При увеличении частоты падающего на металл света в 2 раза задерживающее
В некоторых опытах по изучению фотоэффекта одну и ту же пластину освещают при различных частотах падающего света , пропорциональных частоте красной границы фотоэффекта
В таблице представлены результаты одного из первых таких опытов.
Какое значение максимальной энергии выбитых электронов должно быть на месте прочерка?
Применим уравнение Эйнштейна для фотоэффекта:
причем Тогда для каждого опыта данное уравнение будет иметь вид:
Решая данную систему уравнений, получаем
Тип 26 № 24376На металлическую пластинку падает монохроматическая электромагнитная волна, выбивающая из неё электроны. Максимальная кинетическая энергия электронов, вылетевших из пластинки в результате фотоэффекта, составляет 6 эВ, а энергия падающих фотонов в 3 раза больше работы выхода из металла. Чему равна работа выхода электронов из металла? Ответ дайте в электрон-вольтах.
Из уравнения Эйнштейна для фотоэффекта Eф = Aвых + Ek. Учитывая, что по условию энергия фотона в 3 раза больше работы выхода, получаем 2Aвых = Ek, откуда работа выхода в 2 раза меньше кинетической энергии электронов, т. е. равна 3 эВ.
Тип 18 № 2302Металлическую пластину освещают светом с энергией фотонов 6,2 эВ. Работа выхода для металла пластины равна 2,5 эВ. Какова максимальная кинетическая энергия образовавшихся фотоэлектронов? (Ответ дать в электрон-вольтах.)
Задания Д32 C3 № 3041При облучении металлической пластинки квантами света с энергией 3 эВ из нее выбиваются электроны, которые проходят ускоряющую разность потенциалов Какова работа выхода если максимальная энергия ускоренных электронов Ee равна удвоенной энергии фотонов, выбивающих их из металла?
Уравнение Эйнштейна для фотоэффекта:
Энергия ускоренных электронов:
Кажется, что формула не совсем точна: e*dU = (mV^2)/2
А у вас Aвых. = e*dU!
Внимательно прочитайте условие, в данном случае — это не задерживающий потенциал, а ускоряющий. Он не тормозить фотоэлектроны (уменьшает их кинетическую энергию до нуля), а наоборот, еще больше их ускоряет. Поэтому к кинетической энергии фотоэлектронов и добавляется величина
Я не спорю (хотя теперь учту и это). Но вы заменили Работу выхода на e*dU! А надо заменять кинетическую энергию - или я что-то не понял? В учебниках есть формула: (mV^2)/2 = e*dU
А вы заменили не кинетическую энергию, а работу. Вот в чем мое непонимание. Разъясните уж)
Теперь уже я не понимаю, о чем Вы говорите :)
Давайте еще раз, Ваша формула из учебника: , — это формула, определяющая задерживающий потенциал, то есть какое электрическое поле надо создать, чтобы в нем электроны, вылетающие при фотоэффекте, полностью тормозились, не долетая до противоположного электрода в вакуумной трубке (по сути, чтобы вся их кинетическая энергия переходила в потенциальную энергию заряда в электрическом поле). Условно, полярность электродов такая, что свет светит в положительный электрод, а электроны, вылетающие из него, пытаются долететь до отрицательного электрода.
В данной задаче все наоборот, полярность электродов другая. Электроны летят от отрицательного электрода к положительному, при этом они, естественно, ускоряются. Электрическое поле совершает работу и она добавляется к механической энергии электронов. Их новая энергия становится равной . А дальше просто начинается алгебра. Кинетическая энергия фотоэлектронов выражается из уравнения Эйнштейна: и подставляется в энергию электронов после разгона: . Далее используется тот факт, что конечная энергия электронов в 2 раза больше энергии налетающих фотонов. Следовательно:
При увеличении частоты падающего на металл света в 2 раза задерживающее
Загрузка решений доступна для зарегистрировавшихся пользователей
Фотон с длиной волны, соответствующей красной границе фотоэффекта, выбивает электрон из металлической пластинки (катода), помещенной в сосуд, из которого откачан воздух. Электрон разгоняется однородным электрическим полем напряженностью Е. Пролетев путь он приобретает скорость Какова напряженность электрического поля? Релятивистские эффекты не учитывать.
Фотон с длиной волны, соответствующей красной границе фотоэффекта, выбивает электрон из металлической пластинки (катода), помещенной в сосуд, из которого откачан воздух. Электрон разгоняется однородным электрическим полем напряженностью Какой путь пролетел в этом электрическом поле электрон, если он приобрел скорость ? Релятивистские эффекты не учитывать.
При облучении металлической пластинки квантами света с энергией 3 эВ из нее выбиваются электроны, которые проходят ускоряющую разность потенциалов U. Работа выхода электронов из металла Определите ускоряющую разность потенциалов U, если максимальная энергия ускоренных электронов Ee равна удвоенной энергии фотонов, выбивающих их из металла.
Красная граница фотоэффекта для вещества фотокатода При облучении катода светом с длиной волны фототок прекращается при напряжении между анодом и катодом Определите длину волны
Красная граница фотоэффекта для вещества фотокатода Фотокатод облучают светом с длиной волны При каком напряжении между анодом и катодом фототок прекращается?
Фотокатод облучают светом с длиной волны 300 нм. Красная граница фотоэффекта фотокатода 450 нм. Вычислите запирающее напряжение U между анодом и катодом.
В двух опытах по фотоэффекту металлическая пластинка облучалась светом с длинами волн соответственно нм и нм. В этих опытах максимальные скорости фотоэлектронов отличались в раза. Какова работа выхода с поверхности металла?
Источник в монохроматическом пучке параллельных лучей за время излучает фотонов. Лучи падают по нормали на площадку и создают давление . При этом фотонов отражается, а поглощается. Определите длину волны излучения.
Для измерения величины постоянной Планка h в своё время использовался следующий опыт. В вакуумный фотоэлемент помещался катод из какого-либо металла, окружённый металлическим анодом. Катод облучали светом определённой длины волны (и частоты) и измеряли задерживающее напряжение между катодом и анодом, при котором ток в цепи с фотоэлементом прекращался. Оказалось, что при длине волны света, падающего на фотокатод, равной задерживающее напряжение было равно а при освещении светом с частотой оно равнялось Найдите по этим данным величину постоянной Планка.
Уровни энергии электрона в атоме водорода задаются формулой эВ, где n = 1, 2, 3, … При переходе из состояния в состояние атом испускает фотон. Поток таких фотонов падает на поверхность фотокатода. Запирающее напряжение для фотоэлектронов, вылетающих с поверхности фотокатода, Какова работа выхода фотоэлектронов с поверхности фотокатода?
Металлическая пластина облучается светом частотой  Гц. Работа выхода электронов из данного металла равна 3,7 эВ. Вылетающие из пластины фотоэлектроны попадают в однородное электрическое поле напряжённостью 130 В/м, причём вектор напряжённости направлен к пластине перпендикулярно её поверхности. Какова максимальная кинетическая энергия фотоэлектронов на расстоянии 10 см от пластины?
Металлическая пластина облучается светом. Работа выхода электронов из данного металла равна 3,7 эВ. Вылетающие из пластины фотоэлектроны попадают в однородное электрическое поле напряжённостью 130 В/м. Вектор напряжённости поля направлен к пластине перпендикулярно её поверхности. Измерения показали, что на расстоянии 10 см от пластины максимальная кинетическая энергия фотоэлектронов равна 15,9 эВ. Определите частоту падающего на пластину света.
Металлическая пластина облучается светом частотой Гц. Вылетающие из пластины фотоэлектроны попадают в однородное электрическое поле напряжённостью 130 В/м, причём вектор напряжённости поля направлен к пластине перпендикулярно её поверхности. Измерения показали, что на расстоянии 10 см от пластины максимальная кинетическая энергия фотоэлектронов равна 15,9 эВ. Определите работу выхода электронов из данного металла.
Металлическая пластина облучается светом частотой Гц. Работа выхода электронов из данного металла равна 3,7 эВ. Вылетающие из пластины фотоэлектроны попадают в однородное электрическое поле, вектор напряжённости которого направлен к пластине перпендикулярно её поверхности. Измерения показали, что на расстоянии 10 см от пластины максимальная кинетическая энергия фотоэлектронов равна 15,9 эВ. Чему равен модуль напряжённости электрического поля?
Электроны, вылетевшие в положительном направлении оси ОХ под действием света с катода фотоэлемента, попадают в электрическое и магнитное поля (см. рисунок). Какой должна быть работа выхода A с поверхности фотокатода, чтобы в момент попадания самых быстрых электронов в область полей действующая на них сила была направлена вдоль оси OY в положительном направлении? Частота света Гц, напряжённость электрического поля В/м, индукция магнитного поля Тл.
Электроны, вылетевшие в положительном направлении оси ОХ под действием света с катода фотоэлемента, попадают в электрическое и магнитное поля (см. рис.). Какой должна быть частота падающего света чтобы в момент попадания самых быстрых электронов в область полей действующая на них сила была направлена против оси OY? Работа выхода для вещества катода 2,39 эВ, напряжённость электрического поля индукция магнитного поля
Электроны, вылетевшие в положительном направлении оси ОХ под действием света с катода фотоэлемента, попадают в электрическое и магнитное поля (см. рисунок). Какой должна быть частота падающего света чтобы в момент попадания самых быстрых электронов в область полей действующая на них сила была направлена в положительном направлении оси OY? Работа выхода для вещества катода 2,39 эВ, напряжённость электрического поля В/м, индукция магнитного поля Тл.
Электроны, вылетевшие в положительном направлении оси ОХ под действием света с катода фотоэлемента, попадают в электрическое и магнитное поля (см. рисунок). Какой должна быть напряжённость электрического поля E, чтобы самые быстрые электроны отклонялись в положительном направлении оси OY? Работа выхода для вещества катода 2,39 эВ, частота света Гц, индукция магнитного поля Тл.
Законы фотоэффекта, как выяснилось недавно, не имеют абсолютного характера. В частности, это касается «красной границы фотоэффекта». Когда появились мощные лазерные источники света, оказалось, что за счёт нелинейных эффектов в среде возможно так называемое многофотонное поглощение света, при котором закон сохранения энергии (формула Эйнштейна для фотоэффекта) имеет вид:
Какое минимальное число n фотонов рубинового лазера с длиной волны должно поглотиться, чтобы из вольфрама с работой выхода был выбит один фотоэлектрон?
Два покрытых кальцием электрода, один из которых заземлён, находятся в вакууме. Один из электродов заземлён. К ним подключён конденсатор ёмкостью C1 = 20 000пФ. Появившийся в начале фототок при длительном освещении прекращается, при этом на конденсаторе возникает заряд q = 2 · 10 −8 Кл. Работа выхода электронов из кальция A = 4,42 · 10 −19 Дж. Определите длину волны света, освещающего катод.
В вакууме находятся два покрытых кальцием электрода, к которым подключен конденсатор емкостью 4000 пФ. При длительном освещении катода светом фототок, возникший вначале, прекращается, а на конденсаторе появляется заряд, равный 3,3·10 –10 Кл. Работа выхода электронов из кальция составляет 4,42·10 –19 Дж. Определите длину волны света, освещающего катод. Электроёмкостью системы электродов по сравнению с электроёмкостью конденсатора пренебречь.
Фотокатод, покрытый кальцием, освещается светом с длиной волны λ = 300 нм. Работа выхода электронов из кальция равна Авых = 4,42·10 –19 Дж. Вылетевшие из катода электроны попадают в однородное магнитное поле перпендикулярно линиям индукции этого поля и движутся по окружности с максимальным радиусом R = 4 мм. Каков модуль индукции магнитного поля В?
Фотон с длиной волны, соответствующей красной границе фотоэффекта, выбивает электрон из металлической пластинки (катода) сосуда, из которого откачан воздух. Электрон разгоняется однородным электрическим полем напряжённостью До какой скорости электрон разгонится в этом поле, пролетев путь ? Релятивистские эффекты не учитывать.
Металлическая пластина облучается светом частотой υ = 1,6 · 10 15 Гц. Работа выхода электронов из данного металла равна 3,7 эВ. Вылетающие из пластины фотоэлектроны попадают в однородное электрическое поле напряжённостью 130 В/м, причём вектор напряжённости направлен к пластине перпендикулярно её поверхности. Какова максимальная кинетическая энергия фотоэлектронов на расстоянии 10 см от пластины?
В вакууме находятся два кальциевых электрода, к которым подключён конденсатор ёмкостью 4000 пФ. При длительном освещении катода светом фототок между электродами, возникший вначале, прекращается, а на конденсаторе появляется заряд 5,5 · 10 −9 Кл. «Красная граница» фотоэффекта для кальция λ0 = 450 нм. Определите частоту световой волны, освещающей катод. Ёмкостью системы электродов пренебречь.
Небольшой уединённый металлический шарик долго облучали в вакууме светом с длиной волны λ = 300 нм, в результате чего он зарядился и приобрёл потенциал φ = 2,23 В. Чему равна работа выхода электрона из этого металла? Ответ выразите в электрон-вольтах.
Фотокатод с работой выхода 4,42 ∙ 10 –19 Дж освещается монохроматическим светом. Вылетевшие из катода электроны попадают в однородное магнитное поле с индукцией 4 ∙ 10 –4 Тл перпендикулярно линиям индукции этого поля и движутся по окружностям. Максимальный радиус такой окружности 10 мм. Какова частота падающего света?
При увеличении в 2 раза частоты света, падающего на поверхность металла, запирающее напряжение для вылетающих с этой поверхности фотоэлектронов увеличилось в 3 раза. Первоначальная длина волны падающего света была равна 250 нм. Какова частота, соответствующая «красной границе» фотоэффекта для этого металла?
Частота красной границы фотоэффекта для калия равна 5,33 · 10 14 Гц. Если другой металл облучить светом с такой же длиной волны, то кинетическая энергия вылетевших электронов будет в 3 раза меньше работы выхода для этого вещества. Чему равна частота красной границы фотоэффекта для неизвестного металла?
Фотоэффект
Начало теории электромагнитной природы света заложил Максвелл, который заметил сходство в скоростях распространения электромагнитных и световых волн. Но согласно электродинамической теории Максвелла любое тело, излучающее электромагнитные волны, должно в итоге остынуть до абсолютного нуля. В действительности этого не происходит. Противоречия между теорией и опытными наблюдениями были разрешены в начале XX века, вскоре после того, как был открыт фотоэффект.
Что такое фотоэффект
Фотоэффект — испускание электронов из вещества под действием падающего на него света.
Явление фотоэффекта было открыто в 1887 году Генрихом Герцем. Фотоэффект также был подробно изучен русским физиком Александром Столетовым в период с 1888 до 1890 годы. Этому явлению он посвятил 6 научных работ.
Для наблюдения фотоэффекта нужно провести опыт. Для этого понадобится электрометр и подсоединенная к нему пластинка из цинка (см. рисунок ниже). Если дать пластинке положительный заряд, то при ее освещении электрической дугой скорость разрядки электрометра не изменится. Но если цинковую пластинку зарядить отрицательно, то свет от дуги заставить электрометр разрядиться очень быстро.
Наблюдаемое во время этого эксперимента явление имеет простое объяснение. Свет вырывает электроны с поверхности цинковой пластинки. Если она имеет отрицательный заряд, электроны отталкиваются от нее, что приводит к полному разряжению электрометра. Причем при повышении интенсивности освещения скорость разрядки увеличивается, ровно, как и наоборот: при уменьшении интенсивности освещения электрометр разряжается медленно. Если же зарядить пластинку положительно, то электроны, которые вырываются светом, притягиваются к ней. Поэтому они оседают на ней, не изменяя заряд электрометра.
Если между световым пучком и отрицательно заряженной пластиной поставить лист стекла, пластинка перестанет терять электроны независимо от интенсивности излучения. Это связано с тем, что стекло задерживает ультрафиолетовое излучение. Отсюда можно сделать следующий вывод:
Явление фотоэффекта может вызвать только ультрафиолетовый участок спектра.
Волновая теория света не может объяснить, почему электроны могут вырываться только под действием ультрафиолета. Ведь даже при большой амплитуде и силе волн электроны остаются на месте, когда, казалось бы, они должны непременно быть вырванными.
Законы фотоэффекта
Чтобы получить более полное представление о фотоэффекте, выясним, от чего зависит количество электронов, вырванных светом с поверхности вещества, а также, от чего зависит их скорость, или кинетическая энергия. Выяснить все это нам помогут эксперименты.
Первый закон фотоэффекта
Возьмем стеклянный баллон и выкачаем из него воздух (смотрите рисунок выше). Затем поместим в него два электрода. На электроды подадим напряжение и будем регулировать его с помощью потенциометра и измерять при помощи вольтметра.
В верхней части нашего баллона есть небольшое кварцевое окошко, которое пропускает весь свет, в том числе ультрафиолетовый. Через него падает свет на один из электродов (в нашем случае на левый электрод, к которому присоединен отрицательный полюс батареи). Мы увидим, что под действием света этот электрод начнет испускать электроны, которые при движении в электрическом поле будут создавать электрический ток. Вырванные электроны будут направляться ко второму электроду. Но если напряжение небольшое, второго электрода достигнут не все электроны. Если интенсивность излучения сохранить, но увеличить между электродами разность потенциалов, то сила тока будет увеличиваться. Но как только она достигнет некоторого максимального значения, рост силы тока при дальнейшем увеличении напряжения прекратится. Максимальное значение силы тока будем называть током насыщения.
Ток насыщения — максимальное значение силы тока, также называемое предельным значением силы фототока.
Ток насыщения обозначается как I н . Единица измерения — А (Кл/с). Численно величина равна отношению суммарному заряду вырванных электронов в единицу времени:
Если же мы начнем изменять интенсивность излучения, то сможем заметить, что фототок насыщения также начинается меняться. Если интенсивность излучения ослабить, максимальное значение силы тока уменьшится. Если интенсивность светового потока увеличить, ток насыщения примет большее значение. Отсюда можно сделать вывод, который называют первым законом фотоэффекта.
Первый закон фотоэффекта:
Число электронов, вырываемых светом с поверхности металла за 1 с, прямо пропорционально поглощаемой за это время энергии световой волны. Иными словами, фототок насыщения прямо пропорционален падающему световому потоку Ф.
Второй закон фотоэффекта
Теперь произведем измерения кинетической энергии, то есть, скорости вырывания электронов. Взгляните на график, представленный ниже. Видно, что сила фототока выше нуля даже при нулевом напряжении. Это говорит о том, что даже при нулевой разности потенциалов часть электронов достигает второго электрода.
Если мы поменяем полярность батареи, то будем наблюдать уменьшение силы тока. Если подать на электроды некоторое значение напряжения, равное U з , сила тока станет равно нулю. Это значит, что электрическое поле тормозит вырванные электроны, останавливает их, а затем возвращает на тот же электрод.
Напряжение, равное U з , называют задерживающим напряжением. Оно зависит зависит от максимальной кинетической энергии электронов, которые вырываются под действием света. Измеряя задерживающее напряжение и применяя теорему о кинетической, можно найти максимальное значение кинетической энергии электронов. Оно будет равно:
m v 2 2 . . = e U з
Опыт показывает, что при изменении интенсивности света (плотности потока излучения) задерживающее напряжение не меняется. Значит, не меняется кинетическая энергия электронов. С точки зрения волновой теории света этот факт непонятен. Ведь чем больше интенсивность света, тем большие силы действуют на электроны со стороны электромагнитного поля световой волны и тем большая энергия, казалось бы, должна передаваться электронам. Но экспериментальным путем мы обнаруживаем, что кинетическая энергия вырываемых светом электронов зависит только от частоты света. Отсюда мы можем сделать вывод, являющийся вторым законом фотоэффекта.
Второй закон фотоэффекта:
Максимальная кинетическая энергия фотоэлектронов линейно растет с частотой света и не зависит от его интенсивности.
Причем, если частота света меньше определенной для данного вещества минимальной частоты νmin, фотоэффект наблюдаться не будет.
Теория фотоэффекта
Все попытки объяснить явление фотоэффекта электродинамической теорией Максвелла, согласно которой свет — это электромагнитная волна, непрерывно распределенная в пространстве, оказались тщетными. Нельзя было понять, почему энергия фотоэлектронов определяется только частотой света и почему свет способен вырывать электроны лишь при достаточно малой длине волны.
В попытках объяснить это явление физик Макс Планк предложил, что атомы испускают электромагнитную энергию отдельными порциями — квантами, или фотонами. И энергия каждой порции прямо пропорциональна частоте излучения:
h — коэффициент пропорциональности, который получил название постоянной Планка. Она равна 6,63∙10 –34 Дж∙с.
Пример №1. Определите энергию фотона, соответствующую длине волны λ = 5∙10 –7 м.
Энергия фотона равна:
Выразим частоту фотона через скорость света:
Идею Планка продолжил развивать Эйнштейн, которому удалось дать объяснение фотоэффекту в 1905 году. В экспериментальных законах фотоэффекта Эйнштейн увидел убедительное доказательство того, что свет имеет прерывистую структуру и поглощается отдельными порциями. Причем энергия Е каждой порции излучения, по его расчетам, полностью соответствовала гипотезе Планка.
Из того, что свет излучается порциями, еще не вытекает вывода о прерывистости структуры самого света. Ведь и воду продают в бутылках, но отсюда не следует, что вода состоит из неделимых частиц. Лишь фотоэффект позволил доказать прерывистую структуру света: излученная порция световой энергии Е = hν сохраняет свою индивидуальность и в дальнейшем. Поглотиться может только вся порция целиком.
h ν = A + m v 2 2 . .
Работа выхода — минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл.
Полученное выражение объясняет основные факты, касающиеся фотоэффекта. Интенсивность света, по Эйнштейну, пропорциональна числу квантов (порций) энергии hν в пучке света и поэтому определяет количество вырванных электронов. Скорость же электронов согласно зависит только от частоты света и работы выхода, которая определяется типом металла и состоянием его поверхности. От интенсивности освещения кинетическая энергия фотоэлектронов не зависит.
Предельную частоту νmin называют красной границей фотоэффекта. При этой частоте фотоэффект уже наблюдается.
Красная граница фотоэффекта равна:
Минимальной частоте, при которой возможен фотоэффект для данного вещества, соответствует максимальная длина волны, которая также носит название красной границы фотоэффекта. Это такая длина волны, при которой фотоэффект еще наблюдается. Обозначается она как λmах или λкр.
Максимальная длина волны, при которой еще наблюдается фотоэффект, равна:
Работа выхода А определяется родом вещества. Поэтому и предельная частота vmin фотоэффекта (красная граница) для разных веществ различна. Отсюда вытекает еще один закон фотоэффекта.
Третий закон фотоэффекта:
Для каждого вещества существует максимальная длина волны, при которой фотоэффект еще наблюдается. При больших длинах волн фотоэффекта нет.
Вспомните опыт, который мы описали в самом начале. Когда между цинковой пластинкой и световым пучком мы поставили зеркало, фотоэффект был прекращен. Это связано с тем, что красная граница для цинка определяется величиной λmах = 3,7 ∙ 10 -7 м. Эта длина волны соответствует ультрафиолетовому излучению, которое не пропускало стекло.
Пример №2. Чему равна красная граница фотоэффекта νmin, если работа выхода электрона из металла равна A = 3,3∙10 –19 Дж?
Применим формулу для вычисления красной границы фотоэффекта:
Задание EF15717 При увеличении в 2 раза частоты света, падающего на поверхность металла, задерживающее напряжение для фотоэлектронов увеличилось в 3 раза. Первоначальная частота падающего света была равна 0,75 ⋅10 15 Гц. Какова длина волны, соответствующая «красной границе» фотоэффекта для этого металла? Ответ записать в нм.
С6-1. Красная граница фотоэффекта для вещества фотокатода λо = 290 нм. При облучении катода светом с длиной волны λ фототок прекращается при запирающем напряжении между анодом и катодом U = 1,9 В. Определите длину волны λ.
С6-2. Красная граница фотоэффекта для вещества фотокатода λ0 = 290 нм. Фотокатод облучают светом с длиной волны λ = 220 нм. При каком напряжении между анодом и катодом фототок прекращается?
С6-4. При облучении металлической пластинки квантами света с энергией 3 эВ из нее выбиваются электроны, которые проходят ускоряющую разность потенциалов ΔU = 5 В. Какова работа выхода Авых, если максимальная энергия ускоренных электронов Е e равна удвоенной энергии фотонов, выбивающих их из металла?
С6-5. При облучении металлической пластинки квантами света с энергией 3 эВ из нее выбиваются электроны, которые проходят ускоряющую разность потенциалов U. Работа выхода электронов из металла Авых = 2 эВ. Определите ускоряющую разность потенциалов U, если максимальная энергия ускоренных электронов Ее равна удвоенной энергии фотонов, выбивающих их из металла.
С6-6. Работа выхода электрона из металлической пластины Авых = 3,68 • 10 -19 Дж. Какова максимальная скорость электронов, выбиваемых из пластины светом с частотой v = 7 · 10 14 Гц?
С6-10. Фотон с длиной волны, соответствующей красной границе фотоэффекта, выбивает электрон из металлической пластинки (катода) в сосуде, из которого откачан воздух. Электрон разгоняется однородным электрическим полем с напряженностью E = 5•10 4 В/м. Какой должна быть длина пути электрона S в электрическом поле, чтобы он разогнался до скорости, составляющей 10% от скорости света в вакууме? Релятивистские эффекты не учитывать.
С6-11. Фотон с длиной волны, соответствующей красной границе фотоэффекта, выбивает электрон из фотокатода, помещённого в сосуд, из которого откачан воздух. Электрон разгоняется однородным электрическим полем напряжённостью Е = 5 · 10 4 В/м. До какой скорости электрон разгонится в этом поле, пролетев путь S = 5 · 10 -4 м? Релятивистские эффекты и силу тяжести не учитывать.
С6-13. В вакууме находятся два покрытых кальцием электрода, к которым подключен конденсатор емкостью С = 8000 пФ. При длительном освещении катода светом фототок, возникший вначале, прекращается, а на конденсаторе появляется заряд q = 11 • 10 -9 Кл. Работа выхода электронов из кальция А = 4,42 · 10 -19 Дж. Определите длину волны λ света, освещающего катод.
Читайте также: