Применение металлических конструкций в строительстве реферат

Обновлено: 23.01.2025

Понятие «металлические конструкции» объединяет в себе их конструктивную форму, технологию изготовления и способы монтажа. Уровень развития металлических конструкций определяется, с одной стороны, потребностями в них народного хозяйства, а с другой —возможностями технической базы: развитием металлургии, металлообработки, строительной науки и техники. Исходя из этих положений история развития металлических конструкций может быть разделена на пять периодов.

Содержание работы

Краткая история развития металлических конструкций СССР…………3
Номенклатура и область применения металлических конструкций……..13
Основные особенности металлических конструкций и предъявляемые
к ним требования…………………………………………………………….15
Список используемой литературы……………………………………………. 21

Файлы: 1 файл

Реферат_стальные конструкции.doc

Министерство образования и науки Украины

Национальная Академия Природоохранного и Курортного Строительства

Архитектурно – строительный факультет

Кафедра железобетонных конструкций

Реферат на тему:

Выполнил: ст. гр. ПГС – 201з

Струтинский А. Б.

Проверил: Пушкарев Б. А.

Симферополь

  1. Краткая история развития металлических конструкций СССР …………3
  2. Номенклатура и область применения металлических конструкций……..13
  3. Основные особенности металлических конструкций и предъявляемые

Список используемой литературы……………………………………………. 21

  1. Краткая история развития металлических конструкций СССР .

Понятие «металлические конструкции» объединяет в себе их конструктивную форму, технологию изготовления и способы монтажа. Уровень развития металлических конструкций определяется, с одной стороны, потребностями в них народного хозяйства, а с другой —возможностями технической базы: развитием металлургии, металлообработки, строительной науки и техники. Исходя из этих положений история развития металлических конструкций может быть разделена на пять периодов.

Первый период (от XII в. до начала XVII в.) характеризуется применением металла в уникальных по тому времени сооружениях (дворцах, церквах и т. п.) в виде затяжек и скреп для каменной кладки. Затяжки выковывали из кричного железа и скрепляли через проушины на штырях. Одной из первых таких конструкций являются затяжки Успенского собора во Владимире (1158 г.). По зрелости конструктивного решения выделяется металлическая конструкция, поддерживающая каменный потолок над коридором между притворами Покровского собора— храма Василия Блаженного (1560 г.). Это первая известная нам конструкция, состоящая из стержней, работающих на растяжение, изгиб и сжатие. Затяжки, поддерживающие потолок в этой конструкции, укреплены для облегчения работы на изгиб подкосами. Поражает, что уже в те времена конструктор знал, что для затяжек, работающих на изгиб, надо применять полосу, поставленную на ребро, а подкосы, работающие на сжатие, лучше делать квадратного сечения.

Второй период (от начала XVII в. до конца XVIII в.) связан с применением наклонных металлических стропил и пространственных купольных конструкций («корзинок») глав церквей (рис. 1.2). Стержни конструкций выполнены из кованых брусков и соединены на замках и скрепах горновой сваркой. Конструкции такого типа сохранились до наших дней. Примерами служат перекрытия пролетом 18 м над трапезной Троицко-Сергиевского монастыря в Загорске A696—1698 гг.), перекрытие Большого Кремлевского дворца в Москве A640 г.), каркас купола колокольни Ивана Великого A603 г.), каркас купола Казанского собора в Ленинграде пролетом 15 м A805 г.) и др.

Третий период (от начала XVIII в. до середины XIX в.) связан с освоением процесса литья чугунных стержней и деталей. Строятся чугунные мосты и конструкции перекрытий гражданских и промышленных зданий. Соединения чугунных элементов осуществляются на замках или болтах. Первой чугунной конструкцией в России считается перекрытие

крыльца Невьянской башни па Урале A725 г.). В 1784 г. в Петербурге был построен первый чугунный мост. Совершенства чугунные конструкции в России достигли в середине XIX столетия. Уникальной чугунной конструкцией 40-х годов XIX в. является купол Исаакиевского собора, собранный из отдельных косяков в виде сплошной оболочки.

Конструкция купола состоит из верхней конической части, поддерживающей каменный барабан, венчающий собор, и нижней, более пологой части. Наружная оболочка купола с помощью легкого железного каркаса опирается на чугунную конструкцию. Чугунная арка пролетом 30 м применена в перекрытии Александрийского театра в Петербурге A827—1832 гг.). В 50-х годах XIX в. в Петербурге был построен Николаевский мост с восемью арочными пролетами от 33 до 47 м, являющийся самым крупным чугунным мостом мира. В этот же период наклонные стропила постепенно трансформируются в смешанные железочугунные треугольные фермы. В фермах сначала не было раскосов, они появились в конце рассматриваемого периода. Сжатые стержни ферм часто выполняли из чугуна, а растянутые — из железа. В узлах элементы соединялись через проушины на болтах.

Отсутствие в этот период прокатного профильного металла ограничивало конструктивную форму железных стержней прямоугольным или круглым сечением. Однако преимущества фасонного профиля уже были поняты и стержни уголкового или швеллерного сечения изготовляли гнутьем пли ковкой нагретых полос.

Четвертый период (с 30-х годов XIX в. до 20-х годов XX в.) связан с быстрым техническим прогрессом во всех областях техники того времени и, в частности, в металлургии и металлообработке. В начале XIX в. кричный процесс получения железа был заменен более совершенным—пудлингованием, а в конце 80-х годов— выплавкой железа из чугуна в мартеновских и конверторных цехах. Наряду с уральской базой была создана в России южная база металлургической промышленности. В 30-х годах XIX в. появились заклепочные соединения, чему способствовало изобретение дыропробивного пресса; в 40-х годах был освоен процесс получения профильного металла и прокатного листа. В течение ста последующих лет все стальные конструкции изготовлялись клепаными. Сталь почти полностью вытеснила из строительных конструкций чугун, будучи материалом более совершенным по своим свойствам (в особенности при работе на растяжение) и лучше поддающимся контролю и механической обработке. Чугунные конструкции во второй половине XIX в. применялись лишь в колоннах многоэтажных зданий, перекрытиях вокзальных дебаркадеров и т. п., где могла быть полностью использована хорошая сопротивляемость чугуна сжатию. В России до конца XIX в. промышленные и гражданские здания строились в основном с кирпичными стенами и небольшими пролетами, для перекрытия которых использовались треугольные металлические фермы. Конструктивная форма этих ферм постепенно совершенствовалась: решетка получила завершение с появлением раскосов; узловые соединения вместо болтовых на проушинах стали выполнять заклепочными с помощью фасонок. В конце прошлого столетия применялись решетчатые каркасы рамно-арочной конструкции для перекрытия зданий значительных пролетов. Примерами являются покрытия Сенного рынка в Петербурге (1884 г.) пролетом 25 м, Варшавского рынка пролетом 16 м (1891 г.), покрытие Гатчинского вокзала (1890 г.) и др. Наибольшего совершенства рамно-арочная конструкция достигла в покрытии дебаркадеров Киевского вокзала в Москве, построенного по проекту В. Г. Шухова (1913—1914 гг.). В конструкциях этих сооружений хорошо проработаны компоновочная схема, опорные закрепления и узловые заклепочные соединения. Во второй половине XIX в. значительное развитие получило металлическое мостостроение в связи с ростом сети железных дорог. На строительстве мостов развивалась конструктивная форма металлических конструкций, совершенствовалась теория компоновки и расчета, технология изготовления и монтажа, Принципы проектирования, разработанные в мостостроении, были перенесены затем на промышленные и гражданские объекты. Основателями русской школы мостостроения являются известные инженеры и профессора С. В. Кербедз, Н. А. Белелюбский, Л. Д. Проскуряков.

С. В. Кербедз (1810—1899 гг.), инженер-строитель, построил первый в России железный мост с решетчатыми фермами через р. Лугу (1853 г.). Он же является автором самого крупного чугунного моста в Петербурге.

Профессор Н. А. Белелюбский (1848—1922 гг.), мостостроитель и ученый, впервые применил раскосную решетку для мостовых ферм, разработал первый в России метрический сортамент прокатных профилей, усовершенствовал методику испытаний строительных материалов, написал первый систематизированный курс по строительной механике.

Профессор Л. Д. Проскуряков (1858—1926 гг.) ввел в мостовые фермы треугольную и шпренгельную решетки и разработал теорию о наивыгоднейшем очертании фермы. За проект моста через Енисей на Парижской выставке 1900 г. Л. Д. Проскуряков был удостоен золотой медали.

Большой вклад в дальнейшее развитие, металлостроения в конце XIX и начале XX в. и распространение опыта, накопленного в мостостроении, на металлические конструкции гражданских и промышленных зданий внесли Ф. С. Ясинский, В. Г. Шухов и И. П. Прокофьев. В этот период развитие металлургии, машиностроения и других отраслей промышленности внесло качественное изменение в технологию производства и потребовало оборудования зданий мостовым!! кранами. Первое время их устанавливали на эстакадах, однако это загромождало помещение. С увеличением грузоподъемности мостовых кранов и насыщенности ими производства, а также с увеличением высоты и ширины пролетов помещений стало целесообразным строить здания с металлическим каркасом, поддерживающим как ограждающие конструкции, так и пути для мостовых кранов. Основным несущим элементом каркаса стала поперечная рама, включающая в себя колонны и ригели (стропильные фермы).

Профессор Ф. С. Ясинский (1858—1899 гг.) первый запроектировал многопролетное промышленное здание с металлическими колоннами между пролетами и разработал большепролетные складчатые и консольные конструкции покрытий. Он же внес значительный вклад в расчет сжатых стержней на продольный изгиб, работающих в упруго-пластической зоне деформирования стали.

Исключительно плодотворной и разносторонней была деятельность почетного академика В. Г. Шухова (1853—2939 гг.). Он первый в мировой практике разработал и построил пространственные решетчатые конструкции покрытий и башен различного назначения, использовав для них линейчатые поверхности. В построенных им сооружениях реализованы идеи предварительного напряжения конструкций и возведения покрытий в виде висячих систем с эффективным использованием работы металла на растяжение. Этими проектами В. Г. Шухов намного опередил своих современников и предугадал будущие направления в развитии металлических конструкций, закрепив тем самым приоритет нашей страны.

Особенно значительна его теоретическая и практическая работа в области резервуаростроения и других листовых конструкций. В. Г. Шухов разработал новые конструктивные формы резервуаров, их расчет и методы нахождения оптимальных параметров.

Профессор И. П. Прокофьев A877—1958 гг.), используя накопленный опыт, опубликовал первую монографию по изготовлению и монтажу металлических мостов и запроектировал ряд уникальных по тому времени большепролетных покрытий (Мурманские и Перовские мастерские Московско-Казанской ж. д., Московский почтамт, дебаркадер Казанского вокзала в Москве).

Пятый период (послереволюционный) начинается с конца 20-х годов, с первой пятилетки, когда молодое социалистическое государство приступило к осуществлению широкой программы индустриализации страны.

К концу 40-х годов клепаные конструкции были почти полностью заменены сварными, более легкими, технологичными и экономичными. Развитие металлургии уже в 30-х годах позволило применять в металлических конструкциях вместо обычной малоуглеродистой стали более прочную низколегированную сталь [сталь кремнистую для железнодорожного моста через р. Ципу (Закавказье) и сталь ДС для Дворца Советов и москворецких мостов]. В середине столетия номенклатура применяемых в строительстве низколегированных и высокопрочных сталей значительно расширилась, что позволило существенно облегчить вес конструкций и создать сооружения больших размеров. Кроме стали в металлических конструкциях начали использовать алюминиевые сплавы, плотность которых почти втрое меньше.

В мощную отрасль индустрии выросла производственная база металлических конструкций. Заводы и специализированные монтажные организации, оснащенные современным высокопроизводительным оборудованием, были объединены в одну систему (Главстальконструкция), выполняющую основной объем строительства металлических конструкций. Объем металлических конструкций за этот период (1930—1980 гг.) увеличился более чем в 20 раз. Чрезвычайно расширились номенклатура металлических конструкций и разнообразие их конструктивных форм. Резкий подъем количества и качества металлических конструкций был вызван развитием всех ведущих отраслей народного хозяйства, грандиозным размахом промышленного и гражданского строительства.

Большие и многообразные задачи по развитию металлических конструкций решались усилиями проектных, научных и производственных коллективов. Особенно велика роль проектных трестов — Проектстальконструкция и Промстройпроект, научных институтов — Центрального научного института промышленных сооружении (ЦНИПС), в 50-х годах реорганизованного в Центральный научно-исследовательский институт строительных конструкций (ЦНИИСК), а также вузовских коллективов. Принцип целесообразности совместной работы проектных и научных коллективов 70-х годах был закреплен преобразованием треста Проектстальконструкция в ЦНИИ Проектстальконструкцию — ведущую проектно-исследовательскую организацию металлических конструкций; Промстальконструкции во ВНИПИ Промстальконструкцию — ведущую организацию по проектированию и исследованию монтажных работ; созданием ВНИКТИСК — ведущей организации по проектированию и исследованию технологии изготовления металлических конструкций.

В начале 30-х годов стала оформляться советская школа проектирования металлических конструкций. В связи с развитием металлургии и машиностроения строилось много промышленных зданий с металлическим каркасом. Стальные каркасы промышленных зданий оказались ведущей конструктивной формой металлических конструкций, определяющей общее направление их развития. Советская школа постепенно отходила от европейских схем компоновки поперечных рам каркаса, характерных стремлением приблизить конструктивную схему к расчетным предпосылкам, введением большого количества шарниров, что усложняло монтаж и изготовление конструкций. Такие схемы но отвечали требованиям эксплуатации в отношении поперечной жесткости зданий в связи с увеличением размеров пролетов, высоты и, главное, грузоподъемности и интенсивности движения мостовых кранов.

Требованиям эксплуатации и высоких темпов строительства в большей степени отвечали сложившиеся к тому времени схемы конструирования поперечных рам с жестким сопряжением колонн с фундаментами и ригелями. Советские проектировщики взяли за основу эти схемы и улучшили их путем аналитического определения оптимальных геометрических соотношений элементов рамы, схемы решеток и т. п. Аналитические изыскания оптимальных компоновочных схем и геометрических размеров элементов сечений стали характерной чертой развития всех видов металлических конструкций в Советском Союзе. Такой подход позволил решать одновременно задачи снижения трудоемкости изготовления конструкций с экономичным использованием стали и скоростным монтажом. Принцип комплексного решения задач при изыскании оптимальной конструктивной формы металлических конструкций стал основным для советской школы проектирования.

Характерной чертой развития металлических конструкций стала типизация конструктивных схем элементов. Большой объем строительства и связанная с ним повторяемость конструкций создали предпосылки для разработки типовых схем и конструктивных решений каркасов промышленных зданий.

В 1939 г. Промстройпроектом были разработаны типовые секции одноэтажных промышленных зданий со стальным каркасом. Типовые секции включали объемно-планировочные решения для различных пролетов, типовые конструктивные схемы компоновки каркаса и типовые решения конструктивных элементов (ферм, колонн, подкрановых балок и т.п.). Впервые был введен трехметровый модуль пролетов, который затем (в 50-х годах) был заменен шестиметровым; типизированы здания отдельных видов производств (мартеновские цехи, прокатные и т.п.); типизация распространилась на пролетные строения мостов, резервуары, газгольдеры, радиобашни, радиомачты. Типизация, а затем унификация и стандартизация стали одним из главных направлений развития металлических конструкций. Это снижало трудоемкость конструкции и благодаря упорядочению проектирования уменьшало расход стали.

Общие сведения о металлических конструкциях. Достоинства и недостатки. Области применения

Металлические конструкции, металлоконструкции, общее название конструкций, выполненных из металлов и применяемых в строительстве. Современные М. к. подразделяются на стальные и из лёгких сплавов (например, алюминиевых сплавов). До начала 20 в. в строительстве применялись в основном металлические строительные конструкции из чугуна (главным образом в колоннах, балках, лестницах и т.д.В современном строительстве получили распространение стальные конструкции, используемые в несущих каркасах промышленных сооружений, жилых и общественных зданий, в пролётных строениях мостов, каркасах доменных печей, газгольдерах, резервуарах, мачтах, опорах линий электропередачи и др. Конструкции из алюминиевых сплавов,. обладающие рядом достоинств (лёгкость, коррозионная стойкость, технологичность, высокие декоративные свойства), наиболее широко применяются в качестве ограждающих элементов и в виде отделочных деталей зданий. М. к. изготовляются преимущественно из профилированного и листового металла. По характеру соединения элементов между собой различают М. к. сварные, клёпаные и с болтовыми соединениями. В машиностроении обычно под М. к. подразумеваются детали, изготовленные из профилированного металла, в отличие от литых деталей и поковок.

Достоинства:

- Надежность – близкое соответствие характеристик стали нашим представлениям об идеальном упругом и упругопластическом изотропном материале, при некотором значении напряжений может быть реализована идеальная пластичность в виде площадки текучести;

- лёгкость (Р=7,85 тс/м^3);

- непроницаемость для газов и жидкостей – высокая плотность (плотность стали и ее соединений, осуществляемых с помощью сварки, является необходимым условием для изготовления резервуаров, газгольдеров, трубопроводов, различных сосудов и аппаратов);

- индустриальность (заводское изготовление 90-95%, оснащенных специальным оборудованием, а монтаж производят с использованием высокопроизводительной техники) – исключает или до минимума сокращает тяжелый ручной труд;

- ремонтопригодность (простота технического перевооружения, ремонта и реконструкции) – просто решаются вопросы усиления, технического перевооружения и реконструкции;

- сохранность металлического фонда – в результате физического и морального износа изымаются из эксплуатации, переплавляются и снова используются в народном хозяйстве;

Недостатки:

Подверженность коррозии, малая огнестойкость (сталь начинает терять свою устойчивость при 200 о С, полностью теряет и начинает течь при 625 о С), дефицитность, и высокая стоимость.

Область применения

Использование металлических конструкций по назначению и виду конструктивной формы разделяются на восемь пунктов.

1. Листовые конструкции в виде бункеров, трубопроводов большого диаметра, резервуаров, различных сооружений доменного комплекса и газгольдеров, нефтепереработки и химического производства

2. Мосты, эстакады.. Мосты, как и большепролетные покрытия, имеют различные системы: арочную , висячую , балочную , комбинированную.

3. Промышленные здания. Конструкции одноэтажных промышленных зданий выполняются в виде смешанных каркасов или цельнометаллических

4. Большепролетные покрытия зданий. Здания общественного назначения [спортивные сооружения, рынки, выставочные павильоны], театры и здания производственного характера (авиасборочные цехи, лаборатории, ангары) имеют большие пролеты (до 100-150 м)

5. Крановые и другие подвижные конструкции. Сюда относятся всевозможные металлические конструкции башенных, мостовых , козловых кранов и кранов-перегружателей, конструкций крупных экскаваторов и разнообразных строительных машин, затворы и ворота гидротехнических сооружений, конструкции отвальных мостов.

6. Каркасы многоэтажных зданий

7. Башни и мачты применяются для радиосвязи и телевидения, в геодезической службе, в опорах линий электропередачи. Сюда же можно отнести дымовые и вентиляционные трубы, нефтяные вышки, промышленные этажерки и надшахтные копры.

8. Прочие конструкции, которым в первую очередь можно отнести конструкции промышленности по применению атомной энергии во благо человечества, разнообразные конструкции радиотелескопов, лыжные трамплины и многие другие.

Материалы для металлических конструкций. Основные свойства сталей.

Сталь – сплав железа с углеродом, содержащий легирующие добавки, улучшающие качество металла, и вредные примеси, которые попадают в металл из руды или образуются в процессе выплавки. Углерод увеличивает прочность сплава, но понижает свариваемость. В строительных сталях содержание углерода не более 0,22%.

Достоинства – сочетание прочности и пластичности, хорошая свариваемость, однородность механических свойств. Недостатки – относительно низкая коррозионная стойкость и необходимость специальной защиты стальных конструкций от коррозии, снижение пластических свойств при низких температурах, малая огнестойкость.

Служебные свойства стали.

Надёжность и долговечность во многом зависит от свойств материала. Наиболее важными для работы конструкций являются свойства: прочность, упругость, пластичность, хладостойкость, склонность к хрупкому разрушению, ползучесть, твердость, а также свариваемость, коррозионная стойкость, склонность к старению и технологичность.

Прочность – сопротивление материала внешним силовым воздействиям без разрушения. Упругость - свойство материала восстанавливать свою первоначальную форму после снятия внешних нагрузок. Пластичность - свойство материала сохранять несущую способность в процессе деформирования (остаточные деформации без разрушения). Хрупкость - склонность к разрушению при малых деформациях. Ползучесть - свойство материала непрерывно деформироваться во времени без увеличения нагрузки. Твёрдость - свойство поверхностного слоя металла сопротивляться деформации или разрушению при внедрении в него более твёрдого материала.

Основные прочностные характеристики – временное сопротивление Ϭu (предельная разрушающая нагрузка, отнесенная к первоначальной площади поперечного сечения образца) и предел текучести Ϭy (напряжение, которое соответствует остаточному относительному удлинению после разгрузки, равному 0,2%. Для сталей, не имеющих площадки текучести, вводят понятие условного предела текучести). Вообще в лекциях сказано, что площадка текучести имеются только у малоуглеродистых сталей.

Упругие свойства материала характеризуют модулем упругостиE=tgα=2,06*10 4 кН/см 2 (α – угол наклона начального участка диаграммы работы стали к оси абсцисс) и пределом упругости Ϭс, т.е. таким максимальным напряжением, после снятия которого остаточные деформации отсутствуют.

Технологические свойства стали: свариваемость, коррозионная стойкость, склонность к старении, технологичность

Металлы в строительстве, металлические конструкции

В своем реферате я хочу раскрыть темы, как история развития металлов и металлических конструкций, классификацию, используемые сырьевые материалы при их изготовлении, технологические процессы, свойства продукции, ТЭП при производстве.

Введение 3
1. Историческая справка 4
2. Классификация 7
3. Сырьевые материалы 9
4. Основные технологические процессы и оборудование 10
5. Основные свойства продукции 14
6. Технико-экономические показатели 19
Заключение 21
Список использованной литературы 22

реферат Гульшат.doc

Министерство образования и науки РФ

Казанский государственный архитектурно – строительный университет

Кафедра строительных материалов

МЕТАЛЛЫ В СТРОИТЕЛЬСТВЕ, МЕТАЛЛИЧЕСКИЕ КОНСТРУКЦИИ

Выполнил: студент гр № 11-404

Проверил: к.т.н. доцент

Введение

Металлы – наиболее распространенные и широко используемые материалы в производстве и в быту человека. Особенно велико значение металлов в наше время, когда большое их количество используют в машиностроительной промышленности, на транспорте, в промышленном, жилищном и дорожном строительстве, а также в других отраслях народного хозяйства.

В технологии металлов изучаются свойства металлов, а также практика и теория их получения и обработки. Составными частями технологии металлов являются: металлургия, металлография, термическая обработка металлов, химико-термическая обработка, литейное производство, обработка металлов давлением, сварочное производство, обработка металлов резанием и электрическая обработка металлов.

В процессе развития перечисленных отраслей производства, в результате накопившихся опыта, знаний и их обобщения, а также развития смежных наук (физики, химии и др.), каждая из этих отраслей явилась предметом специальной науки под тем же названием.

Так, например, металлургия — наука, изучающая способы получения металлов и сплавов. Термическая обработка — наука об изменении механических и физических свойств вследствие нагревания и охлаждения сплавов и т. д.

Самостоятельной наукой является металлография, изучающая структуру (строение) металлов и зависимость их свойств от структуры.

В своем реферате я хочу раскрыть темы, как история развития металлов и металлических конструкций, классификацию, используемые сырьевые материалы при их изготовлении, технологические процессы, свойства продукции, ТЭП при производстве.

1. Историческая справка

История развития металлических конструкций в России

Понятие "металлические конструкции" включает в себя их конструктивную форму, технологию изготовления и способы монтажа. Уровень развития металлических конструкций определяется, с одной стороны, потребностями в них народного хозяйства, а с другой — возможностями технической базы: развитием металлургии, металлообработки, строительной науки и техники. Исходя из этих положений история развития металлических конструкций может быть разделена на пять периодов.

Первый период (с XII до начала XVII в.) характеризуется применением металла в уникальных по тому времени сооружениях (дворцах, церквах и т.п.) в виде затяжек и скреп для каменной кладки. Затяжки выковывали из кричного железа и скрепляли через проушины на штырях. Одной из первых конструкций такого типа являются затяжки Успенского собора во Владимире. По зрелости конструктивного решения выделяется металлическая конструкция, поддерживающая каменный потолок и пол чердака над коридором между притворами Покровского собора — храма Василия Блаженного. Это первая известная нам конструкция, состоящая из стержней, работающих на растяжение, изгиб и сжатие. Затяжки, поддерживающие пол и потолок в этой конструкции, укреплены для облегчения работы на изгиб подкосами.

Поражает, что уже в те времена конструктор знал, что для затяжек, работающих на изгиб, надо применять полосу, поставленную на ребро, а подкосы, работающие на сжатие, лучше делать квадратного сечения.

Второй период (с начала XVII до конца XVIII в.) связан с применением наклонных металлических стропил и пространственных купольных конструкций ("корзинок") глав церквей. Стержни конструкций выполнены из кованых брусков и соединены на замках и скрепах горновой сваркой. Конструкции такого типа сохранились до наших дней. Примерами служат перекрытия пролетом 18 м над трапезной Троице-Сергиевой лавры в Сергиевом посаде, перекрытие старого здания Большого Кремлевского дворца в Москве, каркас купола колокольни Ивана Великого, каркас купола Казанского собора в Петербурге пролетом 15 м и др.

Третий период (с начала XVIII до середины XIX в.) связан с освоением процесса литья чугунных стержней и деталей. Строятся чугунные мосты и конструкции перекрытий гражданских и промышленных зданий. Соединения чугунных элементов осуществляются на замках или болтах. Первой чугунной конструкцией в России считается перекрытие крыльца Невьянской башни на Урале. В 1784 г. в Петербурге был построен первый чугунный мост. Совершенства чугунные конструкции в России достигли в середине XIX столетия. Уникальной чугунной конструкцией 40-х годов XIX в. является купол Исаакиевского собора, собранный из отдельных косяков в виде сплошной оболочки.

Чугунная арка пролетом 30 м применена в перекрытии Александрийского театра в Петербурге. В 50-е годы XIX в. в Петербурге был построен Николаевский мост с восемью арочными пролетами от 33 до 47 м, являющийся самым крупным чугунным мостом мира. В этот же период наслонные стропила постепенно трансформируются в смешанные железочугунные треугольные фермы.

Сначала в фермах не было раскосов, они появились в конце рассматр иваемого периода. Сжатые стержни ферм часто выполняли из чугуна, а растянутые — из железа. В узлах элементы соединялись через проушины на болтах. Отсутствие в этот период прокатного и профильного металла ограничивало конструктивную форму железных стержней прямоугольным или круглым сечением. Однако преимущества фасонного профиля уже были оценены, и стержни уголкового или швеллерного сечения изготовляли гнутьем или ковкой нагретых полос.

Четвертый период (с 30-х годов XIX в. до 20-х годов XX в.) связан с быстрым техническим прогрессом во всех областях техники того времени и, в частности, в металлургии и металлообработке. В начале XIX в. кричный процесс получения железа был заменен более совершенным — пудлингованием, а в конце 80-х годов — выплавкой железа из чугуна в мартеновских и конвертерных печах.

Наряду с уральской базой была создана в России южная база металлургической промышленности. В 30-х годах XIX в. появились заклепочные соединения, чему способствовало изобретение дыропробивного пресса; в 40-х годах был освоен процесс получения профильного металла и прокатного листа. В течение ста последующих лет все стальные конструкции изготовлялись клепаными.

Сталь почти полностью вытеснила из строительных конструкций чугун, будучи материалом более совершенным по своим свойствам (в особенности при работе на растяжение) и лучше поддающимся контролю и механической обработке.

В России до конца XIX в. промышленные и гражданские здания строились в основном с кирпичными стенами и небольшими пролетами, для перекрытия которых использовались треугольные металлические фермы. Конструктивная форма этих ферм постепенно совершенствовалась: решетка получила завершение с появлением раскосов; узловые соединения вместо болтовых на проушинах стали выполнять заклепочными с помощью фасонок.

В конце прошлого столетия применялись решетчатые каркасы рамно-арочной конструкции для перекрытия зданий значительных пролетов. Примерами являются покрытия Сенного рынка в Петербурге пролетом 25 м, Варшавского рынка пролетом 16 м, покрытие Гатчинского вокзала и др.

Пятый период (послереволюционный) начинается с 20-х годов, с первой пятилетки, когда государство приступило к осуществлению широкой программы индустриализации страны. К концу 40-х годов клепаные конструкции были почти полностью заменены сварными, более легкими, технологичными и экономичными. Развитие металлургии уже в 30-е годы позволило применять в металлических конструкциях вместо обычной малоуглеродистой стали более прочную низколегированную сталь (сталь кремнистую для железнодорожного моста через р. Ципу в Закавказье и сталь ДС для Дворца Советов и москворецких мостов).

В начале 30-х годов стала оформляться советская школа проектирования металлических конструкций. В связи с развитием металлургии и машиностроения строилось много промышленных зданий с металлическим каркасом.

Стальные каркасы промышленных зданий оказались ведущей конструктивной формой металлических конструкций, определяющей общее направление их развития. Советская школа постепенно отходила от европейских схем компоновки поперечных рам каркаса, для которых характерны стремление приблизить конструктивную схему к расчетным предпосылкам и введение большого числа шарниров, что усложняло монтаж и изготовление конструкций. Такие схемы не отвечали требованиям эксплуатации в отношении поперечной жесткости зданий в связи с увеличением размеров пролетов, высоты и, главное, грузоподъемности и интенсивности движения мостовых кранов.

Требованиям эксплуатации и высоких темпов строительства в большей степени отвечали сложившиеся к тому времени схемы конструирования поперечных рам с жестким сопряжением колонн с фундаментами и ригелями. Советские проектировщики взяли за основу эти схемы и улучшили их путем аналитического определения оптимальных геометрических соотношений элементов, схемы решеток и т.п.

В годы Великой Отечественной войны 1941—1945 гг. несмотря на временную потерю южной металлургической базы и большой расход металла на нужды войны в промышленном строительстве и мостостроении на Урале и в Сибири широко использовались металлические конструкции, лучше других отвечавшие основной задаче военного времени — скоростному строительству.

В 50—70-е годы строительство металлических конструкций развивалось с соблюдением основных принципов советской школы проектирования, установленных еще в довоенный период: экономия стали, упрощение изготовления, ускорение монтажа. Для этих лет характерно широкое применение стали в промышленных сооружениях больших размеров с тяжелыми технологическими нагрузками. Построены такие уникальные промышленные здания, как сборочный цех пролетом 120 м с кранами грузоподъемностью 30 т, подвешенными к стропильным фермам на отметке 57 м, и двухпролетное здание с кранами грузоподъемностью 1200 и 600 т.[1]

2. Классификация

Классификация металлов может быть основана на различных признаках: по объему и частоте использования, физико-химическим свойствам и др.

По объему и частоте использования металлов в технике их можно разделить на металлы технические и редкие. Технические металлы — это наиболее часто применяемые; к ним относятся железо Fe, медь Си, алюминий А1, магний Mg, никель Ni, титан Ti, свинец РЬ, цинк Zn, олово Sn. Все остальные металлы — редкие (ртуть Hg, натрий Na, серебро Ag, золото Аи, платина Pt, кобальт Со, хром Сг, молибден Мо, тантал Та, вольфрам W и др.).

Железо в чистом виде используется чрезвычайно редко. Обычно используют железоуглеродистые (Fe-C) сплавы — стали и чугуны, которые образуют группу черных металлов. Все остальные представляют группу цветных металлов. На долю черных металлов приходится ~85 % всех производимых металлов, а на долю цветных -15 %.

По физико-химическим свойствам металлы можно разделить на шесть основных групп.

Магнитные — Fe, Co, Ni обладают ферромагнитными свойствами. Сплавы на основе Fe (стали и чугуны) являются главными конструкционными материалами; сплавы на основе Fe, Co и Ni являются основными магнитными материалами (ферромагнетиками).

Тугоплавкие — металлы, у которых температура плавления выше, чем у Fe (1539 °С); это W (3380 °С), Та (2970 °С), Мо (2620 °С), Сг (1900 °С), Pt (1770 °С), Ti (1670 °С) и др. Применяют их как самостоятельно, так и в виде добавок в стали, работающие, в частности, при высокой температуре.

Легкоплавкие — имеют 7^ ниже 500 °С; к ним относятся: Zn (419 °С), РЬ (327 °С), кадмий Cd (321 °С), таллий Т1 (303 °С), висмут Bi (271 °С), олово Sn (232 °С), индий In (156 °С), Na (98 °С), Hg (—39 °С) и др. Назначение их самое различное: антикоррозионные покрытия, антифрикционные сплавы, проводниковые материалы.

Из тугоплавких и легкоплавких металлов перечислены наиболее распространенные, хотя известны и такие тугоплавкие металлы, как, например, рений Re (3180 °С), осмий Os (3000 °С), ниобий Nb (2470 °С), а из легкоплавких — литий Li (180 °С), калий К (68 °С), рубидий Rb (39 °С), цезий Cs (28 °С).

Легкие металлы имеют плотность не более 2,75 Мг/м3; к ним относится А1, плотность — 2,7, Cs — 1,90, бериллий Be — 1,84, Mg —1,74, Rb — 1,53; Na — 0,97, Li — 0,53 Мг/м3 и др. Эти металлы 337 применяют для производства сплавов, используемых в конструкциях с ограничениями в массе.

Благородные — в электротехнике применяют Аи, Ag, Pt, палладий Pd, а также металлы платиновой группы: иридий 1г, родий Rh, осмий Os, рутений Ru. Эти металлы и сплавы на их основе обладают высокой химической стойкостью, в том числе и при повышенных температурах. Их используют в производстве ответственных контактов, выводов интегральных микросхем и других полупроводниковых приборов, термометров сопротивления и термопар, нагревательных элементов, работающих в особых условиях.

Редкоземельные — лантаноиды; их применяют как присадки в различных сплавах. Сплавы (RM) металлов группы железа (М) с редкоземельными элементами (R) являются весьма перспективными магнитотвердыми материалами.

Классифицируются металлы и по другим признакам, например в электротехнике по значению электропроводности: хорошо и плохо проводящие электрический ток; к первым относится большинство металлов, они хорошо проводят электрический ток и пластичные. Ко вторым — элементы V группы периодической системы Д.И. Менделеева — это висмут Bi, сурьма Sb, мышьяк As, они плохо проводят ток и хрупкие, их иногда называют полуметаллами.[2]

4. Основные технологические процессы и оборудование

Рис. 4.1 Технологическая схема производства стали

Качество стали - характеристика многомерная, хорошо описываемая матрицей свойств, составов и т.д. Металл может оказаться непригодным даже когда не выполнено хотя бы одно из условий работоспособности. А выполнимость почти каждой из норм сегодня зависит не от одного агрегата или режима, а от всей технологической цепочки. Поэтому не только уровень, но и полный перечень обязательных материаловедческих и технологических норм для продукции - предмет обстоятельного анализа перед разработкой любых металлических изделий.

В этой связи современная технология производства высококачественной стали должна обеспечивать строгое соответствие технологических параметров заданным значениям. Для достижения этого в технологических указаниях должны быть оговорены каждый из этапов сталеплавильного передела: от подбора шихты, до сдачи слитка. Ниже кратко рассмотрена общепринятая сегодня концепция технологии производства стали для ответственных изделий машиностроения. Технология должна быть основана на постоянном экспрессном контроле технологических параметров и направлена на получение заданного стандартного состояния металла перед разливкой, определяемого требованиями к свойствам готовой металлопродукции. Технологическая цепочка при этом должна обязательно включать следующие этапы:

-подготовка шихтовых материалов с целью обеспечения заданного содержания цветных и других неудаляемых примесей в конечном металле и снижения расхода электроэнергии (за счет подбора размеров компонентов шихты).

-получение полупродукта с заданным содержанием примесных и легирующих элементов, заданным содержанием углерода, активностью кислорода и, конечно, с заданной температурой;

-отсечку печного шлака при выпуске или на специальном стенде с целью предотвращения ресульфурации, рефосфорации и вторичного окисления;

-наведение нового высокоосновного шлака;

-максимально раннее после выпуска глубокое (аО < 10 ppm) раскисление металла;

-если требуется достаточно продолжительная внепечная обработка необходимо устройство для нагрева металла;

-обработку металла кальцийсодержащими материалами с помощью трайб-технологии;

-разливку металла из стандартного состояния (описываемого такими параметрами, как температура, окисленность и содержание водорода и азота) с обязательной защитой от вторичного окисления.

Детальные корректировки технологии определяются индивидуальными условиями предприятия. В любом случае, разработка комплексной технологии производства высококачественных марок стали для конкретного предприятия предполагает:

-проведение комплексного технико-экономического анализа проекта;

-выполнение проектно-конструкторских работ;

-обоснование и разработка оптимальных технологических решений и маршрутов;

-поставка необходимого набора оборудования;

- освоение оборудования, технологии и обеспечение ее устойчивой длительной эксплуатации (гарантийное и послегарантийное обслуживание);

-мировой уровень качества и конкурентоспособность выпускаемой продукции.

Ниже рассмотрены четыре основных этапа металлургического передела: подготовка шихты, выплавка, внепечная обработка и разливка . Рассмотренная схема относится к машиностроительным заводом, на которых плавление осуществляют в дуговых печах, а сталь разливаю в слитки.

Основным сырьем для выплавки стали в электродуговых печах, в отличие от конвертеров, является твердая металлошихта, состоящая преимущественно из металлоотходов собственных металлургических производств и поступающего со стороны товарного лома. К регламентируемым показателям качества металлошихты во всем мире относят, прежде всего, такие факторы, как определенность химического состава, насыпная плотность и габаритные размеры отдельных составляющих шихты.

Требования к химическому составу металлической части шихты предъявляют, исходя из заданного содержания в готовом металле не удаляемых в ходе металлургического передела элементов. Так, если низкое содержание серы и фосфора, а также газов может быть достигнуто за счет оптимизации режима выплавки и рафинирования в открытых плавильных агрегатах и технологии внепечной обработки в ковше, то удаление мышьяка и примесей цветных металлов при выплавке стали в открытых агрегатах практически невозможно, а её рафинирование в процессе вакуумной плавки не позволяет получить качественную сталь в достаточном количестве и значительно увеличивает стоимость готовых изделий. Проблема рафинирования стали от примесей цветных металлов усугубляется тем, что в стальном ломе в процессе его оборота эти примеси постоянно накапливаются. Между тем примеси цветных металлов образуют в процессе кристаллизации легкоплавкие эвтектики по границам дендритов, что ослабляет междендритные границы, как первичные структуры первичного металла, это, в конечном счёте, влияет на поверхностные дефекты. Кроме того, примеси цветных металлов ухудшают обрабатываемость стали давлением в горячем состоянии, ухудшают свариваемость и т.д. По этим причинам к материалам для ответственных изделий предъявляют жесткие требования по содержанию цветных примесей.

Определенные требования предъявляют и к фракционному составу металлошихты. Наличие такого рода требований обусловлено тем, что шихта высокой насыпной плотности, имеющая стабильный оптимальный размер кусков, позволяет ограничиться лишь одной подвалкой, исключив тем самым необходимость второй подвалки с соответствующим отключением печи, отводом свода с электродами и т.д. Это, в свою очередь, позволяет существенно форсировать плавку.

Кроме того, от фракционного состава используемой металлошихты зависят технико-экономические показатели работы плавильного агрегата, в том числе угар металла, определяющий выход жидкого (годного) металла.

Важным фактором, влияющим на угар металлошихты в сталеплавильном процессе, является величина ее активной поверхности, которая определяет степень взаимодействия шихты с кислородом. Активная поверхность зависит в основном от ее толщины (диаметра), которая может быть оценена насыпной массой. В технико-экономических показателях сталеплавильных процессов величина угара лома является важной статьей, определяющей производительность агрегата и себестоимость стали. При использовании на плавку различных видов шихты (прежде всего различных видов лома) угар металла значительно изменяется.

На всех машиностроительных предприятиях в конструкциях электропечей средней и большой емкости стремятся реализовать современные технические решения, обеспечивающие эксплуатационные преимущества, направленные на сокращение периода плавки, удельного расхода электроэнергии, уменьшение длительности ремонтов, повышение надежности работы исполнительных механизмов, снижение эксплуатационных расходов, повышение безопасности, удобства эксплуатации и пр. В связи с этим современные электропечи, используемые в том числе на мировых машиностроительных заводах, имеют современные конструкции ванны с разъемным кожухом, донным (эркерным) выпуском металла с гарантированной отсечкой шлака, новые опорно-поворотные системы подъема-поворота свода, улучшенные конструкции водоохлаждаемых элементов, систем теплоконтроля, современные системы регулирования мощности, гидроприводов, водо- и газоснабжения, современные системы вторичного токоподвода в которых используются токоведущие рукава электрододержателей, а расчетная несимметрия фаз токоподвода составляет не превышает 2 %, печные трансформаторы с высокой удельной мощностью и повышенным для такого типоразмера печей вторичным напряжением, комплекты оборудования средств интенсификации плавки с использованием дополнительных источников тепла и системами вспенивания шлака, а также многое другое.

Сталь для ответственных изделий производят с обязательной внепечной обработкой, включающей вакуумирование.

При этом решающими факторами, обеспечивающими эффективность и производительность процессов внепечной обработки, являются высокая эксплуатационная готовность, короткий цикл загрузки, низкие показатели расхода, а также снижение расходов на зарплату. Важным фактором качественного выполнения технологии внепечной обработки является:

-тонко настроенная автоматическая система управления технологическим процессом, обеспечивающая эффективное использование персонала и сокращение производственного цикла;

-точное определение расчетных параметров для используемых материалов может гарантировать проверяемое соответствие расходным показателям;

- правильный выбор конструкции агрегата ведет к сокращению до минимума стоимости площадей, необходимых для размещения вакуумного насоса, системы подачи легирующих и вакуум-камер

На предприятиях мировых лидерах по производству металла для нужд машиностроения вакуумирование проводят на установках как ковшевого (VD), так и порционного (DH) и циркуляционного (RH) вакуумирования. Наиболее распространены ковшевые вакууматоры, так как именно вакууматоры такого типа позволяют обеспечить интенсивное перемешивание металла со шлаком проведя, тем самым, глубокую десульфурации.

На машиностроительных заводах сталь преимущественно разливают в слитки. При этом как правило используют сифонную разливку. Высококачественные марки стали могут также разливать в вакууме. [5]

5. Основные свойства продукции

Металлам присущи высокая пластичность, тепло- и электропроводность. Они имеют характерный металлический блеск.

Свойствами металлов обладают около 80 элементов периодической системы Д.И. Менделеева. Для металлов, а также для металлических сплавов, особенно конструкционных, важное значение имеют механические свойства, основными из которых являются прочность, пластичность, твердость и ударная вязкость.

Под действием внешней нагрузки в твердом теле возникают напряжение и деформация. Напряжение σ, кгс/мм 2 — это нагрузка (сила) Р, отнесенная к первоначальной площади поперечного сечения Fo образца:

В СИ Р измеряют в кгс или Н, Fo - в м 2 , σ - в Па. 1 кгс/мм 2 = 9,80665 МПа.

В зависимости от способа приложения нагрузки методы испытания механических свойств металлов, сплавов и других материалов делятся на статические, динамические и знакопеременные.

Деформация — это изменение формы и размеров твердого тела под действием внешних сил или в результате физических процессов, возникающих в теле при фазовых превращениях, усадке и т. п.

Рис. 5.1. Диаграмма растяжения,

типичная для ряда металлов.

Рис. 5.2. Схема определения

твердости по Бринеллю .

Деформация может быть упругая (исчезает после снятия нагрузки) и пластическая (сохраняется после снятия нагрузки). При все возрастающей нагрузке упругая деформация, как правило, переходит в пластическую, и далее образец разрушается.

Прочность — способность металлов оказывать сопротивление деформации или разрушению статическим, динамическим или знакопеременным нагрузкам. Прочность металлов при статических нагрузках испытывают на растяжение, сжатие, изгиб и кручение. Испытание на разрыв является обязательным. Прочность при динамических нагрузках оценивают удельной ударной вязкостью, а при знакопеременных нагрузках — усталостной прочностью.

Прочность при испытании на растяжение оценивают следующими характеристиками (рис.5.1).

• Предел прочности на разрыв (предел прочности или временное сопротивление разрыву) σв — это напряжение, отвечающее наибольшей нагрузке Рв, предшествующей разрушению образца:

Эта характеристика является обязательной для металлов.

• Предел пропорциональности σпц — это условное напряжение РПЦ, при котором начинается отклонение от пропорциональной зависимости между деформацией и нагрузкой:

При нагрузках до значения Рпц растяжение соответствует упругой деформации образца. При нагрузках выше значения Рпц происходит пластическая деформация, что приводит к остаточному удлинению образца.

• Предел текучести σт — это напряжение Рт, при котором образец деформируется (течет) без заметного увеличения нагрузки:

Пластичность — свойство металлов деформироваться без разрушения под действием внешних сил и сохранять измененную форму после снятия этих сил. Ее характеристиками являются относительное удлинение перед разрывом δ и относительное сужение перед разрывом ψ. Эти характеристики определяют при испытании на растяжение (при определении δв), а их численные значения вычисляют по формулам:

Читайте также: