Применение в строительстве металлов и сплавов
Металлы –это простые вещества, имеющие в твёрдом состоянии кристаллическое строение и обладающие характерными свойствами: высокой плотностью, блеском, непрозрачность., высокой тепло- и электропроводностью, пластичностью.
Сплавы металлов (или металлические сплавы) – это твёрдые и жидкие системы, полученные сплавлением нескольких металлов или металлов с неметаллами (например железоуглеродистые сплавы). Металлические сплавы по свойствам имеют много общего с металлами.
Железо используют только в монументальном и прикладном искусстве и при реставрации памятников архитектуры.
Чугун издавна применяют для художественных отливок и скульптур.
Стали делят на конструкционные, применяемые для строительных конструкций, арматуры, железобетона, в машиностроении, инструментальные и стали с особыми свойствами (не ржавеющие, кислотостойкие, жаропрочные).
Цветные металлы, в том числе благородные (золото, серебро) в чистом виде применяют при реставрации памятников архитектуры и искусства. Различные цветные металлы и сплавы применяют в отделке общественных зданий.
Алюминий в чистом виде применяют в строительстве в виде алюминиевой пудры. В строительных конструкциях из-за незначительной прочности чистый алюминий не применяют; для этой цели эффективно используют сплавы его с медью, марганцем, цинком, кремнием и магнием.
Алюминиевые сплавы делят на 2-е группы: деформируемые, используемые для изготовления листов, профилей, плит, фольги, и литейные для фасадных отливок. В строительстве применяют деформируемые сплавы.
Медь – мягкий ковкий металл красного цвета. Применяется для различных целей в чистом виде и в сплавах. В архитектурно строительной практике прошлого использовалось как кровельный, декоративно-отделочный, скульптурный, реже как конструкционный материал.
Латунь – наиболее распространённый медный сплав, содержащий до 50% цинка. Применяют его преимущественно в виде листов для изготовления художественно-декоративных изделий.
Бронза – сплав меди с оловом. Применяется в архитектуре и монументальном искусстве.
Медно-никелевые сплавы используют для художественно декоративных изделий.
Цинк – для кровельных и защитных покрытий
Свинец - для запеканки стыков элементов конструкций.
30. Декоративные свойства строительных материалов.
Свойства строительных материалов и изделий объединяют две группы комплексных свойств:
- характеризующая эстетичность самого материала, определяется такими параметрами, как форма цвет фактура т рисунок;
- характеризует эстетическую сочетаемость рассматриваемого материала с другими, совместно с ним применяемыми на данном объекте, а также его сочетаемость с окружающей средой.
ФОРМА строительных материалов и изделий играет существующую роль не только в их функциональной, но и эстетической оценке.
Эстетичность формы материала и изделия определяется его геометрией (кубическая, параллелепипедная, цилиндрическая - для объёмных изделий; квадратная, прямоугольная, многогранная – для плоских) и пропорциями основных размеров.
Форма – важная эстетическая характеристика и для таких строительных материалов и изделий, как стеклоблоки, профильное стекло, штучный деревянный пакет, плинтусы, наличники, поручни и другие профильно-погонажные материалы из дерева, пластмасс и алюминиевых сплавов.
ЦВЕТ – одно из свойств объектов материального мира, воспринимаемое как осознанное зрительное ощущение. Под цветом материалов понимают определённое зрительное ощущение, вызываемое в результате воздействия на глаз потоков электромагнитного излучения в диапазоне видимой части спектра.
Цвет материала обусловлен следующими факторами:
-оптическими свойствами источников света,
-среды, через которую свет распространяется.
Используют три взаимосвязанных субъективных атрибута цвета: цветовой тон, насыщенность и светлота.
Цветовые характеристики особенно важны для оценки качества отделочных материалов, применяемых в наружной и во внутренней отделке зданий и сооружений. Поскольку цвет является одним из важнейших факторов производственного и бытового комфорта, при выборе отделочных материалов необходимо учитывать не только их собственные цветовые характеристики, но и определённое психологическое воздействие конкретных сочетаний цвета различных материалов – цветовых гармоний.
ФАКТУРА (обработка, строение) – видимое строение поверхности материала. По характеру поверхности материалу различают 2-е группы фактур: рельефные (различающиеся по высоте и характеру рельефа) гладкие (от зеркально-блестящих до шероховато-ровных).
Различают два вида рельефных фактур: организованную (с повторяющимся равномерным, часто геометрическим рисунком рельефа) и неорганизованную (с неравномерным, хаотическим рисунком)
РИСУНОК материала может быть естественным, выражающим на его поверхности характерную структуру, особенности строения или искусственным, нанесённым на поверхность материала покраской, печатью или любым другим способом. Рисунок материала может быть цветным и черно-белым.
Искусственные рисунки различаются по многочисленным признакам: характеру, масштабу, количеству и характеристике цветов и их сочетаниям. Рисунок может наноситься и не на поверхность материала, а располагаться под прозрачным верхним слоем.
Ещё более Важной, чрезвычайно сложной и малоизученной характеристикой строительных материалов и изделий является их ЭСТЕТИЧЕСКАЯ СОЧЕТАЕМОСТЬ друг с другом и с окружающей средой.
Металл в строительстве: от меди до стали
Периодическая система элементов Менделеева насчитывает 82 металла, многие из которых, благодаря своим уникальным свойствам, находят применение в строительстве. Но если когда-то металл использовался, в основном, для изготовления кровельных покрытий и отдельных элементов крепежа, то по мере развития технологий его значимость для стройиндустрии становится все выше. Например, можно смело утверждать, что сегодня стальные конструкции являются основой любой капитальной постройки. Совершив небольшой экскурс, можно проследить эволюцию металла в строительстве.
Исторический экскурс
Это очень прочный металл, благодаря формированию голубовато-зелёной патины слабо подверженный коррозии, а потому способный служить долго. В качестве кровельного материала листовую медь использовали потому, что она легче деревянной черепицы и уж тем более — глиняной черепицы или свинца. Немаловажно также и то, что медь достаточно легко гнётся, что позволяло использовать ее для облицовки куполов и других фигурных элементов, которыми обычно украшали кровли культовых построек.
Помимо кровли медь издавна используется ещё и в декоративных целях, а также как материал для создания памятников и монументов. В частности, именно она послужила основным материалом для Статуи Свободы. Медные сплавы, широко используемые в архитектуре — это бронза (сплав меди и олова) и латунь (сплав меди и цинка).
К недостаткам меди можно отнести её крайне высокую стоимость, которая растёт год от года, а также свойство со временем терять свой первозданный яркий цвет и характерный блеск: покрываясь патиной, медь стремительно тускнеет и приобретает характерный зелёный оттенок.
Забегая немного вперёд, можно отметить, что решение «медной проблемы» в наши дни найдено: натуральный металл сегодня всё чаще заменяют достоверной имитацией из стали с полимерным покрытием, о которой пойдет речь чуть позже. Например, сталь с двусторонним покрытием Agneta, в точности имитирующим цвет и блеск меди благодаря включённым в состав красителя микросферам, втрое дешевле своего прообраза, но при этом не теряет внешней привлекательности в течение всего срока эксплуатации.
Свинец — ещё один «долгожитель» строительной отрасли. Его широчайшее применение в прошлом было обусловлено прежде всего низкой температурой плавления. Вплоть до конца XIX века из свинца изготавливали водопроводные трубы, пока не стало известно, что это негативно отражается на здоровье людей. Как и медь, свинец на протяжении многих веков был популярным кровельным материалом и одновременно использовался для изготовления водосточных желобов, труб и дымоходов. Правда, из-за своего большого веса свинец лучше всего подходил для низкоскатных крыш, поскольку с крутых со временем неизбежно начинал сползать. Кроме того, свинцовые кровли были не в фаворе в регионах с большими перепадами температур, поскольку быстро приходили в негодность из-за существенных температурных деформаций, которым подвержен этот металл.
Ещё одна ипостась свинца — изготовление красок на его основе: сурик (красный) применялся как антикоррозионный пигмент для железа, а свинцовые белила — для покраски деревянных домов. Эти краски считались одними из самых стойких и долговечных и всегда использовались в качестве защитных покрытий. Однако со временем их применение было приостановлено в связи с распространением случаев отравления свинцом.
Терн, или «тернплате» — ещё один материал, вошедший в строительный обиход начиная с XIX века. Это были стальные или железные листы, покрытые свинцово-оловянным сплавом, которые часто путали с белой жестью.
Олово само по себе в чистом виде никогда не применялось в архитектуре. Обычно его использовали в сплавах, например, с медью для образования бронзы, а также для покрытия более жёстких металлов, например, лужёного железа или стали: при покрытии листового железа оловом как раз и получалась жесть. Из неё обычно делали броню, но иногда использовали и как кровельное покрытие. В конце XIX века в моде были потолки из рельефной металлической плитки, называвшиеся «оловянными», хотя на самом деле они чаще всего изготовлялись из крашеного листового железа или стали.
Никель находится в сходном положении с оловом: он периодически использовался в качестве гальванического покрытия архитектурных деталей. А вот в создании сплавов никель занимает, пожалуй, лидирующее место на фоне остальных металлов. Благодаря ему мы имеем нейзильбер, монель-металл и нержавеющую сталь. Вплоть до Первой мировой войны нейзильбер называли «немецким серебром», но затем он стал более известен как «белая латунь», хотя правильнее было бы именовать его «никелевой латунью», так как в классическом варианте этот сплав состоит из 75% меди, 20% никеля и 5% цинка. Разное процентное соотношение даёт разные цвета: серебристо-белый, жёлтый, голубоватый, зелёный или розовый. Изделия из нейзильбера были неизменными атрибутами стиля арт-деко.
Монель-металл представляет собой сплав из двух третей никеля и трети меди, а по цвету он похож на платину. Определённым показателем его успешности можно считать тот факт, что в 1936 году медная кровля Нью-Йоркской городской публичной библиотеки на пересечении Пятой авеню и 42-й улицы была заменена на монельную. Удобство работы с монель-металлом заключалось в том, что его можно было варить и паять прямо на месте строительных работ, что позволяло создать сплошную водонепроницаемую поверхность кровли. Во время Второй мировой войны большое количество никеля и меди шло на военные нужды, в связи с чем производство монеля значительно сократилось. А после войны ему на смену пришли нержавеющая сталь и алюминий, имеющие более низкую себестоимость.
Цинк в чистом виде использовался как кровельное покрытие в Бельгии, Франции и Германии, где он заменил более дорогие медь и свинец. Начиная с 1820-х годов бельгийский цинковый лист стали импортировать в Америку. Что касается антикоррозионного цинкования, то эта технология была запатентована в 1837 году независимо друг от друга Сорелем во Франции и Крауфордом в Англии. Метод представлял собой процесс «горячего погружения» с целью покрытия железа цинком. Новинка довольно быстро перебралась за океан: Торговая биржа на Манхеттене стала одним из первых зданий, имевших оцинкованную крышу и водостоки.
Свою нишу цинк занял также в области изготовления декоративных элементов благодаря пластичности и приемлемой цене, дававшими ему преимущества по сравнению с камнем. Изделия из цинка легко поддавались покраске, что позволяло имитировать более дорогие металлы. Кстати о красках: в отличие от свинца. краски на основе цинка не токсичны и устойчивы к загрязнению. Они имели коммерческий успех, начиная с 1850-х, а в 1870-х начали использоваться повсеместно. Дополнительным преимуществом было то, что цинковые красители являлись хорошими ингибиторами ржавчины на железе и стали.
Алюминий был недоступен по разумной цене и в достаточных количествах вплоть до начала XX века. Затем он постепенно стал входить в архитектуру, правда, сначала только как материал для изготовления декоративных элементов. Первым громким выходом алюминия на большую строительную арену следует считать Эмпайр Стейт Билдинг, строительство которого было завершено в 1931 году. На долю алюминия пришлась значительная часть элементов отделки небоскрёба, таких как декоративные панно, входной комплекс, двери лифта. Кроме того, наряду со сталью алюминий был использован в несущих конструкциях здания и для облицовки его фасада.
К недостаткам алюминия следует отнести небольшую жесткость (втрое меньше, чем у стали), высокую теплопроводность и низкую температуру плавления (примерно 660°C). Первое свойство заставляет увеличивать площадь сечения алюминиевых конструкций, а в сочетании со вторым делает их источником теплопотерь здания. Например, вентилируемые фасады на алюминиевой подконструкции существенно уступают стальным по показателям теплоизоляции, не давая при этом существенного выигрыша в весе. Третье свойство негативно отражается на пожарной безопасности построек.
Король среди стройматериалов
Железо в архитектуре встречается в четырёх широко распространённых формах: кованое железо, чугун, листовое железо и сталь. «Чугун был главным строительным материалом XIX века — века промышленной революции. Он часто использовался для конструктивных решений: например, для изготовления колонн, фасадов или куполов. Также из чугуна делали лестницы, лифты, решётки, веранды, балконы, перила, заборы, фонари и даже надгробья», — рассказывает архитектор Анисия Борознова. На сегодняшний день чугун используется в основном для изготовления труб и сантехнической арматуры, хотя иногда к его помощи прибегают с целью подражания стилю прежних эпох.
Наиболее подробно имеет смысл говорить о стали. Именно появление конструкционной стали в середине XIX века сделало возможным строительство высотных зданий. Произошло это благодаря исследованиям английского изобретателя Генри Бессемера, пришедшего к идее передела жидкого чугуна в литую сталь путём продувки сквозь него сжатого воздуха. Чуть позже была разработана мартеновская печь, которая позволила ускорить процесс и снизить себестоимость получаемого материала. Мосты, железнодорожные комплексы и небоскрёбы были первыми крупномасштабными объектами из конструкционной стали.
Ещё один материал, выведший строительные технологии на новый уровень, был разработан также в конце XIX века. Добавление стальной проволоки в бетон дало рождение железобетону, который вряд ли нуждается в специальном представлении.
В начале XX века появились нержавеющие стали с различными примесями, и их главным достоинством стала устойчивость к коррозии. Одним из памятников этой эпохи является здание корпорации Chrysler, построенное по проекту архитектора Уильяма Ван Элена и признанное самым красивым небоскрёбом Нью-Йорка.
Сегодня практически все капитальные здания построены либо из железобетонных, либо на стальном несущем каркасе. Последнее относится и к так называемым быстровозводимым зданиями, которые практически полностью вытеснили сегодня любые другие строительные технологии из коммерческого и промышленного строительства.
Следующим значимым этапом в развитии строительных технологий стало появление системы навесных вентилируемых фасадов (НВФ) в 40-х годах XX века в странах Скандинавии и затем распространившееся оттуда в Европу и Америку. Подконструкция вентфасадов чаще всего изготовлялась из стали, чуть реже — из алюминия (о недостатках этого решения мы уже говорили). Затем на неё крепилась облицовка, а на несущую стену под ней — утеплитель, с соблюдением обязательного воздушного зазора.
На первых порах в качестве облицовочных материалов использовали всё подряд, особенно когда дело касалось бюджетного частного домостроения. Со временем доминирующие позиции на рынке фасадных облицовок начали занимать дешевый керамогранит и легкие алюминиевые композитные панели. Однако помимо очевидных преимуществ эти решения имеют и серьезные недостатки.
Так, керамогранитные фасадные плитки массивны, хрупки, и при всем этом отличаются самым ненадежным среди всех облицовочных материалов способом крепления — на кляммеры (защелки). Любое нарушение технологии монтажа, особенно на высотных зданиях, может сделать керамогранитный фасад небезопасным, а целесообразность его использования в сейсмоопасных районах опровергается повседневной практикой.
Что касается композитных панелей, то выбирать их нужно с осторожностью, потому что не любой их тип соответствует требованиям пожарной безопасности для жилищного и гражданского строительства.
Однако с появлением и развитием технологии полимерного покрытия листовой стали популярным до последнего времени фасадным решениям появилась достойная альтернатива: стальные облицовки доказали своё явное преимущество перед другими решениями и начали постепенно вытеснять их с рынка. Технологичность, простота монтажа, энергоэффективность и долговечность НВФ со стальной облицовкой в сочетании с привлекательным внешним видом и множеством цветовых вариаций пленили сердца архитекторов и строителей.
Иногда в адрес стальных облицовок можно услышать нарекания. Например, экономичные варианты, такие как линеарные панели, ввиду небольшой толщины металла и упрощённой технологии формования не обеспечивают безупречной геометрии фасадных элементов, а потому не очень подходят для серьёзного городского строительства. Относящиеся же к среднему ценовому сегменту фасадные кассеты, лишённые означенных недостатков, не всегда вписываются в имеющийся бюджет, например, в рамках муниципальных программ реконструкции жилых зданий.
Любопытно отметить небольшую лексическую трансформацию, которая происходит прямо у нас на глазах. Слово «металл» всё чаще используется как синоним «стали», ведь это именно её по праву можно назвать металлом нового времени. Из стали стало возможным создать любой элемент здания: фундамент, несущие конструкции, облицовку, кровлю, декор, мебель. Если провозгласить металл королём среди стройматериалов, то его корона наверняка будет сделана из стали.
XII Международная студенческая научная конференция Студенческий научный форум - 2020
Актуальность темы. Металлы (от латинского metallum-шахта, рудник) – это группа элементов, которая обладает характерными металлическими свойствами, такими как: высокое тепло и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность и металлический блеск [1, с.30]. Они занимают существенное место среди современных материалов. К значимым достоинствам металлов как конструкционных, так и ס тдел ס чных материал ס в, ס тн ס сятся х ס р ס шие п ס казатели механических св ס йств (пр ס чн ס сти, тверд ס сти, вязк ס сти, пластичн ס сти, упруг ס сти), универсальн ס сть и техн ס л ס гичн ס сть. Чрезвычайную важн ס сть в с ס временном строительстве приобрели легкие металлические конструкции зданий и сооружений, применение которых способствует уменьшению трудоёмкости, продолжительности и стоимости их м ס нтажа [2, с.129].
Классификация металлов. Обычн ס в стр ס ительстве применяют не чистые металлы, а сплавы. Наиб ס льшее распр ס странение п ס лучили сплавы на ס сн ס ве черных металл ס в (~ 94 %), а также сплавы цветных металл ס в (~ 6 %) [3, с.288]. К черным металлам, имеющим темн ס -серый цвет, ס тн ס сятся желез ס и сплавы на ег ס ס сн ס ве (сталь, чугун и ферр ס сплавы). Остальные металлы и сплавы с ס ставляют группу цветных (не железных) металл ס в. Чистые металлы применяются редк ס в любых пр ס мышленных ס бластях. Для изменения св ס йств металл ס в их плавят с другими элементами. Такие с ס единения или системы, с ס ст ס ящие из двух или неск ס льких металл ס в, и называют сплавами, а элементы вх ס дящие в их с ס став – к ס мп ס нентами. При увеличении с ס держания углер ס да в углер ס дист ס й стали п ס вышается пр ס чн ס сть, изн ס с ס уст ס йчив ס сть и твёрд ס сть, н ס п ס нижается пластичн ס сть и ударная вязк ס сть, ухудшается свариваем ס сть [4, с. 324]. Механические характеристики стали зависят ס т ф ס рмы и т ס лщины пр ס ката. Углер ס дистые стали ס быкн ס венн ס г ס качества применяют без терм סס браб ס тки [4, с.318]. Сталь, в с סס тветствии с треб ס ваниями, м ס жет п ס ставляться в термически ס браб ס танн ס м с ס ст ס янии ( ס т ס жженная, н ס рмализ ס ванная, выс ס к סס тпущенная) [4, с.327]. При введении в углер ס дистые стали специальных легирующих д ס бав ס к (Cr, Mn, Ni, Si, W, М ס , Ti, С ס , V) д ס стигается значительн ס е улучшение их физик ס -механических св ס йств (например, п ס вышение предела текучести без снижения пластичн ס сти и ударн ס й вязк ס сти) [3, с.293]. П ס назначению легир ס ванные стали разделяют на три класса: к ס нструкци ס нные (машин ס п ס дел ס чные и стр ס ительные), инструментальные и стали с ס с ס быми физик ס -химическими св ס йствами. Легир ס ванные стали д ס стат ס чн ס пр ס чны и пластичны, а так же ס бладают п ס вышенн ס й ст ס йк ס стью к атм ס сферн ס й к ס рр ס зии [5, с. 163].
Строение металлов. Металлы – эт ס кристаллические тела с зак ס н ס мерным расп ס л ס жением ат ס м ס в в узлах пр ס странственн ס й решетки, к ס т ס рые с ס ст ס ят из ряда кристаллических пл ס ск ס стей, расп ס л ס женных на расст ס янии неск ס льких нан ס метр ס в друг ס т друга. Ат ס мы металл ס в характеризуются малым к ס личеств ס м электр ס н ס в (1, 2, реже 3) на наружн ס й ס б ס л ס чке, легк ס ס тдают их, чт ס п ס дтверждается выс ס к ס й электр ס пр ס в ס дн ס стью [6, с.298]. Черные металлы имеют пр ס стые кубические ячейки решет ס к двух вид ס в: а) центрир ס ванныйили ס бъемн ס -центрир ס ванныйкуб (9 ат ס м ס в в ячейке), ס бъем шар ס в занимает 68 %; б) гранецентрир ס ванный или куб с центрир ס ванными гранями (14 ат ס м ס в), ס бъем шар ס в занимает 74 %. Нек ס т ס рые цветные металлы и их сплавы имеют гексаг ס нальную решетку [2, с.169]. Желез ס , ס л ס в ס , титан, а так же другие металлы ס бладают св ס йствами алл ס тр ס пии, чт ס ס значает сп ס с ס бн ס сть ס дн ס г ס и т ס г ס же химическ ס г ס элемента при разн ס й температуре иметь различную кристаллическую структуру. Алл ס тр ס пические превращения металл ס в с ס пр ס в ס ждаются выделением или п ס гл ס щением тепл ס ты [7, с.325]. Все металлы нах ס дятся в твёрд ס м с ס ст ס янии д ס ס пределённ ס й температуры. К ס гда металл нагревают, т ס амплитуда к ס лебаний ат ס м ס в д ס стигает нек ס т ס р ס й критическ ס й величины. Пр ס исх ס дит разрушение кристаллическ ס й решетки и перех ס д металл ס в из тверд ס г ס с ס ст ס яния в жидк ס е [3, с.324]. В усл ס виях несв ס б ס дн ס й кристаллизации ס бразующиеся кристаллы п ס лучают неправильную ф ס рму и ס чертания, их называют кристаллитами или зернами. Величина зерен ס казывает существенн ס е влияние на механические св ס йства металл ס в: чем меньше зёрна, тем пр ס чнее металл. В цел ס м металлы и сплавы м ס жн ס считать усл ס вн ס «из ס тр ס пными телами» [7, с.326].
Свойства металлов. Химические св ס йства.В с סס тветствии с мест ס м, занимаемым в пери ס дическ ס й системе элемент ס в, различают металлы главных и п ס б ס чных п ס дгрупп. Металлы главных п ס дгрупп с ס ставляют п ס дгруппу «а». Ат ס мы металл ס в п ס б ס чных п ס дгрупп (п ס дгрупп «б») называются перех ס дными. В п ס дгруппу «а» вх ס дят 22 металла из пери ס дическ ס й системы. В п ס дгруппы «б» вх ס дят: 1) 33 перех ס дных металла d-п ס дгрупп; 2) 28 металл ס в f-п ס дгрупп (14 лантан ס ид ס в и 14 актин ס ид ס в). Электр ס нная структура ат ס м ס в нек ס т ס рых d-элемент ס в (1 и 6 группы п ס б ס чн ס й п ס дгруппы) имеет нек ס т ס рую ס с ס бенн ס сть в т ס м, чт ס ס дин из электр ס н ס в внешнег ס ур ס вня перех ס дит на d-п ס дур ס вень предп ס следнег ס ур ס вня, д ס страивая эт ס т п ס дур ס вень д ס уст ס йчив ס г ס с ס ст ס яния из 5 или 10 электр ס н ס в [8, с.89]. Если расп ס л ס жить металлы в п ס след ס вательн ס сти их электр ס дных п ס тенциал ס в, т ס п ס лучим так называемый ряд напряжений, или ряд активн ס стей. Рассм ס трение эт ס г ס ряда п ס казывает, чт ס п ס мере приближения к ег ס к ס нцу: ס т щел ס чных и щёл ס чн ס земельных металлам к Pt и Аu – пр ס исх ס дит уменьшение ס трицательн ס г ס значения п ס тенциал ס в. Металлы ס т Li п ס Na вытесняют Н2 из Н2О на х ס л ס де, а ס т Mg п ס Тl – при нагревании. Б ס льшинств ס металл ס в, ст ס ящих в ряду напряжений левее Н2, вытесняют ег ס из разбавленных кисл ס т (на х ס л ס де или при нагревании). Металлы, ст ס ящие правее Н2, раств ס ряются т ס льк ס в кисл ס тах-" ס кислителях"(к ס нцентрир ס ванная H2SO4 при нагревании или HNO3), a Pt и Аи – т ס льк ס в "царск ס й в ס дке" (Ir не раств ס рим и в ней) [7, с.283].
Металлы ס т Li п ס Na легк ס реагируют с О2 на х ס л ס де; п ס следующие члены ряда с ס единяются с О2 т ס льк ס при нагревании, a Ir, Pt, А u в прям ס е взаим ס действие с О2 не вступают. О пр ס чн ס сти с ס единений металл ס в с кисл ס р ס д ס м (и др. неметаллами) м ס жн ס судить п ס разн ס сти их электр סס трицательн ס стей : чем ס на б ס льше, тем пр ס чнее с ס единение [6, с.133].
Физические св ס йства.Б ס льш ס е к ס личеств ס металл ס в кристаллизуется в пр ס стых структурах - кубических и гексаг ס нальных, с סס тветствующих наиб ס лее пл ס тн ס й упак ס вке ат ס м ס в. Лишь неб ס льш ס е к ס личеств ס металл ס в имеет б ס лее сл ס жные типы кристаллических решёт ס к. Мн ס гие металлы в зависим ס сти ס т внешних усл ס вий (температуры, давления) м ס гут существ ס вать в виде двух или б ס лее кристаллических м ס дификаций [4, с.258]. Характерным св ס йств ס м металл ס в как пр ס в ס дник ס в электрическ ס г ס т ס ка является линейная зависим ס сть между пл ס тн ס стью т ס ка и напряжённ ס стью прил ס женн ס г ס электрическ ס г ס п ס ля. Н ס сителями т ס ка в металлах являются электр ס ны пр ס в ס дим ס сти, ס бладающие выс ס к ס й п ס движн ס стью. Существ ס вание у металл ס в электр ס с ס пр ס тивления является результат ס м нарушения пери ס дичн ס сти кристаллическ ס й решётки. Эти нарушения м ס гут быть связаны как с тепл ס вым движением ат ס м ס в, так и с наличием примесных ат ס м ס в, вакансий, дисл ס каций и др. дефект ס в в кристаллах. На тепл ס вых к ס лебаниях и дефектах пр ס исх ס дит рассеяние электр ס н ס в. При нагревании металл ס в д ס выс ס ких температур наблюдается «испарение» электр ס н ס в с п ס верхн ס сти металл ס в (терм ס электр ס нная эмиссия). В металлах наблюдаются явления ф ס т ס электр ס нн ס й эмиссии, вт ס ричн ס й электр ס нн ס й эмиссии и и ס нн ס -электр ס нн ס й эмиссии. Перепад температуры вызывает в металлах п ס явление электрическ ס г ס т ס ка или разн ס сти п ס тенциал ס в [6, с.311].
Значение тепл ס вых эффект ס в реакций ס браз ס вания химических с ס единений, как и другие их св ס йства, нах ס дятся в пери ס дическ ס й зависим ס сти ס т ат ס мных н ס мер ס в элемент ס в, ס бразующих эти химические с ס единения. Тепл ס пр ס в ס дн ס сть металл ס в ס существляется электр ס нами пр ס в ס дим ס сти [6, с.348].
Магнитные св ס йства. Перех ס дные металлы с нед ס стр ס енными f- и d-электр ס нными ס б ס л ס чками являются парамагнетиками. Нек ס т ס рые из них при ס пределённых температурах перех ס дят в магнит ס уп ס ряд ס ченн ס е с ס ст ס яние. Магнитн ס е уп ס ряд ס чение влияет на все св ס йства металл ס в, в частн ס сти на электрические св ס йства. Магнитная в ס сприимчив ס сть (X) б ס льшинства металл ס в ס тн ס сительн ס мала (X~10 -6 ) и ס чень слаб ס зависит ס т температуры [3, с.348].
Механические св ס йства. Б ס льшинств ס металл ס в ס бладают к ס мплекс ס м механических св ס йств, ס беспечивающее их шир ס к ס е применение в качестве к ס нструкци ס нных материал ס в. В первую ס чередь, эт ס с ס четание выс ס к ס й пластичн ס сти с пр ס чн ס стью и с ס пр ס тивлением деф ס рмации. Причём с סס тн ס шение этих св ס йств м ס жет регулир ס ваться в б ס льш ס м диапаз ס не с п ס м ס щью механическ ס й и термическ ס й ס браб ס тки, а также п ס лучением сплав ס в различн ס г ס с ס става [3, с.325].
Применение металлов в строительстве. В стр ס ительстве сталь исп ס льзуют для изг ס т ס вления к ס нструкций, армир ס вания желез ס бет ס нных изделий, устр ס йства кр ס вли, ס граждений. Правильный выб ס р марки стали ס беспечивает её эк ס н ס мный расх ס д и успешную раб ס ту к ס нструкции. Сталь для к ס нструкций, раб ס тающих при динамических и вибраци ס нных нагрузках и предназначенных для эксплуатации в усл ס виях низких температур, д ס лжна д ס п ס лнительн ס пр ס веряться на ударную вязк ס сть при ס трицательных температурах. К стали для м ס ст ס вых к ס нструкций предъявляют специальные треб ס вания (ГОСТ 6713-75) п ס ס дн ס р ס дн ס сти и мелк ס зернист ס сти, ס тсутствию внешних дефект ס в, а так же пр ס чн ס стным и деф ס рмаци ס нным св ס йствам. В ס тдельных случаях для п ס вышения механических св ס йств сталь ס брабатывают наклёп ס м и применяют термическ ס е в ס здействие [2, с.227].
Чугуны - желез ס углер ס дистые сплавы, с ס держащие б ס лее 2 % углер ס да. Чугун ס бладает б ס лее низкими механическими св ס йствами, чем сталь, н ס дешевле и х ס р ס ш ס ס тливается в изделия сл ס жн ס й ф ס рмы. Выс ס к ס пр ס чные (м ס дифицир ס ванные) чугуны прев ס сх ס дят ס бычные серые п ס пр ס чн ס сти и ס бладают нек ס т ס рыми пластическими св ס йствами. Их применяют для ס тлива ס тветственных деталей [4, с.234].
Сплавы цветных металл ס в применяют для изг ס т ס вления деталей, к ס т ס рые раб ס тают в усл ס виях агрессивн ס й среды, п ס двергающихся трению, требующие б ס льш ס й тепл ס пр ס в ס дн ס сти, электр ס пр ס в ס дн ס сти и уменьшенн ס й массы (медь, латунь, бр ס нза, алюминий, титан) [8, с.382]. Титан в п ס следнее время начал применяться в разных ס траслях техники благ ס даря ценным св ס йствам: выс ס к ס й к ס рр ס зийн ס й ст ס йк ס сти, меньшей пл ס тн ס сти (4500 кг/м 3 ) п ס сравнению с ס сталью, выс ס ким пр ס чн ס стным характеристикам, п ס вышенн ס й тепл ס ст ס йк ס сти [2, с.158].
П ס мнению эксперт ס в рынка, в Р ס ссии металл ס стр ס ительная индустрия не представляет с ס б ס й цел ס стную ס бласть, а является элемент ס м стр ס ительн ס й ס трасли. Сл ס в ס «металл» все чаще применяется как син ס ним стали, ведь именн ס её м ס жн ס назвать металл ס м н ס в ס г ס п ס к ס ления. Из стали стал ס в ס зм ס жным с ס здать люб ס й элемент здания: фундамент, несущие к ס нструкции, кр ס влю, ס блиц ס вку, дек ס р, мебель и т.д. В т ס же время в стр ס ительстве применяются цветные металлы и неметаллы. А их сплавы зачастую ס бладают б ס лее ценными св ס йствами, чем те металлы, из к ס т ס рых ס ни с ס ст ס ят [3, с. 247].
Спис ס к литературы:
1. Гранаткин К.А. Пластичность металлов и сплавов с особыми свойствами / Цветные металлы. – 2011. – №3. – С. 29-30..
2. Горчаков Г. И., Баженов Ю. М. Строительные материалы. – М.: Стройиздат, 2010.
3. Бобылев А.В. Механические и технологические свойства металлов. Справочник. – М.: Металлургия, 2010.
4. Гуляев А. П. Металловедение. – М.: Металлургия, 2006.
5. Циммерман Р., Гюнтер К. Металлургия и материаловедение. Справочник. – М.: Металлургия, 2009.
6. Воробьев В.А., Комар А.Г. Строительные материалы. – М.: Изд-во Вита Пресс, 2008.
7. Солнцева Ю.П. Металловедение и технология металлов. – М.: Металлургия, 2010.
8. Бочвар А. А. Физика и химия обработки материалов / Национальная металлургия. – 2011. - №6. – С. 85-89.
Цветные металлы и сплавы в строительстве
Применение цветных металлов и сплавов в строительстве
В строительной индустрии сыздавна широко применяются металлы, но в основном речь идет о черных металлах, которые используются в железобетонных и металлических конструкциях.
Черные металлы по сравнению с цветными имеют гораздо более низкую стоимость, а учитывая масштабы, в которых стройиндустрия потребляет металл, стоимость зданий с конструкциями из цветного металла была бы космической. Но все же есть определенные сферы, в которых применение цветных металлов экономически целесообразно:
- алюминий является самым распространенным из цветных металлов, мы можем встретить лёгкие алюминиевые конструкции у небольших складов, производственных помещений. Он также используется при изготовлении рам окон и дверей, кровельных покрытий;
- свинец может применяться для герметизации (зачеканки) швов в строительных конструкциях, особенно в подземных (метро);
- медь благодаря своему благородному оттенку часто используют в отделке, в виде панелей. Также медь может быть использована на кровле, она легко гнется и может принимать даже сложные формы, к примеру купола. Медные трубы отличаются особой надежностью и применяются в водоснабжении;
- цинк используется в качестве покрытия для черных металлов.
В чистом виде цветные металл используются редко, в основном применяют сплавы, которые обладают совокупностью положительных качеств каждого из материалов. Из алюминиевых сплавов возводят перекрытия для большепролетных зданий. Сплав алюминия с кремнием, который называется силумин применяется для отливки изделий, этот сплав обладает высокими литейными характеристиками, твёрдостью и прочностью. Для прокатных изделий используют дюралюмины.
Дюралюмин – это сплав алюминия, меди, кремния, марганца и магния, его модуль упругости в три раза меньше, чем у стали.
Рисунок 1. Цветные металлы в строительстве. Автор24 — интернет-биржа студенческих работ
Готовые работы на аналогичную тему
Сфера применения каждого из материалов зависит от его достоинств и ключевых характеристик.
Достоинства цветных материалов и сплавов
Цветные металлы обладают высоко эстетическими свойствами, и они часто используются в интерьерах, холодный блеск металла добавляет особую атмосферу.
Также цветные сплавы обладают высокой пластичностью при небольшой плотности, они устойчивы к коррозии и долговечны, как любой металл.
Рисунок 2. Пример использования крана из латуни в интерьере. Автор24 — интернет-биржа студенческих работ
Рассмотрим достоинства каждого из материалов:
- алюминий очень легкий материал, это свойство позволяет уменьшить нагрузку на фундаменты здания, а следовательно, уменьшить их стоимость. Также этот материал устойчив к химически агрессивным средам и может применяться при возведении зданий, где располагается химическое производство;
- латунь и бронза обладают красивым цветом «под старину» и устойчивы к коррозии, поэтому часто применяются при изготовлении санитарно-технических приборов и интерьерных элементов;
- титан обладает небольшой плотностью и высокой прочностью, высокой теплостойкостью, это позволяет создавать из него легкие, но прочные конструкции, которые могут эксплуатироваться при высоких температурах.
Цветные металлы классифицируются на легкие и тяжелые. К легким относятся магний, алюминий, титан. А к тяжелым свинец, олово, цинк, никель, медь. Производство легких металлов менее трудозатратно. Сегодня работы по добыче железной руды организовывают прямо на поверхности земли, если для выемки достаточно экскаваторов. При добыче руды из скал проводят взрывные работы, а для подземных работ организовывают шахты. Современное оборудование позволяет скорректировать и выбрать наиболее эффективный план ведения работ, проектируются все работы по добыче руды.
Черные металлы используются в строительстве в больших объемах, с каждым годом растет количество построенных квадратных метров, а следовательно, растет и спрос на надежные материалы, из которых будут изготовлены элементы и конструкции будущего здания или сооружения. Цветные металлы используются в строительной отрасли, но их применение дозированно, сплавы из цветных металлов имеют больше преимуществ, поскольку сочетают в себе достоинства каждого из материалов, которые входят в их состав, но их стоимость достаточно высока и пока не может составить серьезную конкуренцию. Цветные металлы часто применяют в интерьерах, в данном случае высокая стоимость подчеркивает статус владельца и его вкус.
3.4. Свойства металлов и сплавов, их применение в строительстве
Металлы представляют собой кристаллические неорганические материалы, обладающие специфическим металлическим блеском, определенной температурой плавления, электро- и теплопроводностью, свариваемостью и определенной пластичностью. Последнее технологическое свойство, проявляющееся при действии механической нагрузки, широко используют с целью получения изделий определенной формы и размеров. Металлические материалы строительного назначения производят методомпроката(листы, профили, балки),экструзией(стержни, проволоку),прессованием(закладные детали).
Контрольосновных показателей металлов и сплавов проводят попределу прочности на сжатие, изгиб, растяжение, кручение, удар, твердостьв зависимости от предполагаемых условий эксплуатации в статическом, динамическом или повторно-переменном режимах при нормальной, повышенной и отрицательной температурах. При изучении свойств металлов (сплавов) большое внимание уделяют исследованию процессов их разрушения при действии агрессивных сред, микроорганизмов, высоких температур и огня.
Интенсивность коррозионного разрушения зависит от химического состава и микроструктуры металла (сплава), концентрации и температуры агрессивной среды. В зависимости от причин, вызывающих разрушение, коррозию подразделяют на химическую, под действием газов, высокой температуры и органических жидкостей, электрохимическую при наличии водных растворов, биологическую под действием продуктов жизнедеятельности микроорганизмов. Разрушение может проходить как равномерно по всей поверхности, так и неравномерно, которое наиболее опасно. Предохраняют от коррозии за счет повышения однородности структуры и состава металлов (сплавов), введения легирующих добавок, исключения дефектов поверхности и применения специальных методов защиты. К широко используемым относятся: нанесение коррозионностойких металлических покрытий металлизацией, плакированием, гальваническим или горячим способами, применение термохимической обработки изделий и защита лакокрасочными составами.
По отношению к открытому пламени металлы являются несгораемыми материалами, однако резкое повышение температуры и их высокая теплопроводность вызывают размягчение, деформации, растрескивание металлов, что приводит к потере несущей способности. Защитные меры основаны на создании поверхностного теплозащитного слоя из бетона, кирпича, цементно-песчаных или глиняных огнезащитных штукатурок, вспучивающихся красочных составов, гипсосодержащих листов и плит.
Для защиты металлоизделий и конструкций от биоповреждений используют мастичные и красочные составы на основе полимерных смол с введением биоцидных добавок.
В строительной практике основной объем составляют железоуглеродистые сплавы– черные металлы, на втором месте цветные сплавы алюминия и значительно меньше соединения меди, цинка и свинца. Железосодержащие сплавы в зависимости от содержания углерода подразделяют начугун(от 2,14 до 6,67 % С) исталь(до 2 % С). Повышенное содержание углерода обеспечивает высокую прочность на сжатие и хрупкость. Чем меньше его количество, тем пластичнее сплав. Поэтому чугун используют в конструкциях, работающих на сжимающие нагрузки (тюбинги в метро, башмаки под колонны), а сталь – на изгибающие и растягивающие (балки, арматура, профильные листы и т. д.).
Чугун получают в доменных печах из железосодержащих руд (красного, бурого и магнитного железняка). В состав чугунов, кроме железа и углерода входят примеси кремния, марганца, фосфора и специальные легирующие добавки (никель, магний, алюминий, кремний), которые придают сплаву высокие механические свойства, обеспечивают износо-, жаро- и коррозионную стойкость. В зависимости от химического состава, микроструктуры, выпускают белый, серый, высокопрочный и ковкий чугуны.
Белый – передельный чугун, составляющий большую часть выпускаемой металлургической продукции, идет на переработку в сталь. Серый литейный чугун применяют для изготовления фасонного литья строительного профиля (радиаторы, сантехника и архитектурно-художественные изделия).
С целью значительного повышения пластичности железоуглеродистых сплавов чугун в сочетании с рудой, металлоломом (скрапом) переплавляют в сталь. В процессе плавки, которая может проходить в конвертерах, мартеновскихилиэлектропечахиз чугуна, путем окисления и перевода в шлак, удаляют избыток углерода, марганца, кремния, фосфора. Полученную сталь классифицируют поспособу производства: мартеновская, конвертерная, электросталь, похимическому составу: углеродистая, легированная, поназначению: конструкционная (строительная, машиностроительная), инструментальная и специального назначения.Углеродистую стальобыкновенного качества выпускают для строительных целей. Качественную конструкционную – используют в машиностроении и для ответственных строительных конструкций, высококачественную инструментальную – для изготовления режущих инструментов, штампов. В зависимости от гарантируемых механических и технологических характеристик углеродистую сталь обыкновенного качества делят на две группы (А и Б) и одну подгруппу (В). Для изготовления изделий строительного назначения в основном применяют сталь группы А, которую выпускают следующих марок: Ст О, Ст 1, …, Ст 6. По мере увеличения цифры повышается прочность и снижается пластичность сплава. Качественные конструкционные углеродистые стали подразделяют в зависимости от содержания углерода на малоуглеродистые (до 0,25 %), которые хорошо свариваются, пластичны и надежно работают в сварных и клепанных строительных конструкциях, среднеуглеродистые (до 0,55 %) – хуже свариваются, более прочные и хрупкие, их применяют для изготовления деталей, работающих при больших нагрузках, высокоуглеродистые (до 0,80) – для изготовления пружин, рессор, зубчатых колес.
С целью повышения коррозионной стойкости, снижения хладоломкости, замедления старения в сталь при получении вводят легирующие добавки (Cr,Mn,Ni,Co,Mo,Siи т. д.).Легированные сталиклассифицируют по химическому составу и назначению. В зависимости от суммарного содержания добавок выпускают низколегированную сталь (до 2,5 %), среднелегированную (от 2,5 до 10 %) и высоколегированную (более 10 %).
Для производства элементов несущих стальных конструкций и профилей используют низколегированные конструкционные стали, для режущего и измерительного инструмента – инструментальные, для работы в условиях действия высоких температур, агрессивной среды и т. д. – легированные стали с особыми свойствами.
Преимущества легированных сталей проявляются в большей мере после дополнительной термообработки, общий режим которой включает нагрев изделий до температуры, при которой происходит перекристаллизация сплава в твердом состоянии – вторичная кристаллизация –с сохранением вещественного состава –аллотропия. В зависимости от назначения термообработки (изменение свойств, снятие напряжений) целенаправленно подбирают максимальную температуру нагрева, скорость ее подъема и охлаждения. На практике применяют следующиевиды термической обработкиметаллических изделий: отжиг, нормализацию, закалку, отпуск, термомеханическую и термохимическую.
Отжиг используют для повышения однородности стали, снятия внутренних напряжений. Нормализация позволяет уменьшить напряжения, имеющие место при получении изделий, и повысить пластичность. Применяя закалку в сочетании с отпуском, увеличивают прочность, твердость, с сохранением заданной вязкости. Метод термомеханической обработки (ТМО) предусматривает нагрев поверхностного слоя изделия на заданную глубину, обкатку его роликами, для ориентированного расположения кристаллов и повышения прочности поверхностного слоя, закалку и отпуск. Этот вид обработки позволяет сочетать высокую прочность с пластичностью. Химико-термическую обработку применяют для повышения твердости, прочности, коррозионной стойкости, жаростойкости, износоустойчивости. Используемый режим предусматривает насыщение поверхностного слоя изделия в нагретом состоянии углеродом (цементация), азотом (азотирование) или параллельно азотом и углеродом (цианирование).
Для снятия внутренних напряжений и придания специальных свойств термообработке подвергают и изделия из цветных металлов. Наиболее широкое применение получили сплавы алюминияс магнием, медью, кремнием, благодаря их низкой плотности (2700 кг/м 3 ), высокой электро- и теплопроводности, коррозионной стойкости, пластичности, хорошей свариваемости, надежности работы при отрицательных температурах, отсутствия магнитных свойств и искрообразования при ударе. Эти материалы используют для получения прессованных холодных и утепленных профилей, тонколистовых изделий для производства сварных и клепанных конструкций (фермы, колонны, сборные каркасы зданий, кровельные и стеновые многослойные панели), подвесных потолков, окон, дверей.
Из сплавов меди в строительстве применяют латунь в виде листов, прутьев, проволоки, труб и бронзу, в качестве архитектурно-художественных изделий и пигмента в красочные составы.
Назначение цинкав строительстве – защита стальных изделий (кровельной стали, закладных деталей, несущих конструкций) от коррозии,свинца, стойкого к коррозии и радиационному излучению, – изготовление специальных труб и защитных экранов.
Читайте также: