Расчет металла для арки

Обновлено: 22.01.2025

При расчетах на устойчивость помимо всего прочего необходимо знать расчетную длину и предельно допустимую гибкость рассматриваемого элемента, в данном случае стальной арки. Как ни странно, но в ныне действующих нормативных документах, в частности в СНиП II-23-81* (1990) "Стальные конструкции" нет отдельных требований по проверке устойчивости стальных арок.

В связи с этим можно предположить, что для стальных арок такая проверка не требуется. Ведь арка - это не просто сжатый элемент, а криволинейный сжато изгибаемый элемент и сжимающие напряжения в арке возникают не в результате действия продольной нагрузки, а наоборот - горизонтальные опорные реакции возникают в результате действия вертикальной нагрузки. Т.е. даже если арка и прогнется под действием вертикальной нагрузки, то это приведет лишь к увеличению горизонтальной опорной реакции из-за уменьшения стрелы арки, и на прочность арки повлияет незначительно (за счет увеличения нормальных сжимающих напряжений).

Однако такое предположение будет ошибочным как минимум потому, что устойчивость обычно проверяется в двух плоскостях: в плоскости действия нагрузки (в плоскости арки) и в перпендикулярной плоскости (из плоскости арки). Другими словами, относительно 2 главных осей сечения. Так вот, если в вертикальной плоскости арка - это действительно криволинейный стержень, то в проекции на горизонтальную плоскость арка - это условно прямолинейный стержень.

Кроме того нагрузка, действующая на арку, далеко не всегда бывает симметричной и равномерно распределенной, а значит уравнение прогиба может быть достаточно сложным и при этом максимальный прогиб будет не в ключе арки.

А еще арки могут быть изготовлены не только из металла, но и из древесины, железобетона и любых других строительных материалов. Так вот, в нормативных документах для деревянных и железобетонных конструкций имеются отдельные требования по расчету арок. А отсутствие подобных отдельных требований в СНиП II-23-81* (1990) я могу объяснить только тем, что стальные арки с затяжкой могут рассматриваться, как простейшие плоские фермы или как элементы пространственных или структурных конструкций при соответствующем конструктивном решении узлов сопряжения.

Кроме того есть еще и учебные пособия по металлическим конструкциям, нормативной силы не имеющие, но тем не менее утверждающие, что проверку устойчивости даже и в плоскости арки производить все-таки надо. И начинать нужно с определения расчетной длины арки.

Определение расчетной длины стальной арки

Арки могут быть двухшарнирными, трехшарнирными и бесшарнирными. От количества шарниров зависит значение коэффициента расчетной длины μ.

А дальше возможны следующие варианты

1 вариант.

При расчете на устойчивость в плоскости арки рассматривать арку как обычный прямолинейный стержень, но при этом имеющий длину, равную геометрической длине.

Это позволяет принимать расчетную длину lp

- для двухшарнирной арки - равной геометрической длине арки lg (μ = 1). lp = lg

- для трехшарнирной арки - равной геометрической длине одного из стержней арки (μ = 1). При шарнире в стреле арки lp = 0.5lg

- для бесшарнирной арки - равной половине геометрической длины (µ = 0.5). lp = 0.5lg.

При расчете из плоскости любой арки расчетная длина арки равна длине проекции арки на горизонтальную плоскость. lp = lпр.

Главный недостаток этого варианта в том, что арка - это все-таки не прямолинейный стержень.

2 вариант.

Воспользоваться данными СНиП II-25-80 (1988) "Деревянные конструкции", согласно которому в плоскости кривизны для двух и трехшарнирных арок lp = 0.58lg (т.е. μ = 0.58), и СНиП 2.03.01-84* (1988) "Бетонные и железобетонные конструкции", согласно которому для двухшарнирных арок lp = 0.54lg, для трехшарнирных арок lp = 0.58lg, для бесшарнирных арок lp = 0.365lp, а при расчете из плоскости любой арки lp = lпр.

Как видим, расхождения в данных для деревянных и ж/б арок в принципе не большие, так что и для двух и для трехшарнирных арок в плоскости арки можно принимать μ = 0.58. Это позволяет значительно уменьшить расчетную длину при расчете на устойчивость двухшарнирной арки.

Главный недостаток этого варианта в том, что в указанных нормативных документах рассматриваются не стальные арки.

3 вариант.

Воспользоваться данными различных учебных пособий. Например, согласно учебнику "Металлические конструкции" Файбишенко В.К. значение коэффициента μ зависит не только от способа закрепления на опорах но и от соотношения стрелы f к пролету арки l:

коэффициенты для определения расчетной длины арок

Как видим, приведенные в данной таблице значения µ не сильно отличаются от данных, извлекаемых из нормативных документов по расчету деревянных и ж/б конструкций. А обоснованием того, почему для двухшарнирной арки расчетная длина будет даже меньше, чем для трехшарнирной, служит следующая иллюстрация:

расчетная схема для арки при расчете на устойчивость в плоскости арки

Рисунок 489.1.

В принципе данная картинка достаточно наглядно показывает, почему для двухшарнирной арки расчетная длина не может быть равна геометрической длине арки.

Главный недостаток этого варианта в том, что определенный таким образом коэффициент μ и расчетная длина арки используются не для определения гибкости элемента, а для приближенного определения критической силы для арки через формулу Эйлера-Ясинского. Напомню, определение критической силы никак не связано с расчетным сопротивлением материала, а зависит только от параметров жесткости. Мы же пытаемся определить гибкость элемента, чтобы сравнить ее с максимально допустимой для сжатого элемента.

Вывод:

На основании приведенных выше сведений можно сделать вывод, что при расчете арок на устойчивость в плоскости арки можно пользоваться данными из учебника Файбишенко В.К. Ну а при расчете на устойчивость из плоскости арки расчетная длина во всех вариантах равна проекции арки на горизонтальную плоскость в том случае, если кровельный материал не обеспечивает необходимую жесткость и отсутствуют соответствующие диафрагмы жесткости.

Определение максимально допустимой гибкости стальной арки

Как уже говорилось, для стальных арок нет нормативно закрепленных максимально допустимых значений гибкости. Более того, нет таких значений и для деревянных или железобетонных конструкций. В связи с этим никаких определенных рекомендаций по определению максимально допустимой гибкости я дать не могу. Т.е. при расчетах для себя я бы принимал максимально допустимую гибкость не более λmax = 150, что следует из пункта 1.а) таблицы 19*. Если вам такое значение кажется заниженным, то можно определять максимально допустимую гибкость арки согласно п.2.а) или даже 2.б).

Ну и для того, чтобы все вышесказанное не испарилось, а дало хотя бы какой-то осадок, рассмотрим следующий

Пример расчета на устойчивость арки

Имеется двухшарнирная арка радиусом R = 4.115 м, со стрелой f = 1.3 м и с расстоянием между опорами L = 6 м, изготовленная из квадратной профильной трубы сечением 50х50х2 мм, угол а = 93.71°. Прочность арки даже с учетом коэффициента продольного изгиба φ обеспечена почти с двукратным запасом.

Согласно общих положений геометрическая длина арки составит:

lg = пRa/180 = 3.14·4.115·93.71/180 = 6. 73 м или 673 см (278.1.4)

Расчетная длина арки в плоскости арки (при f/l = 1.3/6 = 0.217) составит примерно:

lp = 0.55·673 = 370.15 см (489.1)

При радиусе инерции квадратной профильной трубы i = 1.95 см гибкость арки составит:

λ = lp/i = 370.15/1.95 = 190 (214.1.3)

Вывод: Если рассматривать гибкость элемента, как определяющий фактор, и брать за основу λmax = 150, то даже без дальнейших расчетов понятно, что данного сечения для обеспечения устойчивости арки в плоскости арки не достаточно. Необходимо принять параметры поперечного сечения арки таким образом, чтобы радиус инерции составлял не менее:

i = lpmax = 370.15/150 = 2.47 см (489.2)

Этому требованию удовлетворяет квадратная профильная труба сечением не менее 70х70х2 мм, имеющая радиус инерции i = 2,76 см.

Если же учесть, что при расчете на устойчивость даже трехшарнирной арки прочность обеспечена, да еще и с хорошим запасом, а конкретных указаний по максимально допустимой гибкости стальной арки нет, то можно оставить принятое сечение.

На всякий случай определим приближенное значение критической силы для арки по формуле Эйлера:

Nкр = п 2 EIx/l 2 p = 3.14 2 ·2·10 6 ·14.14/370.15 2 = 2037 кг (449.11)

Примечание: В указанном учебнике Файбишенко В.К. формула Эйлера-Ясинского имеет несколько иной вид, так в знаменателе присутствует дополнительно коэффициент µ, а вместо расчетной длины арки lp подставляется половина геометрической длины арки, при этом делается ссылка на картинку, показанную на рисунке 489.1. Мне такое обоснование кажется странным и приводящим к необоснованному завышению значения критической силы, поэтому я использовал классическую формулу Эйлера.

Nкр > (1.2÷1.3)N (489.3)

где N - нормальная сила, действующая в рассматриваемом сечении в точке D, в нашем случае N = 792.9 кг, 1.2÷1.3 - коэффициент, учитывающий наличие момента в рассматриваемом сечении. Тогда

2037 кг > 1.3·792.9 = 1030 кг

Требуемое условие соблюдено.

При определении устойчивости из плоскости арки расчетная длина будет значительно больше, а значит и больше значение гибкости. Например в данном случае

λ = lp/i = 600/1.95 = 308

Поэтому более экономным вариантом будет не увеличение сечения арки, а устройство соответствующих диагональных связей. Подобные связи не только обеспечат геометрическую неизменяемость системы, но и значительно уменьшат значения расчетной длины из плоскости арки.

На этом пока все.

Доступ к полной версии этой статьи и всех остальных статей на данном сайте стоит всего 30 рублей. После успешного завершения перевода откроется страница с благодарностью, адресом электронной почты и продолжением статьи. Если вы хотите задать вопрос по расчету конструкций, пожалуйста, воспользуйтесь этим адресом. Зараннее большое спасибо.)). Если страница не открылась, то скорее всего вы осуществили перевод с другого Яндекс-кошелька, но в любом случае волноваться не надо. Главное, при оформлении перевода точно указать свой e-mail и я обязательно с вами свяжусь. К тому же вы всегда можете добавить свой комментарий. Больше подробностей в статье "Записаться на прием к доктору"

Для терминалов номер Яндекс Кошелька 410012390761783

Номер карты Ymoney 4048 4150 0452 9638 SERGEI GUTOV

Для Украины - номер гривневой карты (Приватбанк) 5168 7422 4128 9630

Здравствуйте.
А можно узнать, почему в выражении
Nкр = п2EIx/l2p = . = 2037 кг (449.11)
модуль упругости принят 2*10^6, а не 2*10^5 МПА?

Потому, что сила определяется в данном случае в килограммах, а не в Ньютонах. Соответственно модуль упругости принят в кг/см2, а не в МПа.

Здравствуйте. А при расчете верхнего и нижнего пояса арочных ферм расчетные длины верхнего и нижнего пояса арочной фермы рассчитывать аналогично? Или может есть какой более простой подход для их определния?

При расчете стержней верхнего пояса арочных ферм в плоскости фермы определяющим будет расстояние между узлами сопряжений стержней, а из плоскости фермы - расстояние между балками обрешетки. Для стержней нижнего пояса многое будет зависеть от геометрии фермы. Если расстояние между стержнями верхнего и нижнего пояса относительно небольшое, то этот же принцип можно использовать и для стержней нижнего пояса. А если например нижний пояс - прямолинейный, то при определении устойчивости из плоскости фермы, расчетная длина будет равна длине нижнего пояса, но при этом не следует забывать, что нижний пояс будет растянутым, а для растянутых стержней другие требования по устойчивости.

Примечание: Возможно ваш вопрос, особенно если он касается расчета конструкций, так и не появится в общем списке или останется без ответа, даже если вы задатите его 20 раз подряд. Почему, достаточно подробно объясняется в статье "Записаться на прием к доктору" (ссылка в шапке сайта).

Расчет металла для арки

Делать арочные фермы при пролете 6 метров вовсе не обязательно, вполне можно обойтись просто арочными балками, изготовленными из профильной трубы. Тут возможны несколько вариантов расчета. Рассмотрим эти варианты по мере возрастания сложности расчета.

1 вариант: Расчет балки - криволинейного бруса с большим радиусом кривизны

Вообще-то, арочная ферма, которую мы рассчитывали ранее - это и есть криволинейный брус (стержень) сквозного сечения. Соответственно арочная балка из профильной трубы - это криволинейный брус сплошного сечения. Вот и вся разница.

Расчет арочной фермы

Ну а теперь пришло время поговорить о самом интересном - расчете арочной фермы. При выбранной нами расчетной схеме максимальная нагрузка будет на средние фермы. Одна из таких ферм обозначена на расчетной схеме синим цветом. Именно ее нам и нужно рассчитать:

Геометрия арочных ферм

Рассмотрим ситуацию, когда хочется сделать открытую беседку в саду в виде галереи. И чтоб галерея имела сводчатое покрытие и была вся такая воздушная и прозрачная. В этом случае сотовый поликарбонат по арочным фермам, изготовленным из металлопрофиля, подойдет как нельзя лучше.

Сейчас арочные фермы в малоэтажном строительстве достаточно популярны. Арочные фермы используют все больше из дизайнерских соображений - арки, символизирующие издревле небесный свод, да еще и с покрытием из светопрозрачных материалов, например, поликарбоната, создают впечатление невероятного простора и свободы.

Изготавливаться арочные фермы могут из любого материала, но самым популярным остается металлическая профильная труба. А если для изготовления арочных ферм будет использоваться профиль одного- двух сечений, опять же из эстетических соображений, то расчет такой фермы и всей конструкции в целом будет не таким уж и сложным, как может показаться.

Расчет арочной перемычки из кирпича

С тех пор, как люди придумали железобетон и начали делать из него простые по форме перемычки, необходимость в арочных перемычках, выложенных из кирпича, отпала. Тем не менее арочные перемычки из кирпича и натурального камня делаются и сейчас, просто потому, что оконный или дверной проем со сводом намного эстетичнее, чем порядком набивший оскомину прямоугольник.

Расчет арочной перемычки (лучковой перемычки, лучковой арки) в отличие от прямолинейной перемычки состоит из двух этапов: определения геометрических параметров и расчета на прочность. При этом в силу своей природы арочная перемычка для самонесущих стен, а тем более для перегородок, в расчете на прочность как правило не нуждается, а вот арочную перемычку несущих стен, на которые могут опираться балки или плиты перекрытия, проверить расчетом не помешает. Это мы и попробуем сделать.

Расчет стропил - треугольной арки с затяжкой

Не смотря на огромное разнообразие видов арок, в малоэтажном жилищном строительстве наибольшее распространение получили трехшарнирные треугольные арки с затяжкой. Например, при устройстве кровли стропильная система может представлять собой трехшарнирную треугольную арку:

Виды арок. Основные понятия

Арка - одна из древнейших строительных несущих конструкций. Арки издревле использовались не только в качестве стеновых перемычек, имеющих относительно небольшую длину, но и для выполнения сводчатых перекрытий, при строительстве мостов, виадуков и прочих инженерных сооружений с достаточно большими пролетами. И вовсе не потому, что арочный свод, символизирующий небесный, выглядит намного эстетичнее, чем обычная прямолинейная балка, например, железобетонная перемычка или перекрытие из железобетонных плит. Уникальность арок в том, что для их изготовления можно использовать практически любые материалы.

В отличие от балок, материал которых работает как на сжатие, так и на растяжение, материал арок, при правильно подобранных параметрах, работает только на сжатие, поэтому для изготовления арок совсем не обязательно использовать металл или древесину, а можно использовать любые природные или искусственные камни, обладающие достаточной для этого прочностью, что с успехом и делали наши предки:

Расчет на устойчивость стальной арки

К расчету треугольной арки с затяжкой как фермы

Треугольная арка с затяжкой представляет собой ничто иное, как простейшую треугольную ферму из трех стержней. Недавно мы рассматривали расчет треугольной арки с затяжкой, заменив при этом затяжку горизонтальными опорными реакциями, тем не менее ее можно рассчитывать и как треугольную ферму. Проверочный расчет никогда не помешает.

Для наглядности рассмотрим те же самые условия, т.е. строится двухэтажный дом в Московской области. Кровля планируется из висячих стропил, соединенных затяжкой возле опор. Эту конструкцию можно рассматривать и просто как треугольную трехшарнирную арку с горизонтальными связями на обеих опорах и как простейшую треугольную ферму из трех стержней, чем мы далее и займемся.

К расчету арочных ферм, прогиб арочной фермы

Как уже говорилось, геометрия арочных ферм может быть достаточно разнообразной. А в зависимости от геометрии и жесткости арочной фермы ее можно рассматривать или просто как ферму или криволинейный брус сквозного сечения с большим радиусом кривизны, у которой отсутствуют горизонтальные опорные реакции при отсутствии горизонтальных нагрузок, или как арку сквозного сечения, у которой горизонтальные опорные реакции имеются в любом случае.

Почему это так и стоит ли учитывать горизонтальные опорные реакции для арочных ферм, мы и попробуем разобраться в данной статье.

Арка с условно нулевой высотой

Строгая тетя Стоительная Механика учит нас, что:

- Сделать арку, у которой высота равна 0, невозможно! И вообще нет такого понятия - высота арки. Нужно говорить - стрела арки f или стрела подъема арки. А термин "высота" оставьте для рассмотрения поперечных сечений. Пришли в общественное место - извольте выражаться культурно. Тут вам не кухня, а храм науки!

- А почему невозможно?

Ферма с затяжкой

13.05.2015 Лилия

Я только что на сайте отправила комментарий про узел сопряжения арочной фермы с колонной (не сразу увидела, что можно написать письмо). Я спрашивала как сделать его шарнирным , т. к хочу рассчитать ферму по Вашему примеру на сайте. Я вот начертила кое-что, вообще не знаю можно так делать или нет, но если можно тогда же это получится жесткое сопряжение? Благодарю за помощь.

23.05.2015 Доктор Лом

Я в почту заглядываю редко, поэтому и ответ запоздалый. А то, что вы нарисовали, это действительно жесткое закрепление и вообще такую конструкцию более правильно рассматривать как раму.

Конструкции с арочными сводами были популярны во все времена, а сейчас, когда с покупкой металлопрофиля и кровельных покрытий никаких проблем нет, арочные навесы стали чуть ли не обязательным атрибутом уютного дома. Главный ограничитель в широком распространении арочных навесов - это относительная сложность расчетов подобных конструкций. Именно эту сложность мы и попытаемся преодолеть.

Расчет металлической арки

Расчет поликарбоната на прочность и прогиб

Поликарбонат - достаточно новый строительный материал. В том смысле, что в Советском Союзе поликарбонат не использовался, а потому не было никаких ГОСТов или СП, регламентирующих параметры и свойства поликарбоната. Не появились подобные нормативные документы и за последние 20 лет использования поликарбоната. В основном потому, что производится поликарбонат все больше за границей или на совместных предприятиях и отвечает требованиям пока мало известных нам норм.

Зато рекламных материалов, посвященных удивительным и невероятным свойствам поликарбоната, в сети немало. И про прекрасные прочностные свойства, типа в 200 раз прочнее стекла, и про чудесные упругопластические свойства, мол, выгибать можно по достаточно малому радиусу, и светопроницаемость лучше, чем у стекла и срок службы огромный, чуть ли не 20 лет, и так далее. Все это, конечно, очень хорошо, но для расчета конструкций нужны несколько другие данные, а именно геометрические характеристики поперечного сечения, расчетное сопротивление сжатию и растяжению (если разное), модуль упругости. А такой информацией ни производители, ни продавцы делиться не торопятся, потому как вместе с поликарбонатом к нам с Запада пришла узкая специализация.

Расчет точечных креплений поликарбоната

Казалось бы, эка невидаль - поликарбонат. Да прикрутить его саморезами для профнастила и дело с концом! Дешево и сердито, особенно если особенная теплоизоляция на стыках не требуется. Однако срываемые во время сильных ветров листы поликарбоната наводят на мысль, что это не совсем верный подход к решению проблемы и поликарбонатные листы нужно крепить как минимум специально предназначенными для этого креплениями, и даже в этом случае шаг между креплениями следует подбирать не на глаз, а по расчету.

Существует два основных вида креплений для листов поликарбоната - ленточные и точечные. Когда в поликарбонате высверливается отверстие и в обрешетку вкручивается саморез, то это точечное крепление. Крепление поликарбоната с помощью угловых и стыковочных профилей может рассматриваться как ленточное. При креплении листа с помощью разного рода угловых и стыковочных профилей нагрузка на лист передается более равномерно и такие крепления в дополнительном расчете как правило не нуждаются. А вот при использовании точечных креплений в области контакта крепления с поликарбонатом могут возникнуть достаточно большие локальные напряжения.

Как правило проверять надежность точечных креплений для поликарбоната нет необходимости, это давно уже сделали инженеры, разработавшие крепления, но понимать принцип расчета не помешает.

Расчет прямоугольной фермы

А теперь представим себе следующую вполне вероятную ситуацию: жене не понравилась идея сделать колонны посредине (показаны на рисунке 293.1 темнозеленым цветом). Ей хочется пространства и воздушности.

Ничего не попишешь, женщинам виднее, ну а нам, чтобы эту самую воздушность соблюсти, придется дополнительно рассчитать ферму прямоугольной формы (на рисунке 293.1 общие контуры прямоугольных ферм показаны фиолетовым цветом).

Расчет балки обрешетки для настила из поликарбоната

Расчет металлической балки обрешетки для нашей арочной галереи - самый простой из расчетов. Самое главное, с чем тут следует определиться, так это с расчетной схемой и с нагрузками. Балки обрешетки будут привариваться к узлам верхнего пояса фермы и если прочность сварного шва позволяет, то балки обрешетки можно рассматривать как жестко защемленные на опорах балки.

Расчетной нагрузкой для балок будет снеговая нагрузка, нагрузка от веса поликарбоната и от собственного веса балок обрешетки. При этом, как мы успели выяснить, снеговая нагрузка будет не постоянной, а изменяющейся не только по длине фермы но и во времени, при этом максимальная снеговая нагрузка будет действовать на разные балки обрешетки в разные периоды времени. На общей схеме арочной галереи некоторые из максимально нагруженных балок обрешетки показаны фиолетовым цветом:

Расчет поликарбонатного покрытия для арки

При принятом расстоянии между узлами верхнего пояса фермы 62.5 см и радиусе изгибания около 4.1 м в качестве покрытия может использоваться поликарбонат практически любой толщины. А вот для того, чтобы подобрать толщину поликарбоната нужно как минимум знать максимальную нагрузку и схему закрепления. Основными нагрузками для поликарбонатного листа будут снеговая и ветровая нагрузка. И тут нас ожидает первая засада. Во-первых, в СНиП 2.01.07-85 (2003) нет расчетных схем снеговых и ветровых нагрузок, точно отвечающих нашей конструкции. Наиболее близкими по смыслу являются схема 2 снеговой нагрузки согласно обязательного приложения 3 и схема 3 ветровой нагрузки согласно обязательного приложения 4:

Расчет арочного навеса из профильной трубы

Мало кто перед строительством небольших построек на участке делает все необходимые расчеты и, тем более, заказывает проект. Обычно просто берутся стандартные решения, надежности которых хватает с большим запасом. И это более чем рационально, когда речь идет о том же заборе из профнастила или небольшом хозблоке. Но расчет арочного навеса лучше сделать: все же, под кровлей постройки будут долго находиться люди или стоять автомобиль. Поэтому вы должны быть уверены в том, что крыша гарантировано выдержит даже сильные снегопады. А для этого нужно знать нагрузки.

Расчет арочного навеса из профильной трубы

Оглавление статьи

Расчет снеговой и ветровой нагрузки на арочный навес

По правилам, чтобы рассчитать арочный навес, нужно не только сделать расчет нагрузки на кровлю и подобрать под нее марку профлиста или поликарбоната, но и посчитать стальной каркас навеса по СП 16.13330.2017 «Стальные Конструкции». На практике этого обычно не делают, поскольку стандартные опоры из круглой или профильной трубы 80×80 мм или 100×100 мм и профили 40×40 мм для каркаса самой арки выдерживают намного большую нагрузку, чем необходимо. Во всяком случае, для навесов во дворе частного дома в южных и центральных регионах. Любые конструкции для северных территорий, а также большие навесы нужно рассчитывать по всем правилам, поскольку типовые решения для них не подходят.

Другое дело — снеговая и ветровая нагрузка. Тем более что такой расчет арки навеса при простой сводчатой кровле несложен. Эти нагрузки считаются по СП 20.13330.2016 «Нагрузки и воздействия», а если точнее — по разделам 10 и 11 этого норматива.

Снеговая нагрузка на арочный навес

Снеговая нагрузка считается по формуле:

Формула расчета снеговой нагрузки

ce — коэффициент сноса снега с крыш зданий, который для большинства некупольных крыш будет равен 1.

ct — термический коэффициент, который для зданий без повышенных теплопотерь через крышу равен 1.

Sg — нормативное значение веса снегового покрова на 1 м², который зависит от места строительства, кг/м²:

μ — коэффициент, зависящий от формы крыши.

Для арочных кровель коэффициент μ рассчитывается по одной из двух схем:

Схемы расчета снеговой нагрузки на арочный навес

Схемы расчета снеговой нагрузки на навес с арочной кровлей: для арки с круговым сечением (слева) и для стрельчатой арки (справа)

Первая схема — для арок, в которые можно вписать окружность. Вторая — для стрельчатых арок.

Но не спешите ужасаться. Если вы делаете расчет арочного навеса из поликарбоната или профнастила ради выбора толщины и марки кровельного материала, коэффициент μ нужно просто взять равным 1. Не разбираясь с углами и касательными. Сейчас объясним почему.

Коэффициент μ для круговой арки считается для двух ситуаций:

  • при равномерно распределенном снеговом покрове: μ1=cos(1,5α) по варианту 1;
  • при неравномерно распределенной нагрузке с образованием снеговых мешков: μ2=sin(3α) по варианту 2.

При этом учитывается наибольшая нагрузка.

Коэффициент μ1 вычисляют в каждой точке кровли, выбирая наибольший. Для арочных кровель с круговым сечением (когда в свод можно вписать окружность, даже если крыша будет лишь небольшой ее частью) μ2 вычисляют в точках, где α=30° и α=60°, а также в крайнем сечении покрытия. Порядок расчета стрельчатых арочных крыш отличается, но принцип такой же: вычисляют несколько значений μ и выбирают наибольшее.

Все это важно только в тех случаях, когда речь идет о проектировании зданий, ангаров и других крупных сооружений с арочными кровлями. Ну и для тех, кто делает расчет арочных навесов не только ради выбора марки профнастила, но и для подбора сечения профиля и структуры фермы. Для этого нужно знать нагрузку в каждой точке кровли.

Пример

Покажем, как рассчитать полукруглый навес из профнастила с шириной кровли 4 м, в свод которой можно вписать окружность радиусом 2,5 м. В этом случае точки с α=60° нет, в крайнем сечении этот угол равен 53,13°.

По коэффициенту μ1 все очевидно — наибольшее значение у косинуса при угле, равном 0°, то есть в вершине дуги, где касательная совпадает с осевой линией. В этом случае μ1=cos(1,5×0°)=1. В крайних точках μ1 будет наименьшим и равно μ1=cos(1,5×53,13°)=0,179.

Коэффициент μ2 считаем в двух точках — крайней и при α=30°:

Пример расчета снеговой нагрузки на арку

Итого, независимо от метода расчета и радиуса арки, коэффициент μ все равно берем равным 1.

Схема арки для расчета снеговая нагрузка в примере

Проще говоря, когда мы делаем расчет арочного навеса для установки его во дворе дома, то приходим к частному случаю, при котором S0=Sg. Нормативный вес снегового покрова по районам приведен в таблице ниже.

Нормативные значения веса снегового покрова на 1 м²
Снеговые районы I II III IV V VI VII VIII
Sg, кН/м² 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0

Примечание

Чтобы перевести кН/м² в кг/м², нужно умножить на коэффициент 101,97. Или просто умножить на 100, если сильная точность расчетов не важна.

Карта снеговой нагрузки в РФ

Причина выбора наибольшего коэффициента μ, несмотря на то что его значения в разных точках арки отличаются в несколько раз, проста: на кровлю обычно укладывают один и тот же материал, и он должен держать нагрузку в любой точке. Поэтому его подбирают по самой большой нагрузке, даже если она возникает всего в одном месте крыши. А вот когда нужно сделать расчет арки навеса из профтрубы, разница в нагрузке в разных точках кровли приобретает большое значение. От этого зависит толщина стенок и сечение профильных труб, а также конфигурация ферм. В этом случае их тоже можно взять с запасом, и для небольших построек так и делают. Но для промышленных и коммерческих строений, вроде ангаров или складов, такой подход значительно, в 1,5–2 раза увеличивает себестоимость строительства.

Снеговая нагрузка на полукруглый навес из профнастила, который устанавливают во дворе дома в Подмосковье (III снеговой район), будет равна 1,5×101,97=152,955 кг/м².

Ветровая нагрузка на арочный навес

Ветровую нагрузку рассчитывают по общей формуле:

Формула расчета ветровой нагрузки

где w0 — нормативная ветровая нагрузка, зависящая от района строительства, кПа:

Нормативные значения ветрового давления
Ветровые районы Ia I II III IV V VI VII
w0, кПа 0,17 0,23 0,30 0,38 0,48 0,60 0,73 0,85

Карта зон РФ по ветровому давлению

k(ze) — поправочный коэффициент, учитывающий изменение ветрового давления в зависимости от высоты ze, который берется по таблице:

Значения коэффициента k в зависимости от высоты местности ze
Высота ze, м Коэффициент k для типов местности
А В С
≤ 5 0,75 0,5 0,4
10 1,0 0,65 0,4
20 1,25 0,85 0,55
40 1,5 1,1 0,8
60 1,7 1,3 1,0
80 1,85 1,45 1,15
100 2,0 1,6 1,25
150 2,25 1,9 1,55
200 2,45 2,1 1,8
250 2,65 2,3 2,0
300 2,75 2,5 2,2
  • Местность типа А: открытые побережья морей, озер, водохранилищ, сельские местности при высоте построек менее 10 м, пустыни, степи, лесостепи, тундра.
  • Местность типа В: город, лес и другие местности, которые равномерно покрыты препятствиями высотой более 10 м.
  • Местность типа С: плотно застроенные городские районы со зданиями высотой более 25 м.

с — аэродинамический коэффициент.

Если с первыми двумя значениями все понятно, то с аэродинамическим коэффициентом возникают проблемы, поскольку в своде правил нет схемы для навеса с арочной кровлей. Поэтому ветровую нагрузку для таких конструкций считают, как для зданий с арочной кровлей. Для них аэродинамический коэффициент с будет равен:

Формула для расчета аэродинамического коэффициента

где се1 и се2 определяют по графику ниже, а се3 равен −0,4.

График для расчета аэродинамического коэффициента

Продолжим предыдущий расчет арочного навеса. Ширина l навеса равна 4 м, высота опор h1 — 2 м, высота арки f — 1 м. Для определения се1 и се2 по графику посчитаем коэффициенты: f/l=1/4=0,25, h1/l=2/4=0,5. Следовательно, се1 будет равен либо −0,8, либо примерно 0,13 (нагрузку считают с каждым коэффициентом и выбирают наибольшую), а се2 — 0,95. Рассчитаем аэродинамический коэффициент:

Пример расчета аэродинамических коэффициентов

Больший коэффициент се2 берем для расчетов. Поскольку Подмосковье относится к первому ветровому району, w0=0,23 кПа. Так как навес меньше 5 м высотой, а пригород относится к территории типа В, k(ze) равен 0,5.

Ветровая нагрузка на арочный навес

Как видно из примера, для арочных навесов, которые ставятся на неветренных территориях, расчетом ветровой нагрузки часто можно пренебречь.

Суммарная нагрузка на кровлю арочного навеса будет равна 152,955+0,0782≈153 кг/м². Профнастил С21 выдерживает до 195 кг/м² при схеме опирания 4 и шаге 1,8 м, поэтому для перекрытия навеса оптимально выбрать эту марку профлиста.

Расчет количества материала для арочного навеса

Посчитать количество кровельного материала для арочного навеса сложнее, чем для обычного укрытия с односкатной или двускатной крышей. Для таких кровель расчет материала начинают с вычисления площади ската. Для арочной крыши это не первый этап — сначала ее нужно «развернуть» на плоскость, чтобы получился прямоугольник, площадь которого нас и интересует. Одна сторона этого прямоугольника известна — это длина навеса. Вторая сторона — это длина дуги арки, и ее нужно рассчитать.

Если арочная кровля — часть окружности, то рассчитать дугу арки для навеса можно по формуле:

L — длина дуги, м;

α — угол сегмента, рад;

R — радиус окружности, м.

Обычно угол сегмента и радиус окружности неизвестен. Зато можно напрямую измерить высоту арки h и хордуl — ширину навеса. Тогда:

Расчет радиуса и угла

Сложновато выглядит, не правда ли? Особенно пугающе смотрится арксинус, с которым и ученики выпускных классов не так часто встречаются. Поэтому мы решили облегчить вам задачу и сделали онлайн-калькулятор, который за вас рассчитает длину дуги арки для навеса:

Онлайн-калькулятор для расчета длины дуги арочного навеса

Просто введите высоту арки и ее ширину и нажмите на кнопку «Рассчитать», а остальное программа сделает за вас. Калькулятор считает только простые арки, высота которых меньше или равна половине ширины. Если у вас арочный навес с вертикальными участками по бокам, то считайте длину самой арки и длину этих стенок отдельно.

Теперь наконец, о непосредственном расчете материала на арочный навес из металлопрофиля. Рассчитанную длину дуги нужно умножить на длину навеса. Так мы получим площадь поверхности навеса, которую и будем застилать кровельным материалом. Дальше ее просто нужно разделить на полезную площадь листа выбранной марки профнастила. В отличие от полной площади, которую получают простым перемножением ширины листа на его длину, для расчета полезной площади используют размеры с учетом боковых нахлестов. Но если будут еще и поперечные нахлесты, то количество материала нужно будет увеличить на 15%.

Продолжим расчеты. Ширина нашего навеса — 4 м, высота арки — 1 м, следовательно, длина дуги равна 4,64 м. При длине навеса 6 м площадь поверхности кровли будет равна 4,64×6=27,84 м. Допустим, для перекрытия навеса будет использоваться профнастил С21. Длину листа берем с небольшим запасом — 4,7 м. Поскольку полезная ширина выбранной марки профнастила ровно 1 м, для навеса понадобится 6 таких листов.

Количество профильных труб для навеса зависит от проекта. Как правило, это:

  • 4–6 опорных труб 80×80 или 100×100 мм;
  • профиль 40×40 мм для дуг по одной штуке на каждый метр длины навеса;
  • профиль 60×30 мм или 40×40 мм для раскосов и боковых ферм.

Советуем считать профильные трубы в штуках, а не в метрах — так меньше вероятность ошибиться. Кроме того, при заказе готового комплекта профилей, вам не нужно будет тратить время на разметку труб и самостоятельную резку. Нужно будет просто собрать каркас навеса как конструктор.

Что в итоге

Расчет арочных навесов редко делают полностью — фермы считают только для ответственных или крупных объектов, но никак не для небольших построек во дворах частных домов. Для таких строений достаточно посчитать снеговую и ветровую нагрузки. Это нужно, чтобы выбрать подходящую марку профлиста или вид сотового/профилированного поликарбоната.

Кроме того, делают расчет материалов для арочных навесов из металлопрофиля. Он не так прост, как для обычных односкатных и двускатных кровель, поскольку скругленную поверхность нужно «развернуть» на плоскость. Но это не невыполнимая задача: нужно просто подставить значения в формулу или воспользоваться нашим онлайн-калькулятором.

Полезная статья? Сохраните ее в соцсетях, чтобы не потерять ссылку!

Программа для расчёта навеса


Перед строительством металлоконструкций необходимо выполнить расчёт прочности будущего сооружения. Применение специализированного софта позволит подобрать правильное сечение, создать нагрузку, рассчитать кручение в пространстве сложной конструкции и перемещение узловых точек.

Большинство программ, созданных для этих целей, платные. Суммы за лицензии разработчики запрашивают немалые.

Но в свободном доступе есть бесплатные калькуляторы и полноценные программы для Windows и даже Android. Их функционал значительно уступает профессиональным платным решениям, но за неимением последних такой софт становится очень полезным для создания навеса из профильной трубы.

Расчет навеса онлайн

Программы для расчёта навеса на Windows

Простые программы, которые помогают в расчёте веса конструкций из металлического профиля:

Metcalc

В программу заложены все существующие ГОСТы, она выдаёт стабильно точные результаты. Также она умеет делать обратные расчёты, то есть при указании массы и типоразмера выдаёт длину проката.

«Перпендикуляр.про»

Программа perpendicular.pro отличается от предыдущих тем, что позволяет производить расчёт материалов для арочных конструкций. Программа предельно проста в использовании. Нужно задать основные параметры арки (ширина, длина и высота) и нажать «рассчитать».

После этого пользователь получает общую длину изгиба и полную площадь навеса. Минус калькулятора – отсутствие в расчётах радиуса изгиба.

Расчет арочного навеса

Программа «Сопромат», которая умеет выполнять полноценные расчёты металлоконструкций. Софт бесплатный и подходит для вычисления параметров статически неопределённых рам, балок и ферм. Для расчётов она использует метод конечных элементов.

Сервис подойдёт практикующим строителям-инженерам и студентам для создания курсовых и дипломных работ.

Функционал программы достаточно широкий и включает:

Sopromatguru

Функционал этой программы Sopromatguru частично доступен бесплатно. Возможностей этого сервиса хватает даже для инженеров. Он умеет рассчитывать статически определимые системы, определять перемещения в узлах, рассчитывать реакции опор, реакции эпюры и сохранять ссылку на результаты расчётов.

Пока программа используется для расчёта горизонтальных балок, но, по заверениям разработчиков, скоро в ней будет доступен расчёт ферм.

Стоимость программы можно назвать символической. Платить нужно за каждый произведённый расчёт. У сайта приятный интуитивно понятный интерфейс, что облегчает рабочий процесс.

Сопроматгуру

«Ферма»

Полностью бесплатная десктоп-программа. Умеет рассчитывать плоские статически определённые и неопределённые фермы, сохранять полученные результаты.

Проект начинается с задания геометрических параметров фермы, в которые входят размеры стержней, точки присоединения и положение раскосов, возможные нагрузки и высоты.

Программа в расчётах использует метод вырезания узлов, что позволяет с высокой точностью определять реакции опор и усилия в стержнях.

Расчет навеса из профильной трубы

SCAD Office

Программный комплекс SCAD office с большим количеством функций, созданный специально для профессионалов. В его состав включено несколько утилит, которые умеют вычислять параметры отдельных элементов стальных, деревянных и даже каменных конструкций.

С их помощью можно проектировать монолитные железобетонные перекрытия, строить сечения и рассчитывать коэффициенты постели строения и многое другое. Программа платная, как и большинство профессионального софта.

В России и СНГ среди инженеров наиболее известна программа «ПК Лира», используемая для определения расчётов параметров строительных конструкций из материалов разного типа.

Программы для расчёта навесов на Android

Полноценно заменить компьютер смартфоны и планшеты не в состоянии, но программные решения тут тоже многообразны. Можно отыскать софт, который поможет при проведении работ по расчету металлоконструкций.

Несколько примеров таких программ:

«Калькулятор металлопроката 3.0.1»

Программа для смартфона с широким функционалом. В ней можно рассчитать материал для строительства навеса по длине, массе или площади. В библиотеке доступны круглые и прямоугольные трубы, арматура, швеллеры, уголки, плоские листы, крепёж и многое другое.

Типоразмеры изделий задаются по сортаменту или по исходным значениям с указанием типа материала. Приложение умеет сохранять расчёты и пересылать их по электронной почте.

«Расчёт нагрузок»

Пожалуй, это самое полезное приложение на Андроид, стабильно работающее и выполняющее заявленные разработчиками функции.

Его можно использовать для расчёта допустимых нагрузок, прочности и длин пролётов нагружаемой конструкции. Здесь можно выбрать форму, размер и тип материала. Программа подойдёт для проведения прикидочных расчётов на объекте.

Как правильно рассчитать навес из металла

Если у застройщика нет опыта в расчётах таких конструкций, то к проектированию нужно отнестись с большим вниманием, так как от результатов вычислений будет зависеть прочность и надёжность всего сооружения.

Расчёт выполняется в несколько этапов сверху-вниз. Первыми рассчитываются прогоны, балки, а потом стойки. Такой порядок необходим для того, чтобы заранее знать вес верхней части конструкции и учесть его в нагрузках на столбы.

Готовый навес должен быть очень жёстким и прочным, чтобы справляться не только с собственной массой, но и снеговыми и ветровыми нагрузками, характерными для региона застройки. Расчёты можно делать в любой программе или вручную по формулам.

В первую очередь в проекте необходимо учесть все вводные данные:

  1. Тип (форма) крыши. От этого параметра будет зависеть конфигурация ферм и поясов каркаса. Для навеса крышу чаще всего делают односкатной или арочной. В первом случае и строительство, и расчёты произвести проще всего. Форма крыши определяет и тип кровельного материала. Например, не подойдет профнастил на арочный навес с малым радиусом, так как он имеет ограничения на изгиб, зависящие от формы профиля и размера волны. В этом случае используют мягкую черепицу или поликарбонат.
  2. Общие размеры конструкции и планировка участка. Эти данные помогут определить точки установки несущих опор конструкции и понять, с каким шагом будут установлены фермы. Длина пролётов покажет, насколько мощными и габаритными должны быть фермы.
  3. Угол наклона и коэффициент скольжения кровельного материала. Эти показатели дают понять, как хорошо снег будет сходить с навеса. Для проведения таких расчётов также необходимы данные об экстремальных точках ската и их удалённости друг от друга. Посчитать всё это без программного обеспечения очень сложно.
  4. Полные и полезные размеры частей кровельного материала, расстояние между точками установки крепежа. Это основные параметры, которые задают шаг поясов обрешётки (прогонов) в стропильной системе навеса.

Получив все исходные данные, можно начинать расчёты. Стартуют они с определения параметров прогонов, которые нужно проверить на прогиб. Для этого находят равномерно распределённую, линейную нагрузку (на прогон будут действовать собственная масса, вес снега и профлиста или любого другого кровельного материала).

Чтобы нагрузку на квадратный метр перевести в линейную, нужно умножить её величину на ширину грузовой площади. Ширина грузовой площади рассчитывается по расстоянию между прогонами.

Ширина грузовой площади

Как видно из чертежа, наименьшая ширина нагрузки у крайних балок П1 и П5. Это значение равно расстоянию между прогонами, разделённому на 2. Срединные прогоны, если расстояние между ними строго одинаковое, будут нести в два раза большую грузовую площадь.

По схеме это значение определяется как А2+Б2 и так далее. Чтобы не утруждать себя дополнительными расчётами, нужно разбить пролёт на одинаковые отрезки. Для профнастила оптимальный шаг поясов составляет 0,5 м. Поэтому можно взять это значение как ширину грузовой площади и для крайних поясов, так как их делают из того же материала.

Пример расчёта

Для примера возьмём профлист, средняя нагрузка от которого на квадрат составляет 5,4 кг. Умножаем это значение на 0,5, и получаем 2,7 кг/м. Далее нужно полученное число умножить на коэффициент безопасности нагрузки 1,05. В цифрах — 2.7*1,05=2,835 кг/м.

Аналогично вычисляем линейную нагрузку от снега (это значение зависит от региона): 50*0,5*1,4=35 кг/м. Коэффициент безопасности по нагрузке от снега составляет 1,4.

Далее складываем нагрузки и получаем общую линейную нагрузку на каждый метр прогона: 2,835+35=37,835кг/м.

Теперь идём в любой из калькуляторов, подходящих по функционалу и вычисляем прочность прогона. Программа будет учитывать вес самого прогона и выдаст варианты изделий по ГОСТу, способных нести соответствующие нагрузки.

В калькуляторе указывается длина элемента, которая задаётся запланированным расстоянием между стропилами (фермами).

В таблице Д.1 документа СП20.13330.2016 «Нагрузки и воздействия» указан способ определения максимального прогиба в зависимости от его длины.

Предельный прогиб навеса

Предположим, расстояние между несущими фермами составляет 2 500 мм. Это значение нужно разделить на 150. Получаем 16,66 мм – это максимально допустимый прогиб для прогона такой длины.

Забив все значения в калькулятор, где уже определён тип трубы, получаем фактический прогиб прогона. Сопоставив его с эталонным, определяем, справится ли элемент с нагрузкой. Если прогиб превышен, ставим более прочные трубы и повторяем расчёты.

Далее по аналогии рассчитываем нагрузку на сами фермы, добавив в расчёты их собственную массу.

При расчётах в калькуляторах обязательно указывается тип соединений, так как от них во многом зависит прочность конструкции.

Завершается расчёт определением параметров стоек. За основу берётся стойка, расположенная ближе всего к центру нагрузки.

При расчёте используется значение площади нагрузки, так как опора представляет собой точку, на которую оказывается давление со всех сторон, и нет линейного распределения давящих сил.

Получаем площадь нагрузки, перемножив между собой перпендикулярные оси нагрузки, разделённые на 2. Полученное значение будет в кг/м 2 .

Далее площадь нужно поочерёдно умножить на массу (на м 2 ) профлиста, снега, прогонов и ферм. Полученные значения умножаются на коэффициенты безопасности, а затем складываются. Результат нужно перевести в килоньютоны, умножив на 10 и разделив на 1000.

Все полученные значения и планируемая высота стоек вносятся в калькулятор, который выдаёт параметры профтрубы.

Узнайте из видео: как подобрать профтрубу для навеса.

Заключение

Даже если стенки собранного навеса не будут обшиваться отделочными материалами, свободно стоящему каркасу необходимо задать пространственную прочность. Для этого добавляются укосы из той же трубы, что была использована для стоек.

Также по углам навеса можно использовать декоративные кованые элементы или фермы. При работе с металлом лучше использовать сварные соединения, так как они более надёжные.

Если нет уверенности в правильности расчётов, нужно сделать небольшой запас прочности, увеличить поправочный коэффициент безопасности, чтобы навес гарантировано служил долго и не мог разрушиться под воздействием незапланированных тяжестей.

Читайте также: