Процесс формирования субзерен при нагреве деформированного металла называется
Неравновесная структура, созданная холодным деформированием, у большинства металлов устойчива при 25грС. Переход металла в более стабильное состояние происходит при нагреве. При повышении температуры ускоряется перемещение точечных дефектов и создаются условия для перераспределения дислокаций и уменьшения их количества.
Процессы, происходящие при нагреве, подразделяют на возврат и рекристаллизацию. В свою очередь, при возврате различают отдых и поли-гонизацию.
Возвратом называют все изменения тонкой структуры и свойств, которые не сопровождаются изменением микроструктуры деформированного металла, т.е. размер и форма зерен при возврате не изменяются.
Рекристаллизация — это процесс зарождения и роста новых зерен с меньшим количеством дефектов строения; в результате рекристаллизации образуются новые, чаще всего равноосные зерна.
Отдыхом холоднодеформированного металла называют стадию возврата, при которой уменьшается количество точечных дефектов, в основном вакансий; в ряде металлов (Al, Fe) отдых включает также переползание дислокаций, которое сопровождается взаимодействием дислокаций разных знаков и приводит к заметному уменьшению их плотности. Перераспределение дислокаций сопровождается уменьшением остаточных напряжений. Отдых уменьшает удельное электросопротивление и повышает плотность металла. Твердость и прочность уменьшаются максимально на 10 - 15 % первоначальных значений и на столько же соответственно увеличивается пластичность. После отдыха повышается сопротивление коррозионному растрескиванию.
Полигонизацией называют процесс формирования субзерен, разделенных малоугловыми границами. Каждое субзерно представляет собой многогранник, практически не содержащий дислокаций. Полигонизация является результатом нескольких элементарных процессов перемещения дислокаций: скольжения и переползания краевых дислокаций, поперечного скольжения винтовых. Во время полигонизации несколько уменьшается плотность дислокаций благодаря взаимодействию и аннигиляции дислокаций противоположных знаков. Для начала полигонизации в наклепанных металлах технической чистоты необходим нагрев до 0,3. 0,35 Т(плав) а в наклепанных сплавах — до более высоких температур.
Различают предрекристаллизационную и стабилизирующую полиго-низацию. Предрекристаллизационная полигонизация развивается в наклепанных металлах с ячеистой дислокационной структурой. Дислокационные стенки при нагреве уплотняются и ячейки превращаются в субзерна.
Уплотненные стенки ячеек сохраняют значительную кривизну и настолько подвижны, что отдельные субзерна могут увеличиться и стать центрами первичной рекристаллизации. Предрекристаллизационная полигонизация является начальной стадией первичной рекристаллизации. Строение субзерен и их границ мало зависит от температуры. При повышении температуры нагрева наклепанного металла увеличивается скорость поли тонизации: структуры полигонизации, образовавшиеся при разных температурах отжига, практически не отличаются.
Стабилизирующая полигонизация представляет собой формирование субзерен, разделенных плоскими дислокационными стенками (рис. 5.12). Стенки малоподвижны и весьма устойчивы, при дальнейшем нагреве они сохраняются почти до температур плавления металлов. После формирования субзеренной структуры рекристаллизации не происходит. Стабилизирующая полигонизация развивается лишь при определенных условиях: отсутствие ячеистой дислокационной структуры, избыток краевых дислокаций одного знака и др. Такие условия выполняются в монокристаллах и крупнозернистых поликристаллах после небольших пластических деформаций. В подобных материалах результаты перераспределения дислокаций существенно зависят от температуры отжига. При сравнительно высоких температурах нагрева (выше 0, 35 Т(плав)) вместо полигонизации развивается первичная рекристаллизация. Если стабилизирующая полигонизация успешно завершилась после отжига при (0,3 - 0,35)Т(плав)) то при дальнейшем нагреве даже при более высокой температуре рекристаллизация не развивается.
Ограничение подвижности дислокаций затрудняет полигонизацию. Закрепление дислокаций атомами легирующих элементов и примесей, образование дефектов упаковки, уменьшение концентрации вакансий (затрудняется переползание дислокаций) — все это затрудняет полигонизацию. Чаще она наблюдается в металлах с высокой энергией дефектов упаковки (Аl, Мо).
Практическое значение полигонизации проявляется в следующем.
1. Создание субзеренной структуры упрочняет металл по аналогии с формированием мелкозеренной структуры с высокоугловыми границами. Эффект упрочнения при полигонизации проявляется в меньшем масштабе, так как границы субзерен способны легче пропускать дислокации по сравнению с высокоугловыми границами.
2. Образование субзеренной структуры, сохраняя основную долю упрочнения наклепанного металла, снижает остаточные напряжения. Это повышает сопротивление коррозионному растрескиванию. В частности, для наклепанных латуней, содержащих (20 - 35) % Zn, назначают отжиг при ~ 300 грС для предупреждения растрескивания.
3. Границы субзерен являются препятствием для перемещения дислокаций. Это используют для повышения жаропрочности деталей.
4. Субзеренная структура, образовавшаяся при динамической полигонизации, т.е. в процессе деформирования обеспечивает при термомеханической обработке сталей оптимальное сочетание пластичности и высокой прочности.
В зависимости от температуры нагрева и выдержки различают три стадии рекристаллизации: первичная, собирательная и вторичная.
Первичная рекристаллизация начинается с образования зародышей новых зерен и заканчивается полным замещением наклепанного металла новой поликристаллической структурой.
На стадии первичной рекристаллизации зарождение и рост новых зерен происходят одновременно. Зерна растут путем движения болынеугло-вых границ через наклепанный металл. В таком зерне плотность дислокаций и других дефектов минимальна, в наклепанном металле — максимальна.
Первичная рекристаллизация заканчивается при полном замещении новыми зернами всего объема деформированного металла (см. рис. 5.13, б).
Первичная рекристаллизация полностью снимет наклеп, созданный при пластическом деформировании, металл приобретает равновесную структуру с минимальным количеством дефектов кристаллического строения. Свойства металла после рекристаллизации близки к свойствам отожженного металла (рис. 5.14).
Особое значение имеет рост крупных зерен при нагреве деформированного металла, когда его деформация близка к критической. При критической деформации еще не формируется ячеистая дислокационная структура, способная создать зародыши рекристаллизации, что способствовало бы формированию мелкозернистой структуры. Неоднородность деформации зерен, различия энергии упругих искажений являются движущей силой укрупнения зерен за счет менее устойчивых мелких зерен.
Собирательная рекристаллизация представляет самопроизвольный процесс укрупнения зерен, образовавшихся на стадии первичной рекристаллизации. Чем крупнее зерна, тем меньше суммарная поверхность границ зерен и тем меньше запас избыточной поверхностной энергии (по сравнению с объемом зерен).
Рост зерен происходит в результате перехода атомов от одного зерна к соседнему через границу раздела; одни зерна при этом постепенно уменьшаются в размерах и затем совсем исчезают, другие — становятся более крупными, поглощая соседние зерна (рис. 5.13, г). С повышением температуры рост зерен ускоряется.
Собирательная рекристаллизация тормозится, когда зерна становятся многогранниками с плоскими гранями, а углы между соседними гранями составляют 120° (рис. 5.13, д).
Вторичная рекристаллизация представляет собой стадию неравномерного роста одних зерен по сравнению с другими. В результате формируется конгломерат зерен-гигантов, соседствующих с зернами-карликами. Механические свойства подобной разнозернистой структуры хуже, чем однородной структуры рекристаллизованного металла. Вторичной рекристаллизации соответствуют высокие температуры нагрева наклепанного металла.
Описанный процесс рекристаллизации типичен для скоростей нагрева в обычных термических печах, и для завершения той или иной стадии рекристаллизации требуются выдержки порядка нескольких часов.
Первичная рекристаллизация ускоряется при высоких (~ 1000 грС/с) скоростях нагрева, где она развивается при высоких температурах и заканчивается формированием мелкозернистой структуры за секунды вместо часов. Для реализации скоростной рекристаллизации используют индукционный нагрев или непосредственное пропускание электрического тока через наклепанный металл.
Пластичность и вязкость металлов и сплавов зависят от размера зерен. С уменьшением размера зерен вязкость улучшается. Размер зерен, образующихся в результате рекристаллизации, зависит в основном от степени пластической деформации (рис. 5.15, а), а также от температуры, при которой происходила рекристаллизация. Увеличение выдержки при нагреве способствует росту зерен, но эффект значительно меньше, чем при повышении температуры нагрева.
Зависимость размера зерен от степени деформации и температуры демонстрируют при помощи диаграмм рекристаллизации (рис. 5.15, б).
Для конструкционных материалов общего назначения анизотропия свойств нежелательна. Рекристаллизованные сплавы, как правило, однородны по свойствам и анизотропии не обнаруживают. Однако при известных условиях в рекристаллизованном металле появляется предпочтительная кристаллографическая ориентация зерен, которую называют текстурой рекристаллизации. Ее вид зависит от химического состава сплава, характера деформирования, природы и количества примесей, технологических факторов.
Нередко она является копией текстуры деформации наклепанного металла. Образование текстуры рекристаллизации имеет практическое значение для сплавов с особыми физическими свойствами, когда требуется улучшить свойства в определенном направлении изделия. Например, в листах трансформаторной стали образование текстуры дает возможность уменьшить потери на перемагничивание по определенным направлениям листа.
Рекристаллизация многофазных сплавов представляет более сложный процесс, в котором на зарождении и росте новых рекристаллизованных зерен сказываются различия свойств каждой фазы, характер структуры и объемные соотношения между фазами. Особое значение имеют размер частиц второй фазы и среднее расстояние между частицами. Чем ближе друг к другу расположены частицы второй фазы, тем труднее перемещаться границе нового зерна и тем сильнее тормозится рекристаллизация. Это проявляется в повышении температуры рекристаллизации и увеличении времени для завершения первичной рекристаллизации многофазного сплава по сравнению с однофазным. Близость частиц второй фазы обеспечивается при достаточно высоком их содержании в сплаве. Когда частиц мало и они далеко друг от друга, их роль в рекристаллизации незначительна. Мелкие частицы (0,1 мкм и меньше) тормозят рекристаллизацию (рис. 5.16). Более крупные частицы (свыше 0,1 - 0,5 мкм) тормозят рекристаллизацию, когда располагаются близко одна от другой, и ускоряют ее, когда расстояние между ними возрастает (см. рис. 5.16). В последнем случае сказывается влияние межфазной границы, на которой преимущественно зарождаются новые зерна.
Тормозящее влияние дисперсных частиц второй фазы на рекристаллизацию успешно используют в промышленных сплавах для повышения рабочих температур.
При горячем деформировании материалов с ультрамелким зерном (0,5 - 10 мкм) проявляется сверхпластичное состояние металла. При низких скоростях деформирования (10е-5 – 10е-4 с(-1)) металл течет равномерно, не упрочняясь: относительные удлинения достигают 10е2 — 10е3%.
Огромные деформации в сверхпластичном состоянии складываются из зернограничного скольжения, дополненного направленным (под действием напряжений) диффузионным переносом атомов и обычным скольжением внутри зерен. Для того чтобы реализовать сверхпластичное состояние, требуется сохранить ультрамелкие зерна в течение всего периода деформирования (порядка десятков минут) при температуре выше 0,5Т(плав). Промышленные сверхпластичные сплавы имеют двухфазную структуру (лучшее сочетание объемов обеих фаз 1:1, так как при этом максимальна поверхность межфазных границ) и поэтому сохраняют исходную мелкозернистость в течение всего срока изготовления изделий. К числу таких сплавов принадлежат различные эвтектические и эвтектоидные смеси, двухфазные сплавы титана и т.п.
Сверхпластичное состояние используют на практике для производства изделий весьма сложной формы при помощи пневматического формования листов или объемного прессования. Несмотря на медленность самого процесса формования и сравнительно высокие рабочие температуры, процесс выгоден, а в ряде случаев является единственным способом получения изделий, когда металл нужно без разрушения деформировать на 200 - 300 % и выше.
Процессы, основанные на использовании мелкозернистой структуры, широко применяются в промышленности. Сверхпластичность наблюдается при горячем деформировании сплавов в непосредственной близости к температурам полиморфного превращения или плавления. В этих случаях микроструктура сохраняется, но кристаллическая решетка основы сплава оказывается неустойчивой: например, модуль упругости уменьшается в 2 - 3 раза. При малых скоростях деформирования металл способен деформироваться без разрушения на десятки процентов.
Возврат и рекристаллизация
Наклеп и рекристаллизация
Как следует из диаграмм растяжения, при деформации сталей при комнатной температуре предел текучести увеличивается с ростом деформации, то есть материал в этих условиях упрочняется.
Упрочнение – изменение структуры и свойств металлического материала, вызванное пластической деформацией.
Наибольшую сопротивляемость пластическому деформированию должен оказывать металл с очень малой плотностью дислокаций r. По мере увеличения плотности дислокаций r сопротивление пластическому деформированию уменьшается (рис. 3.8).
Рис. 3.8. Зависимость сопротивления деформированию от плотности дислокаций
Это происходит до достижения некоторого критического значения плотности дислокаций rкр, когда начинается взаимодействие силовых полей, окружающих дислокации, что и вызывает увеличение сопротивления пластическому деформированию.
Следовательно, увеличение сопротивления пластическому деформированию можно получить двумя путями: наклепом металла, т. е. прямым повышением плотности дислокаций или доведением плотности дислокаций до очень малого значения.
Наклепом называется упрочнение металла при холодной пластической деформации. В результате наклепа прочность (σВ, σ0,2, твердость и др.) повышается, а пластичность и ударная вязкость (δ, ψ, КСU) уменьшаются. Упрочнение возникает вследствие увеличения числа дефектов кристаллической структуры, которые затрудняют движение дислокаций, а следовательно, повышают сопротивление деформации и уменьшают пластичность.
Наклеп является одним из важнейших способов изменения свойств, особенно для сплавов, не упрочняющихся термической обработкой, и для металлов, обладающих пластичностью. Методы упрочняющего воздействия можно разделить на поверхностные (обкатка роликами, дробеструйная обработка) и сквозные (прокатка листов, волочение проволоки). Обработка металлов резанием также приводит к наклепу и изменению структуры в тонком поверхностном слое, что необходимо учитывать при последующей эксплуатации изделий.
Таким образом, пластические деформации вызывают повышение плотности дислокаций, искажение кристаллической решетки и приводят к увеличению напряжения, при котором возможны дальнейшие деформации.
Второй способ – создание металлов и сплавов с бездефектной структурой – является более прогрессивным. В настоящее время получают кристаллы небольших размеров (длиной 2–10 мм и толщиной 0,5–2,0 мкм), так называемые «усы», практически без дислокаций, с прочностью близкой к теоретической. Такие кристаллы нашли свое применение для армирования волокнистых композиционных материалов, в микроэлектронике и т. д.
Рис. 3.9. Текстура, возникающая при пластической деформации: а) исходная структура, б) текстура при растяжении, в) текстура при сжатии, г) текстура при сдвиге
При деформировании округлые зерна заменяются вытянутыми в направлении деформации, образуется так называемая текстура (textura – ткань, связь, строение) – анизотропная поликристаллическая или аморфная среда, состоящая из кристаллов или молекул с преимущественной ориентировкой. Текстуры могут быть осевыми – с предпочтительной ориентировкой элементов текстуры относительно одного особого направления, плоскими – с ориентировкой относительно особой плоскости и полными – при наличии особой плоскости и особого в ней направления (рис. 3.9). Текстура создает анизотропию свойств.
Упрочненный металл обладает повышенным запасом внутренней энергии, т. е. находится в неравновесном состоянии. Для приведения металла в равновесное состояние его необходимо нагреть. При нагреве наклепанного металла в нем протекают следующие процессы:
· частичное восстановление структурного совершенства в результате уменьшения точечных дефектов за счет увеличения подвижности атомов (избыточные вакансии и межузельные атомы взаимодействуют между собой, а также поглощаются дислокациями при перераспределении последних при нагреве) и снижение внутренних напряжений (процесс возврата);
· уменьшение плотности дислокаций за счет аннигиляция противоположных по знаку дислокаций и образование субзерен (полигонов), свободных от линейных несовершенств за счет выстраивания дислокационных стенок (процесс полигонизации);
· зарождение и рост новых равноосных зерен вместо ориентированной волокнистой структуры деформированного металла (процесс рекристаллизации).
Процесс рекристаллизации начинается с образования зародышей новых зерен и заканчивается полным замещением деформированного зерна мелкими равноосными зернами (первичная рекристаллизация), в результате чего полностью снимается наклеп, созданный при пластическом деформировании (снижаются прочность и твердость металла и увеличивается его пластичность), металл приобретает равновесную структуру с минимальным количеством дефектов кристаллического строения (рис. 3.10). Плотность дислокаций после рекристаллизации снижается с 10 10 –10 12 до
10 6 –10 8 см -2 .
Рис. 3.10. Изменение прочности, пластичности и зернистого строения
в процессе нагрева деформированного металла
При дальнейшем повышении температуры происходит увеличение размеров наиболее крупных зерен за счет присоединения мелких. С повышением температуры число крупных зерен постепенно растет, пока все мелкие зерна не окажутся присоединенными к крупным – процесс вторичной (собирательной) рекристаллизации.
Температуру начала рекристаллизации, при которой протекает рекристаллизация, происходит разупрочнение холоднодеформированного металла и восстановление его пластичности, называют температурным порогом рекристаллизации ТПР.
Эта температура не является постоянной физической величиной, как, например, температура плавления. Для данного металла (сплава) она зависит от длительности нагрева, степени предварительной деформации, величины зерна до деформации и т. д. Температурный порог рекристаллизации снижается с повышением степени деформации, увеличением длительности нагрева или уменьшением величины зерна до деформации.
Температура начала рекристаллизации ТПР для технически чистых металлов составляет примерно 0,4ТПЛ, для чистых металлов снижается до (0,1–0,2)ТПЛ, а для сплавов возрастает до (0,5–0,6)ТПЛ.
Лекция 9. Тема № 5. «Разупрочнение деформированного металла при нагреве»
Процессы, происходящие при разупрочнении металлов при нагреве – отдых, полигонизация, рекристаллизация. Изменение структуры при отдыхе – условия прохождение отдыха. Изменение структуры при полигонизации – виды полигонизации. Температура рекристаллизации. Виды рекристаллизации – первичная, собирательная, вторичная. Процессы, происходящие при этих видах рекристаллизации, их влияние на свойства металлов и сплавов.
Структура холоднодеформированного металла, характеризующаяся повышенной плотностью дислокаций, вакансий и других дефектов, обладает повышенным запасом свободной энергии и является термодинамически неустойчивой. При нагреве такая структура будет самопроизвольно переходить в более устойчивое состояние с меньшим запасом энергии.
При повышении температуры различают следующие основные виды структурных изменений при нагреве наклепанного металла:
1. Отдых, включающий в себя возврат и полигонизацию;
2. Рекристаллизация, включающая в себя первичную, собирательную и вторичную рекристаллизации.
Под возвратом следует понимать процесс повышения структурного совершенства наклепанного металла путем перераспределения и уменьшения концентрации точечных дефектов, а также некоторого перераспределения дислокаций без образования новых границ. Этот процесс происходит при невысоких температурах (до 0,1-0,2 Тпл.).
При возврате происходит частичное восстановление (возврат) свойств металла без металлографически обнаруживаемых изменений структуры. Наиболее существенно на стадии возврата изменяется удельное электросопротивление, которое, в сравнении с наклепанным состоянием уменьшается на 20-30 %. Основной причиной восстановления свойств при возврате является уменьшение концентраций точечных дефектов. Избыточные вакансии и межузельные атомы погашаются при встрече или поглощаются дислокациями и границами зерен. На этой стадии частично устраняются и дислокации. Дислокации противоположных знаков притягиваются ианнигилируют.
При рассмотрения явления полигонизации различают две ее разновидности: стабилизирующую и предрекрестaллизационную. Первая наблюдается в слабoдеформированных металлах, вторая - в сильнодеформированных.
Стабилизирующая полигонизация, протекающая при нагреве слабодеформированных металлов, характеризуется перераспределением и частичной аннигиляцией дислокаций, формированием субзеренных границ и ростом субзерен. Дислокационный механизм стабилизирующей полигонизации наиболее наглядно объясняется на примере монокристаллов, деформированных изгибом и содержащих избыточное число краевых дислокаций одного знака (рис, 1а).
При нагреве дислокации под воздействием дальнодействующих упругих полей перегруппировываются. Дислокации разных знаков аннигилируют, а избыточные дислокации одного знака выстраиваются в энергетически более выгодные дислокационные стенки, перпендикулярные плоскостям скольжения (рис. 1б).
Полигонизация в металлах протекает при температурах 0,25 - 0,3 Тпл, когда скорость диффузионных процессов заметно увеличивается. Поэтому формирование вертикальных дислокационных стенок происходит как за счет перегруппировавшихся дислокаций, так и в связи с их переползанием. Образовавшиеся вертикальные стенки дислокаций представляют собой малоугловые границы, которые делят кристалл как бы на отдельные кристаллические блоки или полигоны (откуда и полигонизация), свободные от дислокаций. Такие дислокационные стенки хорошо выявляются металлографически в виде ямок травлений в местах выхода каждой дислокации.
Рассмотренное представление о полигонизации, основанное на анализе этого процесса в слабо деформированном кристалле, без достаточных оснований было перенесено и на сильно деформированный металл. В настоящее время понятие полигонизации значительно расширено.
Рисунок 1 - Схема распределения дислокаций в кристалле после деформации (а) и стабилизирующей полигонизации (б)
Рисунок 2 - Схема превращения ячеистой структуры сильно деформированного металла (а) в субзеренную(6) в результате предрекристаллизационной полигонизации.
В случае нагрева сильнодеформированного металла, в котором при деформации сформировалась дислокационная ячеистая структура (случай наиболее частый), полигонизация заключается в сплющивании дислокационных объемных сплетений (стенок ячеек) и превращения этих сплетений в плоские субграницы. При этом ячейки превращаются в субзерна (рис. 2).
Этот более сложный случай полигонизации включает в себя не только скольжение и переползание, но и поперечное скольжение винтовых дислокаций.
В отличие от слабодеформированного кристалла, в котором границы (полигонов) формируются только в процессе полигонизации, в более сильно деформированном кристалле ячеистая дислокационная структура определяет форму иразмер образующихся при полигонизации субзерен. Таким образом, при полигонизации ячеистой структуры образующиеся субзерна как бы наследуют расположение, форму и размер ячеек деформации.
Малоугловые границы, образовавшиеся при полигонизации слабодеформированного кристалла, являются малоподвижными исубзерна после такой полигонизации не растут. Отсюда иназвание: стабилизирующая полигонизация.
Субзерна, образовавшиеся на месте деформационных ячеек, отличаются большей кривизной и подвижностью, чем дислокационные стенки, образовавшиеся при полигонизации после слабой деформации. Такие субзерна нестабильны и склонны к укрупнению. Укрупнение субзеренможет совершаться двумя путями:
I) миграцией субграниц под влиянием стремления к уменьшению зернограничного натяжения или к уменьшению объемной энергии соседних субзерен;
2) путем коалесценции соседних субзерен с рассыпанием разделяющей их дислокационной границы.
В результате полигонизации частично уменьшаются внутренние напряжения, внесенные деформацией. Обычно комплекс механических свойств в процессе полигонизации чаще изменяется мало.
В результате полигонизации образуются иукрупняются субзерна внутри деформированных зерен, но форма зерен, вытянутых деформацией, не меняется. Только при дальнейшем повышении температуры в связи с увеличением диффузионной подвижности атомов развивается.
Рекристаллизация -это процесс полной или частичной замены одних зерен данной фазы другими зернами той же фазы, обладающими меньшей энергией.
В чистых металлах рекристаллизация протекает при температурах выше 0,4 Тпл, а в сплавах - выше 0,6 Тпл.
При первичной рекристаллизации, которая развивается первой, происходят зарождение ирост новых неискаженных равновесных зерен взамен вытянутых деформацией (рис. 3). Зародыши новых зерен образуется всегда в местах максимальной искаженности кристаллической решетка, созданных деформацией: на тройных стыках зерен, на границах зерен и двойников, на границах полос скольжения, около частиц других фаз. Механизм зарождения центров рекристаллизации тесно связан с процессами, протекающими при рекристаллизационной полигонизации. Образовавшиеся при полигонизации субзерна отличаются между собой по размерам и величине разориентировки. Большие по величине и более сильно разориентированные субзерна растут интенсивнее. Их малоугловые границы поглощают при своем движении дислокации ив результате превращаются в большеугловые высокоподвижные границы, что и характеризует окончание формирования центра (зародыша) рекристаллизации. Затем зародыши растут в результате перехода к ним атомов от деформированных участков. Рекристаллизованные зерна содержат значительно меньше дислокаций (10 6 - 10 8 см -2 ), чем деформированные (10 10 – 10 12 см -2 ).
Таким образом, при нагреве наклепанного метала старое зерно не восстанавливается, впоявляется совершено новое, размеры которого могут существенно отличаться от исходного.
Измельчение исходного (до деформации) зерна приводит к понижению температуры начала рекристаллизации, так как в более мелкозернистом металле больше суммарная площадь высокоугловых границ, где зарождаются центры рекристаллизации, и больше накопленная при деформации энергия.
Процесс первичной рекристаллизации термодинамически выгоден, так как сопровождается уменьшением объемной свободной энергия за счет уменьшения плотности дислокаций.
В результате первичной рекристаллизация после больших степеней холодной пластической деформации образуется мелкозернистая структура (рис. 4).
Наименьшая температура, при которой начинается рекристаллизация, называется температурным порогом рекристаллизации. Для данного металла (сплава) она зависит в первую очередь от чистоты металла по примесям и от целого ряда других факторов, которые будут рассмотрены ниже.
Рисунок 3 - Начальная стадия первичной рекристаллизации в технически чистом железе (а) и латуни (б)
Рисунок 4 - Мелкозернистая структура латуни, образовавшаяся в результате первичной рекристаллизации.
Зависимость температуры начала рекристаллизации от состава в двойных системах немонотонная и различная у разных сплавов. Только в однофазной области в интервале малых концентраций наблюдается непрерывный рост температуры порога рекристаллизации, причем с увеличением их концентрации температура начала рекристаллизации сначала растет очень сильно, а затем - замедляется.
Атомы примесей упруго притягиваются к дислокациям, образуя атмосферы Коттрелла. Эти примесные атмосферы мешают перераспределению дислокаций, необходимому для формирования центров рекристаллизации. Примеси тормозят не только зарождение, но и рост центров рекристаллизации, так как они притягиваются к границе зародыша. При нагреве металла до более высоких температур примесные атмосферы размываются тепловых движением, в результате чего становится возможным деформирование центров рекристаллизации и облегчается их рост.
Таким образом, чем чище металл, тем ниже порог рекристаллизации.
По сравнению с действием малых добавок на чистейший металл, когда сотые и десятые доли процента добавки могут повысить температуру начала рекристаллизации на сто градусов и более, увеличение содержания легирующих элементов в области больших концентраций на проценты я десятки процентов сравнительно слабо изменяют температуру порога рекристаллизации. Соотношение температур начала рекристаллизация я плавления у твердых растворов выше, чем у чистых металлов, причем у однофазных сплавах-растворах величина Тр/Тпл. составляет максимум 0,6 (по сравнению с 0,25 - 0,40 у металлов).
В двухфазных сплавах увеличение объемной доли второй фазы приводят к возрастанию порога рекристаллизации.
Следует уяснить, что после окончания первичной рекристаллизация структура металла еще не становится стабильной. При увеличении времени выдержки или повышении температуры вслед за первичной, происходят собирательная рекристаллиация.
Под собирательной рекристаллиацией понимают процесс роста зерен одной фазы за счет других зерен этой же фазы, идущий в направлении приближения тройных стыков к равновесия» (120°), в направлений спрямления границ и уменьшения их кривизны. Процесс роста происходят передвижением высокоугловых границ таким образом, что зерна с вогнутыми границами "поедает" зерна с выпуклыми границами. Основной движущей силой собирательной рекристаллизация является стремление системы к уменьшению зернограничной (поверхностной) энергия благодаря уменьшении протяженности границ при росте зерна. Следует подчеркнуть, что зерен предпочтительного роста при собирательной рекристаллизации нет.
Примеси в металлах оказывают заметное влияние на собирательную рекристаллизации. Атомы растворенных примесей упруго притягивается к границе и движение ее (миграция) связана с протаскиванием за собой примесных атомов. Мигрирующая граница встречает на своем пути примесные атомы, распределенные в теле "поедаемого" зерна, примесь на границе накапливается, усиливая ее торможение.
Если мигрирующая граница встречает включения второй фазы, то она должна огибать эти включения и затем отрываться от них, что затрудняет собирательную) рекристаллизацию. После отрыва границы от включений второй фазы их цепочка остается внутри растущего зерна.
Процессы первичной и собирательной рекристаллизация могут идти одновременно, то есть они накладываются друг на друга.
В результате собирательной рекристаллизации вырастают крупные равновесные (полиэдрические) зерна (рис. 5), содержащие значительно меньше дислокаций (10 6 - 10 8 см -2 ),чем деформированные (10 10 - 10 12 см -2 ).
В итоге рассмотренных процессов рекристаллизации наклеп практически полностью снимается и свойства приближается к их исходным значениям (рис. б).
Как видно из графика, при рекристаллизации предел прочности и, особенно, предел текучести, резко снижается, а характеристики пластичности возрастает. Достигаемое разупрочнение объясняется снятием искажений решетки и резким уменьшением плотности дислокация.
Если в результате собирательной рекристаллизация вырастает слишком крупное зерно, это мотет быть причиной снижения пластичности металла (явление перегрева).
Рис. 5. Структуры технически чистого железа (а) и латуни (б)
после собирательной рекристаллизации.
Важнейшее практическое значение рекристаллизации состоят в том, что она только позволяет восстановить структуру недеформированного металла, но дает возможность управлять величиной зерна, которая оказывает большое влияниена механические и другие свойства металлов, (как вам уже известно, с уменьшением размера зерна их вязкость а прочностные характеристики возрастают).
Для того, чтобы управлять величиной зерна я, следовательно, пожучить необходимее свойства, необходимо знать, какие факторы оказывают влияние на эту характеристику структуры.
Рис. 6. Влияние нагрева на структуру и механические свойства метана, упрочненного деформацией.
К таким факторам относятся прежде всего температура рекристаллизационного отжига я его длительность, а также степень деформации, предшествовавшей нагреву. Понятно, что влияние этих факторов должно зависеть от природы основного металла, наличия я количества легирующих элементов и нерастворенных примесей. Ясно также, что размер рекристаллизированного зерна зависят от размеров зерна исходного.
Вторичная рекристаллизация, называемая иногда аномальной, заключается в преимущественном росте отдельных зерен, попавших в наиболее благоприятные условия роста. В результате вторичной рекристаллизации образуется множество мелких зерен и небольшое количество очень крупных зерен. Вторичная рекристаллизация может быть вызвана благоприятной для роста кристаллографической ориентировкой отдельных зерен, меньшей, чем у других зерен, концентрацией дефектов, меньшим содержанием на границах примесей. Соответственно, в зависимости от условия, этот вид рекристаллизации может стимулироваться объемной или зернограничной энергией. Структура с разнозернистостью характеризуется пониженной пластичностью.
Влияние температуры рекристаллизации на размер зерна рассмотрено выше и характеризуется графиком, приведенным на рис. 7а, из которого следует интенсивный рост зерна при увеличении этой температуры. При данной степени деформации Е и определенной температуре размер зерна возрастает с увеличением продолжительности рекристаллизационного отжига, как это изображено на рис. 7 б.
Рис. 7. Влияние температуры, продолжительности отжига и
степени деформации на величину рекристаллизированного зерна (t123; On и On ’ - продолжительности инкубационного периода; f и f ’ - критические степени деформации).
Зависимость величины рекристаллизационного зерна, приведенная на рис. 7 в, объясняется следующим образом. Установлено, что зародыши рекристаллизации образуется в местах максимальных искажений кристаллической решетки. Количество таких мест с увеличением степени деформация возрастает, а значит, будет увеличиваться и число центров рекристаллизации. Поскольку при увеличения числа центров рекристаллизации, особенно после больших степеней деформация, . скорость их роста поя постоянной температуре изменяется незначительно, размер рекристаллизационных зерен с увеличением степени деформации должен уменьшаться.
Как видно из приведенной опытной зависимости, выдвинутая гипотеза подтверждается только при относительно больших степенях деформации - выше 5 - 15 %. При меньших степенях деформации величина зерна вообще не изменяется. И было понятно, почему после рекристаллизации металла, деформированного на 5 - 15 %, образуется столь крупное зерно, иногда во много раз превосходящее по размерам исходное.
Установлено, что после малых степеней холодной деформация (до 5 %) плотность дислокаций в деформированном металле повышается незначительно. Нагрев после такой деформации приводят, как правлю, к стабилизирующей полигонизации, затрудняющей последующие структурные изменения. В результате, нагрев, после таких степеней деформации, не вызывает роста зерна. Процесс ограничивается протекавшей в них полигонизацией.
Степень деформации (5 - 15 %), нагрев после, которой вызывает скачкообразный рост зерна, называется критической. При нагреве после критической: деформации также не происходит первичной рекристаллизации, характерной особенностью которой является зарождение и рост новых зерен. Нагрев после критической деформации вызывает рост одних исходных перекристаллизованных зерен за счет поглощения соседних. Такой механизм кристаллизация, сходной со вторичной рекристаллизацией, объясняется неоднородностью деформации разных зерен при небольших степенях деформации.
В связи с этим при нагреве становится возможным рост менее деформированных зерен, имеющих более низкое значение свободной энергии, за счет более деформированных, имеющих большую свободную энергия. При более высока степенях деформация протекает процесс первичной рекристаллизации.
В практике обработки металлов давлением следует избегать критической степени деформация, т.к. крупнозернистая структура, получаемая в результате последующего рекристаллизационного отжига, проводимого для снятия наклепа, обладает пониженной ударной вязкостью, Это требование должно регламентироваться технологическими инструкциями.
Читайте также: