Прочный но хрупкий металл

Обновлено: 08.01.2025


Можете ли вы представить, что произошло, если бы наши предки не обнаружили важные металлы, такие как серебро, золото, медь и железо? Наверное, мы бы до сих пор жили в хижинах, используя камень в качестве основного инструмента. Именно крепость металла сыграла важную роль в формировании нашего прошлого и теперь работают как основа, на которой мы строим будущее.

Некоторые из них очень мягкие и буквально тают в руках, как самый активный металл в мире. Другие - настолько твердые, что их невозможно согнуть, поцарапать или сломать без применения спецсредств.

А если вам интересно, какие металлы самые твердые и прочные в мире, мы ответим на этот вопрос, учитывая различные оценки относительной твердости материалов (шкала Мооса, метод Бринелля), а также такие параметры как:

  • Модуль Юнга: учитывает эластичность элемента при растяжении, то есть способность объекта к сопротивлению при упругой деформации.
  • Предел текучести: определяет максимальный предел прочности материала, после которого он начинает проявлять пластичное поведение.
  • Предел прочности при растяжении: предельное механическое напряжение, после которого материал начинает разрушаться.

10. Тантал

Тантал

У этого металла сразу три достоинства: он прочный, плотный и очень устойчив к коррозии. Кроме того, этот элемент относится к группе тугоплавких металлов, таких как вольфрам. Чтобы расплавить тантал вам придется развести огонь температурой 3 017 °C.

Тантал в основном используется в секторе электроники для производства долговечных, сверхмощных конденсаторов для телефонов, домашних компьютеров, камер и даже для электронных устройств в автомобилях.

9. Бериллий

Бериллий

А вот к этому металлическому красавцу лучше не приближаться без средств защиты. Потому что бериллий высокотоксичен, и обладает канцерогенным и аллергическим действием. Если вдыхать воздух, содержащий пыль или пары бериллия, то возникнет заболевание бериллиоз, поражающее легкие.

Однако бериллий несет не только вред, но и благо. Например, добавьте всего 0,5 % бериллия в сталь и получите пружины, которые будут упругими даже если довести их до температуры красного каления. Они выдерживают миллиарды циклов нагрузки.

Бериллий применяют в аэрокосмической промышленности для создания тепловых экранов и систем наведения, для создания огнеупорных материалов. И даже вакуумная труба Большого Адронного Коллайдера сделана из бериллия.

8. Уран

Уран

Это естественное радиоактивное вещество очень широко распространено в земной коре, но сконцентрировано в определенных твердых скальных образованиях.

Один из самых твердых металлов в мире имеет два коммерчески значимых применения - ядерное оружие и ядерные реакторы. Таким образом, конечной продукцией урановой промышленности являются бомбы и радиоактивные отходы.

7. Железо и сталь

Железо и сталь

Как чистое вещество железо не такое твердое по сравнению с другими участниками рейтинга. Но из-за минимальных затрат на добычу оно часто комбинируется с другими элементами для производства стали.

Сталь - это очень прочный сплав из железа и других элементов, таких как углерод. Это наиболее часто используемый материал в строительстве, машиностроении и других отраслях промышленности. И даже если вы не имеете к ним никакого отношения, то все равно используете сталь каждый раз, когда режете продукты ножом (если он, конечно, не керамический).

6. Титан

Титан

Титан - это практически синоним прочности. Он обладает впечатляющей удельной прочностью (30-35 км), что почти вдвое выше, чем аналогичная характеристика легированных сталей.

Будучи тугоплавким металлом, титан обладает высокой устойчивостью к нагреву и истиранию, поэтому является одним из самых популярным сплавов. Например, он может быть легирован железом и углеродом.

Если вам нужна очень твердая и при этом очень легкая конструкция, то лучше чем титан металла не найти. Это делает его выбором номер один для создания различных деталей в авиа- и ракетостроении и судостроении.

5. Рений

Рений

Это очень редкий и дорогой металл, который хотя и встречается в природе в чистом виде, обычно идет «довеском»-примесью к молибдениту.

Если бы костюм Железного человека был сделан из рения, он мог бы выдержать температуру в 2000 ° C без потери прочности. О том, что стало бы с самим Железным человеком внутри костюма после такого «фаер-шоу» мы умолчим.

Россия - третья страна в мире по природным запасам рения. Этот металл используется в нефтехимической промышленности, электронике и электротехнике, а также для создания двигателей самолетов и ракет.

4. Хром

Хром

По шкале Мооса, которая измеряет устойчивость химических элементов к царапинам, хром находится в пятерке лучших, уступая лишь бору, алмазу и вольфраму.

Хром ценится за высокую коррозионную стойкость и твердость. С ним легче обращаться, чем с металлами платиновой группы, к тому же он более распространен, поэтому хром является популярным элементом, используемым в сплавах, таких, как нержавеющая сталь.

А еще один из прочнейших металлов на Земле используется при создании диетических добавок. Конечно, вы будете принимать внутрь не чистый хром, а его пищевое соединение с другими веществами (например, пиколинат хрома).

3. Иридий

Иридий

Как и его «собрат» осмий, иридий относится к металлам платиновой группы, и по внешнему виду напоминает платину. Он очень твердый и тугоплавкий. Чтобы расплавить иридий, вам придется развести костер температурой выше 2000 °C.

Иридий считается одним из самых тяжелых металлов на Земле, а также одним из самых устойчивых к коррозии элементов.

2. Осмий

Осмий

Этот «крепкий орешек» в мире металлов относится к платиновой группе и обладает высокой плотностью. Фактически это самый плотный природный элемент на Земле (22,61 г/см3). По этой же причине осмий не плавится до 3033 ° C.

Когда он легирован другими металлами платиновой группы (такими как иридий, платина и палладий), он может использоваться во многих различных областях, где необходимы твердость и долговечность. Например, для создания емкостей для хранения ядерных отходов.

1. Вольфрам

Вольфрам – самый прочный металл в мире

Самый прочный металл, который только есть в природе. Этот редкий химический элемент также самый тугоплавкий из металлов (3422 ° C).

Впервые он был обнаружен в форме кислоты (триоксида вольфрама) в 1781 году шведским химиком Карлом Шееле. Дальнейшие исследования привели двух испанских ученых - Хуана Хосе и Фаусто д'Эльхуяра - к открытию кислоты из минерала вольфрамита, из которого они впоследствии изолировали вольфрам с помощью древесного угля.

Помимо широкого применения в лампах накаливания, способность вольфрама работать в условиях сильной жары делает его одним из наиболее привлекательных элементов для оружейной промышленности. Во время Второй мировой войны этот металл сыграл важную роль в инициировании экономических и политических отношений между европейскими странами.

Вольфрам также используется для изготовления твердых сплавов, а в аэрокосмической промышленности - для изготовления ракетных сопел.

Таблица предела прочности металлов

МеталлОбозначениеПредел прочности, МПа
СвинецPb18
ОловоSn20
КадмийCd62
АлюминийAl80
БериллийBe140
МагнийMg170
МедьCu220
КобальтCo240
ЖелезоFe250
НиобийNb340
НикельNi400
ТитанTi600
МолибденMo700
ЦирконийZr950
ВольфрамW1200

Сплавы против металлов

Сплавы

Сплавы представляют собой комбинации металлов, и основной причиной их создания является получение более прочного материала. Наиболее важным сплавом является сталь, которая представляет собой комбинацию железа и углерода.

Чем выше прочность сплава - тем лучше. И обычная сталь тут не является «чемпионом». Особенно перспективными представляются металлургам сплавы на основе ванадиевой стали: несколько компаний выпускают варианты с пределом прочности до 5205 МПа.

А самым прочным и твердым из биосовместимых материалов на данный момент является сплав титана с золотом β-Ti3Au.

Хрупкие металлы – перечень, особенности обработки и использования

Металл ассоциируется с надежностью, прочностью, твердостью. Хрупкость – это атрибут стекла и подобных материалов. Однако и в металлическом сегменте есть «стекло».

Хрупкими могут стать изначально пластичные элементы.

Хрупкие металлы

Что представляют собой

Хрупкость – антипод пластичности. Это свойство вещества разрушаться без визуально различимых деформаций. То есть на изломе, например, цинковой проволоки цвет, блеск, структура не изменятся.

Хрупкие металлы подразделяются на две группы:

  • Наделенные этим свойством от природы.
  • Ставшие таковыми в результате обработки.

Ко второй группе причисляются также сплавы.

Причины уязвимости

Склонность к разрушению у металлов, других простых веществ, сплавов обусловлена следующими причинами:

    Структура. Например, у сурьмы это крупные зерна. У стали – доминирование в структуре а-фазы.

Переход металла в хрупкое состояние происходит при разных температурах.

  • Скорость нагрузки. Чем быстрее возрастает нагрузка на материал, тем быстрее он разрушится. Резкие удары способны погубить даже пластичные структуры (малоуглеродистую сталь).

Сплавы становятся хрупкими из-за примесей:

  • Самый «вредный» химический элемент – углерод. Он делает сплавы железа (чугун, сталь) хрупче в разы.
  • Сталь с фосфором обретает хладноломкость.
  • При малейшем «загрязнении» пластичный хром становится неподатливым к обработке.

«Стеклянными» сплавы делают фосфор, сера, мышьяк, сурьма, вольфрам.

Этот изъян не устранили даже создатели материалов поколения 2.0. Например, «супервещества» алюминид титана. Этот титаново-алюминиевый серебристый конгломерат термо-, коррозиестоек, но перед кувалдой бессилен.

Список

К металлам с изначальной хрупкостью относятся природные и технологичные материалы.

  • Щелочноземельные – бериллий.
  • Легкоплавкие – олово, висмут.
  • Тяжелые элементы – цинк, марганец, хром, сурьма, кобальт.

В списке присутствуют уникумы:

  • Вольфрам. Самый прочный на растяжение среди металлов. . Твердый хрупкий платиноид голубовато-серебристого цвета, второй по плотности среди простых веществ, тугоплавкий. . Мягкий хрупкий белый металл.

Самый хрупкий металл – сурьма. Ее легко сделать порошком вручную.

Материалы, полученные в результате технологических процессов: бронза, белый чугун, сталь с высоким содержанием углерода.

Особенности обработки

Материалы, наделенные хрупкостью, разрушаются при попытке их удлинить даже на пару процентов.

Поэтому их обработка специфична:

  1. Перед работой материал подогревают, чтобы нейтрализовать хладноломкость.
  2. Исключено воздействие давлением. Например, чугун (нагретый либо холодный) после такой операции сохранит форму, но внутренне разрушится.
  3. Болванки из хрупких сплавов (чугунные, бронзовые) рубят от края к центру.

Неоднозначно воздействие закалки. В отличие от подогрева, при такой обработке кратно увеличивается прочность стали, других материалов, но в ущерб пластичности. То есть порог хрупкости понижается.

Хрупкие металлы легче разрушить растяжением, чем сжатием.

Где используются

Малопластичные вещества используют там, где исключено резкое механическое воздействие:

  • Производство катализаторов.
  • Электроника.
  • Лаки, краски.
  • Аптечные препараты.
  • Косметические средства.

Алюминид титана задействуют в космических технологиях и медицине.

Топ 10 самых прочных металлов в мире

Металлы в обыденной жизни стали применять в древности. Медь была первым элементом, который начал использовать человек, так как в природе её было просто найти, и она легко обрабатывалась. Неслучайно археологами найдены многочисленные предметы, сделанные из меди. В ходе своего развития люди научились делать сплавы, из которых изготавливались орудия труда, а затем и оружие. В наши дни проводятся исследования для выявления прочнейших металлов. Давайте узнаем больше о свойствах и использовании десяти самых прочных металлов в мире.

10. Титан

Титан

Его называют металлом будущего, поскольку окончательное его место в жизни людей пока не определено. Человек быстро оценил его лучшие качества. Титан лёгкий и высокопрочный, устойчивый к высоким температурам, отличается низкой плотностью, стойкостью к коррозии. Сферы применения: авиационная техника и ракетная отрасль, судостроение. Титановые сплавы имеют большие перспективы применения, но сдерживаются его высокой стоимостью и недостаточной распространённостью.

9. Уран

Уран

Наиболее распространенный металл, отличается большой прочностью, в привычных условиях слабо радиоактивен. Обнаружение учёными урана считается открытием планетарного масштаба. Наделен парамагнитными свойствами, гибкий, ковкий и относительно пластичный, благодаря таким качествам нашёл применение в разнообразных производственных сферах: является основой для ядерного оружия, соединения урана используются в производстве стекол, в качестве красителей.

8. Вольфрам

Вольфрам

Характеризуется высокой тугоплавкостью, также принадлежит к прочнейшим металлам на планете Земля. Являясь твёрдым элементом бело-серого цвета с характерным блеском, вольфрам высокопрочный, тугоплавкий, устойчив к воздействию кислотной и щелочной среды. Наделен ковкостью, при повышении температур W саморазогревается, а также растягивается в тоненькую нить, используемую в лампах.

7. Рений

Рений

Парамагнитный рений, один из более «тяжёлых» элементов высокой плотности (21.03 г/см3). На земле RE существует в чистом виде, особенно значительно содержание в виде примеси в молибдените до 0,5%. Ярко выраженными свойствами RE считаются высочайшая прочность, жаростойкость, характеризуется тугоплавкостью, стойкостью к окислению, пластичностью, малой коррозией при воздействии многих химических веществ. Рений — дорогостоящий металл. Сферы применения многообразны: электроника, ракетостроение, авиастроение (например, производство запчастей для сверхзвуковых истребителей), металлургическая отрасль, медицина, судостроение.

6. Осмий

Осмий

5. Бериллий

Бериллий

Металл серого цвета с серебристым оттенком, приобретающий при соприкосновении с воздухом матовый оттенок по причине образования оксидной плёнки. Металл, характеризующийся твёрдостью, высоко токсичный. В отличие от других металлов прекрасно проводит тепло и характеризуется низким электрическим сопротивлением. Обладая уникальными свойствами, Be получил применение в авиакосмической области, ракетостроении, ядерной энергетике, металлургической промышленности, атомной энергетике, лазерной технике. Учитывая высокую твёрдость Ве, его применяют для получения легирующих сплавов, материалов, отличающихся своими огнеупорными качествами.

Хром

Хром – металл бело-голубого цвета. Характеризуется высокой прочностью, твёрдостью, ярко выраженными магнитными свойствами, не подвергается водородному охрупчиванию, стойкий к влиянию кислотной и щелочной среды. Его используют, создавая различные сплавы, а те в свою очередь востребованы для изготовления медоборудования. Кроме того, Cr применяется при синтезе искусственных рубинов, соли хрома четырехвалентного используют для сохранения древесины и дубления кож.

3. Тантал

Тантал

Тантал входит в тройку прочнейших элементов на земле. Его характеризуют серо-металлический цвет с серебристым блеском, высокая твёрдость и атомная плотность. Образующаяся сверху оксидная плёнка придаёт ему свинцовый отлив. Несмотря на высокую твёрдость и прочность, это металл характеризуется пластичностью, и по такому качеству сравним с золотом. Металл тугоплавкий, стойкий к коррозии и окислению. Нашел активное применение в металлургии, строительстве энергетических установок, химической отрасли.

2. Рутений

Рутений

Имя 2-го по прочности металла на древнем языке означает – Россия. Металл имеет серебристый цвет, относится к платиноидам, содержится в тканях мышц у всех живущих на земле существ. Высокопрочный металл, твёрдый, тугоплавкий, обладает стойкостью к воздействию химических веществ, способен образовывать комплексные соединения. Рутений используется в космической отрасли, медицине, электронике, в качестве добавки, придающей золоту чёрный цвет.

1. Иридий

Иридий

Лидером среди всех металлов, обладающих высокой прочностью, считается Иридий. Твёрдый и тугоплавкий элемент серо-белого цвета принадлежит к платиноидам. Сегодня на поверхности Земли почти не встречается, но нередко встречается в соединениях с осмием. По причине твердости воздействие на металл затруднено, а значит и обработка, стоек под влиянием химических веществ. Его значение в обыденной жизни весьма велико. Иридий используется для придания таким металлам, как титан, хром и вольфрам лучшей устойчивости к влиянию кислотной и щелочной среды. Применяется для изготовления термопар, топливных баков, термоэлектрических генераторов, в медицине, нашёл широкое применение для сплавов с платиной у ювелиров.

14 различных типов металлов


Термин "металл" происходит от греческого слова "metalléuō", что означает выкапываю или добываю из земли. Наша планета содержит много металла. На самом деле из 118 элементов периодической системы порядка 95 являются металлами.

Это число не является точным, потому что граница между металлами и неметаллами довольно расплывчата: нет стандартного определения металлоида, как нет и полного согласия относительно элементов, соответствующим образом классифицированных как таковые.

Сегодня мы используем различные виды металлов, даже не замечая их. Начиная с зажимов в сантехнике и заканчивая устройством, которое вы используете для чтения этой статьи, все они сделаны из определенных металлов. Фактически, некоторые металлические элементы необходимы для биологических функций, таких как приток кислорода и передача нервных импульсов. Некоторые из них также широко используются в медицине в виде антацидов.

Все металлы в периодической таблице можно классифицировать по их химическим или физическим свойствам. Ниже мы перечислили некоторые различные типы металлов вместе с их реальным применением.

Классификация по физическим свойствам

14. Легкие металлы


Сплав титана 6AL-4V

Примеры: Алюминий, титан, магний

Легкие металлы имеют относительно низкую плотность. Формального определения или критериев для идентификации этих металлов нет, но твердые элементы с плотностью ниже 5 г/см³ обычно считаются легкими металлами.

Металлургия легких металлов была впервые развита в середине 19 века. Хотя большинство из них происходит естественным путем, значительная их часть образуется при электротермии и электролизе плавленых солей.

Их сплавы широко используются в авиационной промышленности благодаря их низкой плотности и достаточным механическим свойствам. Например, сплав титана 6AL-4V составляет почти 50 процентов всех сплавов, используемых в авиастроении. Он используется для изготовления роторов, лопастей компрессоров, мотогондол, компонентов гидравлических систем.

13. Тяжелые металлы


Окисленные свинцовые конкреции и кубик размером 1 см3

Примеры: железо, медь, кобальт, галлий, олово, золото, платина.

Тяжелые металлы - это элементы с относительно высокой плотностью (обычно более 5 г/см³) и атомным весом. Они, как правило, менее реактивны и содержат гораздо меньше растворимых сульфидов и гидроксидов, чем более легкие металлы.

Эти металлы редки в земной коре, но они присутствуют в различных аспектах современной жизни. Они используются в солнечных батареях, сотовых телефонах, транспортных средствах, антисептиках и ускорителях частиц.

Тяжелые металлы часто смешиваются в окружающей среде из-за промышленной деятельности, ухудшая качество почвы, воды и воздуха, а затем вызывая проблемы со здоровьем у животных и растений. Выбросы транспортных средств, горнодобывающие и промышленные отходы, удобрения, свинцово-кислотные батареи и микропластики, плавающие в океанах, являются одними из наиболее распространенных источников тяжелых металлов в этом контексте.

12. Белый металл


Подшипники из белого металла

Примеры: Обычно изготавливается из олова, свинца, висмута, сурьмы, кадмия, цинка.

Белые металлы - это различные светлые сплавы, используемые в качестве основы для украшений или изделий из серебра. Например, многие сплавы на основе олова или свинца используются в ювелирных изделиях и подшипниках.

Белый металлический сплав изготавливается путем объединения определенных металлов в фиксированных пропорциях в соответствии с требованиями конечного продукта. Основной металл для ювелирных изделий, например, формуется, охлаждается, экстрагируется, а затем полируется, чтобы придать ему точную форму и блестящий вид.

Они также используются для изготовления тяжелых подшипников общего назначения, подшипников внутреннего сгорания среднего размера и электрических машин.

11. Хрупкий металл


Хрупкое разрушение чугуна

Примеры: сплавы углеродистой стали, чугуна и инструментальной стали.

Металл считается хрупким, если он твердый, но не может противостоять ударам или вибрации под нагрузкой. Такие металлы под воздействием напряжения ломаются без заметной пластической деформации. Они имеют низкую прочность на разрыв и часто издают щелкающий звук при поломке.

Многие стальные сплавы становятся хрупкими при низких температурах, в зависимости от их обработки и состава. Чугун, например, твердый, но хрупкий из-за высокого содержания углерода. Напротив, керамика и стекло гораздо более хрупки, чем металлы, из-за их ионных связей.

Галлий, висмут, хром, марганец и бериллий также хрупки. Они часто используются в различных гражданских и военных целях, связанных с высокими деформационными нагрузками. Чугун, устойчивый к повреждениям в результате окисления, используется в машинах, трубах и деталях автомобильной промышленности, таких как корпуса коробок передач и головки цилиндров.

10. Тугоплавкий металл


Микроскопическое изображение вольфрамовой нити в лампе накаливания

Примеры: молибден, вольфрам, тантал, рений, ниобий.

Тугоплавкие металлы имеют чрезвычайно высокие температуры плавления (более 2000 °С) и устойчивы к износу, деформации и коррозии. Они являются хорошими проводниками тепла и электричества и имеют высокую плотность.

Другой ключевой характеристикой является их термостойкость: они не расширяются и не растрескиваются при многократном нагревании и охлаждении. Однако они могут деформироваться при высоких нагрузках и окисляться при высоких температурах.

Благодаря своей прочности и твердости они идеально подходят для сверления и резки. Карбиды и сплавы тугоплавких металлов используются почти во всех отраслях промышленности, включая горнодобывающую, автомобильную, аэрокосмическую, химическую и ядерную.

Металлический вольфрам, например, используется в ламповых нитях. Сплавы рения используются в гироскопах и ядерных реакторах. А ниобиевые сплавы используются для форсунок жидкостных ракетных двигателей.

9. Черные и цветные металлы


Валы-шестерни из (черной) нержавеющей стали

Черные металлы: Сталь, чугун, сплавы железа.
Цветные металлы: Медь, алюминий, свинец, цинк, серебро, золото.

Термин "железо" происходит от латинского слова "Ferrum", что переводится как "железо". Таким образом, термин "черный металл" обычно означает "содержащий железо", тогда как "цветной металл" означает металлы и сплавы, которые не содержат достаточного количества железа.

Поскольку черные металлы могут иметь широкий спектр легирующих элементов, которые значительно изменяют их характеристики, очень трудно поместить свойства всех черных металлов под один зонт. Тем не менее некоторые обобщения могут быть сделаны, например, большинство черных металлов являются твердыми и магнитными.

Черные металлы используются для применения с высокой нагрузкой и низкой скоростью, в то время как цветные металлы предпочтительны для применения с высокой скоростью и нулевой нагрузкой для применения с низкой нагрузкой.

Сталь является наиболее распространенным черным металлом. Она составляет около 80% всего металлического материала благодаря своей доступности, высокой прочности, низкой стоимости, простоте изготовления и широкому спектру свойств. Она широко используется в строительстве и обрабатывающей промышленности. Фактически, рост производства стали показывает общее развитие промышленного мира.

8. Цветные и благородные металлы


Ассортимент благородных металлов

Цветные металлы: медь, алюминий, олово, никель, цинк
Благородные металлы: родий, ртуть, серебро, рутений, осмий, иридий

Цветные металлы - это обычные и недорогие металлы, которые корродируют, окисляются или тускнеют быстрее, чем другие металлы, когда подвергаются воздействию воздуха или влаги. Они в изобилии встречаются в природе и легко добываются.

Они широко используются в промышленных и коммерческих целях и имеют неоценимое значение для мировой экономики благодаря своей полезности и повсеместности. Некоторые цветные металлы обладают отличительными характеристиками, которые не могут быть продублированы другими металлами. Например, цинк используется для гальванизации стали, чтобы защитить ее от коррозии, а никель - для изготовления нержавеющей стали.

Благородные металлы, с другой стороны, устойчивы к окислению и коррозии во влажном воздухе. Согласно атомной физике, благородные металлы имеют заполненный электрон d-диапазона. В соответствии с этим строгим определением, медь, серебро и золото являются благородными металлами.

Они находят применение в таких областях, как орнамент, металлургия и высокие технологии. Их точное использование варьируется от одного элемента к другому. Некоторые благородные металлы, такие как родий, используются в качестве катализаторов в химической и автомобильной промышленности.

7. Драгоценные металлы


Родий: 1 грамм порошка, 1 грамм прессованного цилиндра и 1 г аргонодуговой переплавленной гранулы

Примеры: палладий, золото, платина, серебро, родий.

Драгоценные металлы считаются редкими и имеют высокую экономическую ценность. Химически они менее реакционноспособны, чем большинство элементов (включая благородные металлы). Они также пластичны и имеют высокий блеск.

Несколько веков назад эти металлы использовались в качестве валюты. Но сейчас они в основном рассматриваются как промышленные товары и инвестиции. Многие инвесторы покупают драгоценные металлы (в основном золото), чтобы диверсифицировать свои портфели или победить инфляцию.

Серебро - второй по популярности драгоценный металл для ювелирных изделий (после золота). Однако его значение выходит далеко за рамки красоты. Оно обладает исключительно высокой тепло- и электропроводностью и чрезвычайно низким контактным сопротивлением. Именно поэтому серебро широко используется в электронике, батареях и противомикробных препаратах.

Классификация по химическим свойствам

6. Щелочные металлы


Твердый металлический натрий

Примеры: натрий, калий, рубидий, литий, цезий и франций.

Щелочь относится к основной природе гидроксидов металлов. Когда эти металлы реагируют с водой, они образуют сильные основания, которые легко нейтрализуют кислоты.

Они настолько реактивны, что обычно встречаются в природе в слиянии с другими веществами. Карналлит (хлорид калия-магния) и сильвин (хлорид калия), например, растворимы в воде и, таким образом, легко извлекаются и очищаются. Нерастворимые в воде щелочи, такие, как фторид лития, также существуют в земной коре.

Одно из самых популярных применений щелочных металлов - использование цезия и рубидия в атомных часах, наиболее точных из известных эталонов времени и частоты. Литий используется в качестве анода в литиевых батареях, композиты калия используются в качестве удобрений, а ионы рубидия используются в фиолетовых фейерверках. Чистый металлический натрий широко используется в натриевых лампах, которые очень эффективно излучают свет.

5. Щелочноземельные металлы


Изумрудный кристалл, основной минерал бериллия.

Примеры: бериллий, кальций, магний, барий, стронций и радий.

Щелочноземельные металлы в стандартных условиях мягкие и серебристо-белые. Они имеют низкую плотность, температуру кипения и температуру плавления. Хотя они не так реакционноспособны, как щелочные металлы, они очень легко образуют связи с элементами. Как правило, они вступают в реакцию с галогенами, образуя галогениды щелочноземельных металлов.

Все они встречаются в земной коре, кроме радия, который является радиоактивным элементом. Радий уже распадался в ранней истории Земли из-за относительно короткого периода полураспада (1600 лет). Современные образцы поступают из цепочки распада урана и тория.

Щелочноземельные металлы имеют широкий спектр применения. Бериллий, например, используется в полупроводниках, теплопроводниках, электрических изоляторах и в военных целях. Магний часто сплавляют с цинком или алюминием для получения материалов со специфическими свойствами. Кальций в основном используется в качестве восстановителя, а барий используется в вакуумных трубках для удаления газов.

4. Переходные металлы


Примеры: титан, ванадий, хром, никель, серебро, вольфрам, платина, кобальт.

Большинство элементов используют электроны из своей внешней оболочки для связи с другими элементами. Переходные металлы, однако, могут использовать две крайние оболочки для соединения с другими элементами. Это химическая особенность, которая позволяет им связываться со многими различными элементами в различных формах.

Они занимают среднюю часть таблицы Менделеева, служа мостом между (или переходом) между двумя сторонами таблицы. Более конкретно, есть 38 переходных металлов в группах с 3 по 12 периодической таблицы. Все они являются пластичными, податливыми и хорошими проводниками тепла и электричества.

Многие из этих металлов, такие как медь, никель, железо и титан, используются в конструкциях и в электронике. Большинство из них образуют полезные сплавы друг с другом и с другими металлическими веществами. Некоторые из них, включая золото, серебро и платину, называются благородными металлами, потому что они крайне инертны и устойчивы к кислотам.

3. Постпереходные металлы


Висмут в виде синтетических кристаллов

Примеры: алюминий, галлий, олово, свинец, таллий, индий, висмут.

Постпереходные металлы в периодической таблице - это элементы, расположенные справа от переходных металлов и слева от металлоидов. Из-за своих свойств они также называются "бедными" или "другими" металлами.

Физически они хрупки (или мягки) и имеют более низкую температуру плавления и механическую прочность, чем переходные металлы. Их кристаллическая структура довольно сложна: они проявляют ковалентные или направленные эффекты связи.

Различные металлы этого семейства имеют различное применение. Алюминий, например, используется для изготовления оконных рам, кухонной посуды, банок, фольги, деталей автомобилей. Оловянные сплавы используются в мягких припоях, оловянных и сверхпроводящих магнитах.

Индиевые сплавы используются для изготовления плоских дисплеев и сенсорных экранов, а галлий - в топливных элементах и полупроводниках.

2. Лантаноиды


1-сантиметровый кусок чистого лантана

Примеры: лантан, церий, прометий, гадолиний, тербий, иттербий, лютеций.

Лантаноиды - это редкоземельные металлы с атомными номерами от 57 до 71. Впервые они были обнаружены в 1787 году в необычном черном минерале (гадолините), обнаруженном в Иттербю, Швеция. Позже минерал был разделен на различные элементы лантаноидов.

Лантаноиды - это металлы с высокой плотностью, плотность которых колеблется от 6,1 до 9,8 г/см³, и они, как правило, имеют очень высокие температуры кипения (1200-3500 °C) и очень высокие температуры плавления (800-1600 °C).

Сплавы лантаноидов используются в металлургии из-за их сильных восстановительных способностей. Около 15 000 тонн лантаноидов ежегодно расходуется в качестве катализаторов и при производстве стекол. Они также широко используются в лазерах и оптических усилителях.

Некоторые исследования показывают, что лантаноиды могут быть использованы в качестве противораковых средств. Лантан и церий, в частности, могут подавлять пролиферацию раковых клеток и способствовать цитотоксичности.

1. Актиниды


Металлический уран, высокообогащенный ураном-235

Примеры: актиний, уран, торий, плутоний, фермий, нобелий, лоренций

Подобно лантаноидам, актиниды образуют семейство редкоземельных элементов с аналогичными свойствами. Они представляют собой серию из 15 последовательных химических элементов в периодической системе от атомных номеров 89 до 103.

Все они радиоактивны по своей природе. Синтетически произведенный плутоний, а также природные уран и торий являются наиболее распространенными актинидами на Земле. Первым актинидом, который был открыт в 1789 году, был уран. И большая часть существующих продуктов актинидов была произведена в 20 веке.

Их свойства, такие как излучение радиоактивности, пирофорность, токсичность и ядерная критичность, делают их опасными для обращения. Сегодня значительная часть (кратковременных) актинидов производится ускорителями частиц в исследовательских целях.

Некоторые актиниды нашли применение в повседневной жизни, например, газовые баллоны (торий) и детекторы дыма (америций), большинство из них используются в качестве топлива в ядерных реакторах и для изготовления ядерного оружия. Уран-235 является наиболее важным изотопом для применения в ядерной энергетике, который широко используется в тепловых реакторах.

Какой самый твердый материал на Земле?


Алмаз оценивается по шкале твердости Мооса на 10 баллов, что говорит о том, что это самый твердый природный материал, когда он подвергается царапинам. Однако, по прогнозам, лонсдейлит, вещество, обнаруженное в метеоритах, будет еще более твердым, чем алмаз.

Спросите любого любителя науки: "какой самый твердый материал?" - и он, несомненно, ответит: "Алмаз".

На протяжении десятилетий люди использовали безупречную твердость алмаза для интенсивной резки. Кроме того, учитывая его способность красиво взаимодействовать со светом, бриллианты являются крайне желанным украшением для женщин. Но действительно ли алмаз - самый твердый материал на Земле?

Ну, почти… ученые обнаружили потенциального соперника, который, как полагают, даже тверже, чем алмаз.


Самое твердое вещество природного происхождения на нашей планете

Когда дело доходит до природных твердых веществ, алмаз является явным победителем. Благодаря своей компактной структуре его очень трудно превзойти по твердости. Теперь возникает вопрос… как мы измеряем твердость?

Измерение твердости

В материаловедении очень важна оценка твердости материала. Однако определить твердость не так-то просто. Таким образом, твердость можно измерить по-разному, в зависимости от контекста и применимости.

Шкала твердости Мооса

Одна из наиболее часто используемых шкал твердости - шкала твердости Мооса, разработанная немецким минералогом Фридрихом Моосом в девятнадцатом веке. По этой шкале твердость - это мера сопротивления, проявляемого одним материалом при царапании другим материалом. Шкала твердости Мооса варьируется от 0 до 10, где 10 означает самую твердую (наименее подверженную царапинам), а 0 - наименьшую твердость.


Шкала твердости минералов Мооса.

Алмаз получил 10 баллов по этой шкале, что ясно указывает на то, что это самый твердый натуральный материал, когда его подвергают царапинам. Чтобы понять, насколько хорош алмаз, рассмотрим сталь, которая известна своей твердостью и имеет только 4,5 балла по этой шкале!

Так вот, измерение твердости по стойкости вещества к царапинам одобрялось далеко не всеми. Таким образом, ученые начали искать альтернативный метод измерения твердости. Была разработана еще одна методика определения твердости, в которой для оценки твердости использовался индентор.

Тест твердости по Виккерсу

Один из самых известных тестов для определения твердости с использованием индентора - это тест твердости по Виккерсу. При этом методе испытания на твердость индентор в форме пирамиды прижимается к материалу, твердость которого необходимо оценить. На данный материал в течение определенного времени прилагается определенное усилие. После этого индентора измеряется степень вмятины на материале. Это делается путём измерения площади поверхности вмятины, нанесённой индентором на материал. Здесь снова было установлено, что алмаз является самым твердым природным материалом на Земле.

Что делает бриллиант таким твердым?

В этот момент вы можете спросить себя, что делает бриллиант таким твердым? Ответ кроется в молекулярной структуре этого блестящего элемента. Алмаз - это аллотроп углерода, состоящий из пяти атомов углерода, которые разделяют электроны друг с другом в структуре тетраэдрической решетки. Ковалентная связь между этими атомами углерода чрезвычайно прочна, и ее очень трудно разорвать при комнатной температуре.


Алмаз как тетраэдрическая структура углерода.

Из-за этой прочной ковалентной связи у алмазов нет свободных электронов, что делает их плохим проводником электричества, но отличным проводником тепла. Фактически, алмаз примерно в пять раз лучше по теплопроводности, чем медь. Благодаря своей фантастической теплопроводности алмазы часто присутствуют в электрических деталях, например, в радиаторах.

Алмазы не непобедимы.

Прочитав это, вы можете почувствовать, что бриллианты непобедимы, но на самом деле это не так. Алмаз становится уязвимым при очень высоких температурах. Когда вы нагреваете алмаз выше 800 °C, его химические и физические свойства больше не остаются неизменными. Нарушение характерной прочности алмаза. Они начинают химически реагировать с железом, что делает алмаз нежелательным для обработки стали. Характерная твердость алмаза нарушается. Они начинают химически реагировать с железом, что делает алмаз нежелательным для обработки стали.

Поэтому ученые и исследователи давно ищут сверхтвердый материал, обладающий лучшей химической стабильностью. В 2009 году исследователи, работавшие в сотрудничестве из Шанхайского университета Цзяо Тонг и Университета Невады, заявили, что нашли два материала, которые могут победить алмаз в его собственной игре!

Две предложенные потенциальные претендентки на самое твёрдое вещество были: Нитрид бора вюрцита (w-BN) и Лонсдейлит.

Вюрцит нитрид бора (w-BN)

Вюрцит нитрид бора (w-BN) имеет структуру, аналогичную структуре алмаза, но он состоит из атомов бора и азота, а также углерода. Вюрцит нитрид бора чрезвычайно редок и может быть обнаружен только после определенного типа извержения вулкана. Проведенное исследователями в 2009 году моделирование гексагональной структуры w-BN показало, что она на 18% тверже стали. Кроме того, w-BN химически более стабилен, чем алмаз при высоких температурах.

Лонсдейлит

Лонсдейлит состоит только из атомов углерода, как и алмаз, хотя и с другой структурой. И угадайте, что… лонсдейлит даже сильнее, чем w-BN! Интересно, что лонсдейлит - это космическое вещество, которое получается, когда богатый графитом метеорит ударяется о Землю. Моделирование вдавливания показало, что лонсдейлит на 58% прочнее алмаза, что делает лонсдейлит самым твердым веществом на Земле.

Подождите, есть загвоздка .

Однако в этих утверждениях о том, что w-BN и лонсдейлит сильнее алмаза, есть загвоздка. Эти утверждения основаны на программе моделирования, запущенной на компьютере, а не на физической проверке. Поскольку эти элементы чрезвычайно трудно найти, они еще не прошли физических испытаний для определения их твердости.

Тем не менее их моделирование предполагает, что эти более твердые, чем алмаз, материалы обладают хорошей термической и химической стабильностью; если мы сможем синтетически производить их в достаточно больших количествах, они могут оказаться переломными. Их можно было использовать как мощные фрезы, помещая их поверх других режущих инструментов. Кроме того, их стабильность при более высоких температурах сделала бы их полезными в космических полетах к Венере или Меркурию, которые имеют обжигающе высокие температуры.

Что ж, алмаз может теоретически потерять свою корону самого твердого материала, но он всегда останется королем драгоценных камней. Более того, утверждение о том, что лонсдейлит является самым твердым веществом, еще не подтверждено физически.

Читайте также: