл-стей, вып-ют по формуле: , - коэф,учит-ющий пластич работу стали, опред-ся: п. 5.18 СНиП. Учет пластич работы стали разреш-ся для изд-ий из стали с пределом текучести , при соблюдении усл-ий надежного обеспечения общей и мест устой-ти кон-ций и возд-вии т-ко статич нагрузок.

2.Расчет по касат напр-ям. Наиб. касат напр-ия приход-ся на нейтрал ось, на уровне к-ой и проверяют стенку балки при расчете. Знач-я касат напр-ий в сеч-ях изгибаемых эл-тов д. удовлетворять усл-ию: , - попер сила от расч нагрузок; - статич м-т брутто сдвигающейся части сеч-я, относит-но нейтрал оси; - м-т инерции сеч-я относит-но нейтрал оси; - δ стенки балки.

3.Расчет по мест напр-ям. Мест сж-щие напр-я, возник-щие в местах прилож-я сосредоточ силы резко снижают мест устой-ть стенки. Поэтому в таких местах реком-ся устан-ть ребра жесткости. Если избавиться от местн напр-ий невозм-но, то необх-ма проверка по ф-ле: , - расч знач-е нагрузки; - условная длина распределения нагрузки, определенная из усл-й опирания. (Рис.), , - ширина прилож-я нагрузки; - δверхнего пояса балки.

4.При сложном напряженном сост-ии от совместного действия норм и касат напр-ний. Для стенок балок, раб-щих в пределах упругих деф-ций д. вып-ся усл-я: , - норм напр-ия ср пл-ти стенки, //-ные оси балки; - норм- напр-ия ср пл-ти стенки, ┴-ные оси балки, в т.ч. ; - касат напр-ия в той же точке балки, для к-ых определ-ся норм напр-ия.

5.Проверка общей устой-ти. При располож-и нагрузки в пл-ти гл оси инерции, изгибаемый эл-т при потере устой-ти сначала изгиб-ся в своей пл-ти, а затем при достиж-и нагрузкой критич знач-я начинает закручиваться и выходить из пл-ти изгиба. Расчет на устой-сть балок двутаврового сеч-я, изгибаемых в пл-сти стенки и удовлетворяющих рассм-ным ранее усл-ям, вып-ют по ф-ле: , - м-т сопр-ния для сжатого пояса; - коэф., снижения расч сопр-ний при изгибно-крутильной форме потери устой-ти балок, определяемый в соотв-и с прил. 7 СНиП. Проверка общей устой-ти балок не произ-ся, если: 1.Нагрузка передается ч/з сплошной жесткий настил, приваренный к верхнему поясу балки. 2.Отн-ие расч длины балки кширине сжатого пояса не превышает знач-й, определяемых по ф-лам табл. 8 СНиП для балок двутаврового (симметричного) сеч-я и для балок с развитым сжатым поясом при усл-ии, что

6.Потеря мест устой-ти. Прокатные профили запроект-ны так рац-но, что для них невозм-на потеря мест устой-ти. Поэтому такая проверка не произ-ся. Составные эл-ты обязат-но проверяются на мест устой-ть. (Рис) Устой-ть стенок балок не треб-ся проверять, если условная гибкость стенки удовлетворяет усл-ям: , - при отсутствии местного напр-ия в балках с двусторонними поясными швами; - при отсутствии мест напр-ия в балках с односторонними поясными швами; - при наличии мест напр-ия в балках с двусторонними поясными швами. При этом следует устан-ть попер осн ребра жесткости в соотв-вии с п. 7.10; 7.12 и 7.13 СНиП. Расчет на устой-ть стенок балок симметрич сечения, укрепленных т-ко попереч осн ребрами жесткости при наличии мест напр-ия, опред-ют по ф-ле: , - норм критич напр-ие. Устой-ть полки балки проверяют по отн-нию: , - опред-ся по ф-лам табл.30 СНиП.

7.Проверка упругих деф-ций. При работе соор-ий в балках м. появиться деф-ции, затрудняющие экспл-цию кон-ции. Деф-ции проверяют на упругой стадии работы кон-ции от возд-вия норм нагрузок, при этом возник-щий прогиб не д. превышать предельно допустимый. (Рис.) . Относит прогиб: . Величина предельно допустимого прогиба эл-тов дана в СНиП «Нагрузки и воздействия».

Расчет элементов металлических конструкций на изгиб


Бетонные изгибаемые элементы рассчитывают из условия равнове­сия в предельном состоянии. Перед образованием трещин на растяну­той грани напряжения достигают величины Rbt а эпюра в растянутой зоне вследствие развития значительных пластических деформаций силь­но искривляется, что позволяет без большой погрешности заменить ее прямоугольной. Нормальные напряжения на сжатой грани существенно меньше предельных, поэтому эпюра напряжений в сжатой зоне может быть принята треугольной. Ее наклон принимают таким, чтобы при продолжении в растянутой зоне она отсекала на крайнем волокне отре­зок, равный 2 Rbt(рис. 4.1). Это условие равносильно принятию модуля

деформации крайнего растянутого волокна бетона равным половине модуля упругости при сжатии (Е'bt= 0,Ь).

Таким образом, за расчетную эпюру внутренних напряжений в бе­тонном сечении вместо фактической криволинейной принята треуголь­ная в сжатой зоне и прямоугольная в растянутой. Принимается справед­ливой также гипотеза плоских сечений.

где Wpl — момент сопротивления для растянутой грани сечения, опреде­ляемый с учетом неупругих свойств бетона.

Для определения Wpl следует сначала найти положение нейтраль­ной оси, соответствующее принятой эпюре напряжений. Для этого со­ставляют уравнение проекций всех сил на продольную ось элемента, из которого получают статический момент сжатой

где А bt— площадь растянутой зоны сечения.

В общем случае положение нейтральной оси, т.е. величину х, опре­деляют последовательным приближением. Однако для большинства встречающихся на практике видов сечений, а именно, когда нейтраль­ная ось заведомо пересекает участок сечения с постоянной шириной (пря­моугольное, тавровое, коробчатое и др.), выражение (4.2) легко преоб­разуют в уравнение с одним неизвестным, из которого можно непосред­ственно определить х.

Выражение упругопластического момента сопротивления сечения получим из уравнения моментов всех сил относительно нейтральной оси, из которого

гдеlc момент инерции сжатой зоны сечения относительно нулевой линии; S, — статический момент растянутой части сечения относитель­но той же оси.

Величину Wpl допускается определять также по формуле

т.е. умножениенм величины упругого момента сопротивления крайнего растянутого волокна сечения относительно оси, проходящий через центр тяжести сечения Wel, на коэффициент у, значения которого для сечения различной формы приводятся в пособиях по проектированию конструк­ций [10]*. Например, для прямоугольного и таврового сечения с полкой в сжатой зоне у = 1,75. Это свидетельствует о том, что учет неупругих деформаций в растянутой зоне существенно увеличивает расчетную проч­ность бетонных элементов, что хорошо согласуется с данными опытов. Элементы прямоугольной формы сечения допускается рассчитывать по формуле

Читайте также: