При протекании электрического тока в металлах упорядоченно движутся

Обновлено: 07.01.2025

Электрический ток в металлах представляет собой упорядоченное движение свободных электронов. Более подробно об этом читайте далее в нашей статье.

Важно знать

Как известно, электрический ток – это упорядоченный поток носителей электрического заряда. Носители – это заряженные частицы, способные свободно перемещаться во всем объеме тела.

В случае металлов этими частицами являются электроны, которые высвобождаются при образовании связи между атомами металла.

Известно, что металлы в твердом состоянии имеют кристаллическую структуру. Частицы в кристаллах расположены в определенном порядке, образуя пространственную решетку (кристалл).

Наконец, кристаллическая решетка металла образована положительными ионами, погруженными в “облако” хаотически движущихся так называемых свободных электронов, также называемых электронами проводимости. В зависимости от валентности атомов металла, один атом может освободить от одного до трех электронов при образовании металлических связей. Число таких высвобожденных электронов непосредственно переводится в число носителей заряда. Это является одним из факторов, влияющих на способность металла проводить электрический ток.

Доказательством того, что ток в металлах вызывается электронами, послужили эксперименты наших отечественных физиков Леонида Исааковича Мандельштама и Николая Дмитриевича Папалекси, а также американских физиков Бальфура Стюарта и Роберта Толмана.

Способность металла проводить электрический ток может быть описана физической величиной, называемой удельным электрическим сопротивлением. Эта физическая величина обозначается греческой буквой ρ (читается как “ро”). Единицей измерения удельного сопротивления является Ом · м, т.е. произведение Ом на метр. Удельное сопротивление – это константа, которая характеризует материал и имеет различные значения для разных материалов. Например, удельное сопротивление меди составляет 1.72*10 -8 Ом · м. Это означает, что электрическое сопротивление медного проводника длиной 1 метр и площадью поперечного сечения 1 м равно 1.72*10 -8 Ом . В целом, чем ниже удельное сопротивление материала, тем лучше он проводит электрический ток.

В таблице ниже приведены некоторые примеры удельного сопротивления часто используемых металлов.

МеталлУдельное сопротивление (Ом · м)
Серебро1.59*10 -8
Медь1.72*10 -8
Алюминий2.82*10 -8
Вольфрам5.6*10 -8
Железо10*10 -8

Удельное электрическое сопротивление может быть связано с микроскопическими свойствами материала. В частности, он зависит от концентрации носителей заряда и их подвижности.

Движение свободных электронов в металлах не является полностью “свободным”, поскольку во время их движении они взаимодействуют с другими электронами, и прежде всего с ионами кристаллической решетки. Специфика этого движения описывается так называемой классической моделью проводимости.

Основные предположения и выводы этой модели представлены в большом упрощении ниже.

Классическая модель проводимости

Без внешнего электрического поля электроны совершают тепловые хаотические движения, сталкиваясь друг с другом, а также сталкиваясь с ионами кристаллической решетки. В результате такого движения среднее положение электронов практически не меняется (см. рис. 1.).

Пример траектории электрона во время его хаотического движения в металле

Рис. 1. Пример траектории электрона во время его хаотического теплового движения в металле

Из-за квантовых эффектов, и в частности из-за принципа запрета Паули, который не позволяет всем электронам занимать самое низкое энергетическое состояние, средняя скорость электронов в металлах, связанная с их хаотическим тепловым движением, больше, чем скорость частиц в классическом идеальном газе той же температуры. Она составляет порядка 10 м/с.

Если электрическое напряжение U приложено к концам проводника длиной L в нем появится электрическое поле с напряженностью E = U / L

Под действием этого внешнего поля, согласно второму закону динамики, электроны ускоряются: a = F / m,

где F = e*E – сила, с которой электрическое поле действует на электрон с зарядом e. Таким образом, ускорение электрона составляет: a = e*E / m .

Ускоренное движение электрона длится лишь довольно короткое время, пока он не столкнется с ионом
кристаллической решетки. В результате такого столкновения электрон теряет практически всю свою кинетическую энергию. Однако замедленный электрон не остается в состоянии покоя – он снова ускоряется под действием электрического поля, снова сталкивается с одним из ионов из ионы кристаллической решетки и т.д. Этот эффект добавляет к скорости тепловых движений дополнительную направленную среднюю скорость u, которая из-за отрицательного заряда электрона имеет направление, противоположное напряженности внешнего электрического поля. Эта скорость называется средней скоростью дрейфа (рис. 2).

Дрейф электрона под действием внешнего электрического поля

Рис. 2. Дрейф электрона под действием внешнего электрического поля

В проводнике начинает течь электрический ток с силой тока I (см. рисунок 3).

Дрейфующие электроны сталкиваются с ионами кристаллической решетки

Рис. 3. Дрейфующие электроны сталкиваются с ионами кристаллической решетки

Предполагая, что движение электрона равномерно ускоряется между столкновениями с ионами решетки, с ускорением a = e*E / m , и предполагая, что в результате столкновения электрон передает всю свою кинетическую энергию кристаллической решетке, мы можем вычислить скорость, которую развивает электрон в своем свободном движении: v = a*τ . В этой формуле τ – средний интервал времени между последующими столкновениями дрейфующего электрона с ионами кристаллической решетки.

Поскольку при равномерно ускоренном движении без начальной скорости средняя скорость является средним арифметическим начальной (равной нулю) и конечной скоростью, то получаем: u = v / 2 = e*E*τ / 2*m .

Из полученной формулы следует, что скорость дрейфа, помимо внешнего электрического поля, определяется средним интервалом времени между столкновениями электронов с ионами решетки. Этот параметр зависит от многих факторов (включая температуру, кристаллическую структуру металла, дефекты кристаллической структуры, примеси) и, как выясняется, существенно влияет на электрическое сопротивление материала.

Средняя дрейфовая скорость электронов составляет порядка 10 -4 м/с. Она очень мала по сравнению со скоростью теплового движения, которая составляет порядка 10 6 м/с.

Классическая теория проводимости достаточно хорошо описывает явление электропроводности в металлах. Однако эта теория не может объяснить экспериментально наблюдаемую зависимость электрического сопротивления от температуры.

Причина упомянутой неудачи классической теории проводимости заключается в том, что она не учитывает влияние ионов решетки на движение электронов между столкновениями. Более близкие к реальности результаты дает квантовая теория проводимости, которая описывает электроны как частицы, подверженные квантовой статистике, движущиеся в периодическом электрическом поле, создаваемом положительными ионами решетки.

Выводы простым языком

Отрицательный заряд всех свободных электронов по абсолютному значению равен положительному заряду всех ионов решётки. Поэтому в обычных условиях металл электрически нейтрален. Свободные электроны в нём движутся беспорядочно. Но если в металле создать электрическое поле, то свободные электроны начнут двигаться направленно под действием электрических сил. Возникнет электрический ток. Беспорядочное движение электронов при этом сохраняется, подобно тому как сохраняется беспорядочное движение в стайке мошкары, когда под действием ветра она перемещается в одном направлении.

« Скорость движения самих электронов в проводнике под действием электрического поля невелика – несколько миллиметров в секунду, а иногда и ещё меньше. Но как только в проводнике возникает электрическое поле, оно с огромной скоростью, близкой к скорости света в вакууме (300 000 км/c), распространяетcя по всей длине проводника. »

Перышкин А. В. Физика 8. – М.: Дрофа, 2010

Как пример, электрический сигнал, посланный, например, по проводам из Москвы во Владивосток (s = 8000 км), приходит туда примерно через 0,03 с.

Одновременно с распространением электрического поля все электроны начинают двигаться в одном направлении по всей длине проводника. Так, например, когда цепь электрической лампы замкнута, электроны в спирали лампы также движутся упорядоченно.

Сравнение электрического тока с потоком воды в водопроводной системе и распространения электрического поля с распространением давления воды поможет нам понять это. Когда вода поднимается в резервуар для воды, давление (напор) воды очень быстро распространяется по всей системе водоснабжения. Когда мы включаем кран, вода уже находится под давлением и сразу же начинает течь. Но вода, которая была в кране, течет, а вода из башни достигает крана гораздо позже, потому что вода движется с меньшей скоростью, чем распространяется давление.

Когда говорят о скорости распространения электрического тока в проводнике, то имеют в виду скорость распространения по проводнику электрического поля.

Электрический ток в металлах

Электрическим током в металлах называют упорядоченное движение электронов под действием электрического поля.

Исходя из опытов, видно, что металлический проводник вещество не переносит, то есть ионы металла не участвуют в передвижении электрического заряда.

Носители тока в металлах

При исследованиях были получены доказательства электронной природы тока в металлах. Еще в 1913 году Л.И. Мандельштам и Н.Д. Папалекси выдали первые качественные результаты. А в 1916 году Р. Толмен и Б. Стюарт модернизировали имеющуюся методику и выполнили количественные измерения, которые доказывали, что движение электронов происходит под действием тока в металлических проводниках.

Рисунок 1 . 12 . 1 показывает схему Толмена и Стюарта. Катушка, состоящая из большого количества витков тонкой проволоки, приводилась в действие при помощи вращения вокруг своей оси. Ее концы были прикреплены к баллистическому гальванометру Г. Производилось резкое торможение катушки, что было следствием возникновения кратковременного тока, обусловленного инерцией носителя заряда. Измерение полного заряда производилось при помощи движения стрелок гальванометра.

Рисунок 1 . 12 . 1 . Схема опыта Толмена и Стюарта.

Во время торможения вращающейся катушки сила F = - m d υ d t , называемая тормозящей, действовала на каждый носитель заряда е . F играла роль сторонней силы, иначе говоря, неэлектрического происхождения. Именно эта сила, характеризующаяся единицей заряда, является напряженностью поля сторонних сил E с т :

E с т = - m e d υ d t .

То есть при торможении катушки происходит возникновение электродвижущей силы δ , равной δ = E с т l = m e d υ d t l , где l – длина проволоки катушки. Определенный промежуток времени процесса торможения катушки обусловлен протеканием по цепи заряда q :

q = ∫ I d t = 1 R ∫ δ d t = m e l υ 0 R .

Данная формула объясняет, что l – это мгновенное значение силы тока в катушке, R – полное сопротивление цепи, υ 0 – начальная линейная скорость проволоки. Видно, что определение удельного заряда e m в металлах производится, исходя из формулы:

Величины, находящиеся с правой стороны, можно измерить. Основываясь на результатах опытов Толмена и Стюарта, установили, что носители свободного заряда имеют отрицательный знак, а отношение носителя в его массе близко по значению удельного заряда электрона, получаемого в других опытах. Было выявлено, что электроны – это носители свободных зарядов.

Современные данные показывают, что модуль заряда электрона, то есть элементарный заряд, равняется e = 1 , 60218 · 10 - 19 К л , а обозначение его удельного заряда – e m = 1 , 75882 · 10 11 К л / к г .

При наличии отличной концентрации свободных электронов есть смысл говорить о хорошей электропроводимости металлов. Это выявили еще перед опытами Толмена и Стюарта. В 1900 году П. Друде, основываясь на гипотезе о существовании свободных электронов в металлах, создал электронную теорию проводимости металлов. Ее развил и расширил Х. Лоренц, после чего она получила название классическая электронная теория. На ее основании поняли, что электроны ведут себя как электронный газ, похожий на идеальный по своему состоянию. Рисунок 1 . 12 . 2 показывает, каким образом он может заполнить пространство между ионами, которые уже образовали кристаллическую решетку металла.

Рисунок 1 . 12 . 2 . Газ свободных электронов в кристаллической решетке металла. Показана траектория одного из электронов.

Потенциальный барьер. Движение электронов в кристаллической решетке

После взаимодействия электронов с ионами первые покидают металл, преодолевая только потенциальный барьер.

Высота такого барьера получила название работы выхода.

Наличие комнатной температуры не позволяет электронам проходить этот барьер. Потенциальная энергия выхода электрона после взаимодействия с кристаллической решеткой намного меньше, чем при удалении электрона из проводника.

Расположение е в проводнике характеризуется наличием потенциальной ямы, глубина которой получила название потенциального барьера.

Ионы, образующие решетку, и электроны принимают участие в тепловом движении. Благодаря тепловым колебаниям ионов вблизи положений равновесий и хаотичному движению свободных электронов, при столкновении первых со вторыми происходит усиление термодинамического равновесия между электронами и решеткой.

По теории Друде-Лоренца имеем, что электроны имеют такую же среднюю энергию теплового движения, как и молекулы одноатомного идеального газа. Это делает возможным оценивание средней скорости υ т ¯ теплового движения электронов, используя молекулярно-кинетическую теорию.

Комнатная температура дает значение, равное 10 5 м / с .

Если наложить внешнее электрическое поле в металлический проводник, тогда произойдет тепловое упорядоченное движения электронов (электрический ток), то есть дрейф. Определение средней его скорости υ д ¯ выполняется по интервалу имеющегося времени ∆ t через поперечное сечение S проводника электронов, которые находятся в объеме S υ д ∆ t .

Количество таких е равняется n S υ д ∆ t , где n принимает значение средней концентрации свободных электронов, равняющейся числу атомов в единице объема металлического проводника. За имеющееся количество времени ∆ t через сечение проводника проходит заряд ∆ q = e n S υ д ∆ t .

Тогда I = ∆ q ∆ t = e n S υ д или υ д = I e n S .

Концентрация n атомов в металлах находится в пределах 10 28 - 10 29 м - 3 .

Формула дает возможность оценить среднюю скорость υ д ¯ упорядоченного движения электронов со значением в промежутке 0 , 6 - 6 м м / с для проводника с сечением 1 м м 2 и проходящим током в 10 А .

Средняя скорость υ д ¯ упорядоченного движения электронов в металлических проводниках на много порядков меньше скорости υ т их теплового движения υ д ≪ υ т .

Рисунок 1 . 12 . 3 демонстрирует характер движения свободного е , находящегося в кристаллической решетке.

Рисунок 1 . 12 . 3 . Движение свободного электрона в кристаллической решетке: а – хаотическое движение электрона в кристаллической решетке металла; b – хаотическое движение с дрейфом, обусловленным электрическим полем. Масштабы дрейфа υ д ¯ ∆ t сильно преувеличены.

Наличие малой скорости дрейфа не соответствует опыту, когда ток всей цепи постоянного тока устанавливается мгновенно. Замыкание производится при помощи воздействия электрического поля со скоростью c = 3 · 10 8 м / с . По прошествии времени l c ( l - длина цепи) вдоль цепи устанавливается стационарное распределение электрического поля. В ней происходит упорядоченное движение электронов.

Классическая электронная теория металлов предполагает, что их движение подчинено законам механики Ньютона. Данная теория характеризуется тем, что происходит пренебрежение взаимодействием электронов между собой, а взаимодействие с положительными ионами расценивается как соударения, при каждом из которых e сообщает накопленную энергию решетке. Поэтому принято считать, что после соударения движение электрона характеризуется нулевой дрейфовой скоростью.

Абсолютно все выше предложенные допущения приближенные. Это дает возможность объяснения законов электрического тока в металлических проводниках, основываясь на электронной классической теории.

Закон Ома

В промежутке между соударениями на электрон действует сила, равняющаяся по модулю e E , в результате чего получает ускорение e m E .

Конец свободного пробега характеризуется дрейфовой скоростью электрона, которую определяют по формуле

υ д = υ д m a x = e E m τ .

Время свободного пробега обозначается τ . Оно способствует упрощению расчетов для нахождения значения всех электронов. Средняя скорость дрейфа υ д равняется половине максимального значения:

υ д = 1 2 υ д m a x = 1 2 e E m τ .

Если имеется проводник с длиной l , сечением S с концентрацией электронов n , тогда запись нахождения тока в проводнике имеет вид:

I = e n S υ д = 1 2 e 2 τ n S m E = e 2 τ n S 2 m l U .

U = E l – это напряжение на концах проводника. Формула выражает закон Ома для металлического проводника. Тогда электрическое сопротивление необходимо находить:

R = 2 m e 2 n τ l S .

Удельное сопротивление ρ и удельная проводимость ν выражаются как:

ρ = 2 m e 2 n τ ; ν = 1 ρ = e 2 n τ 2 m .

Закон Джоуля-Ленца

Конец пробега электронов под действием поля характеризуется кинетической энергией

1 2 m ( υ д ) m a x 2 = 1 2 e 2 τ 2 m E 2 .

Исходя из предположений, энергия при соударениях передается решетке, а в последствии переходит в тепло.

Время ∆ t каждого электрона испытывается ∆ t τ соударений. Проводник с сечение S и длиной l имеет n S l электронов. Тогда выделившееся тепло в проводнике за ∆ t равняется

∆ Q = n S l ∆ t τ e 2 τ 2 2 m E 2 = n e 2 τ 2 m S l U 2 ∆ t = U 2 R ∆ t .

Данное соотношение выражает закон Джоуля-Ленца.

Благодаря классической теории, имеет место трактовка существования электрического сопротивления металлов, то есть законы Ома и Джоуля-Ленца. Классическая электронная теория не в состоянии ответить на все вопросы.

Она не способна объяснить разницу в значении молярной теплоемкости металлов и диэлектрических кристаллов, равняющейся 3 R , где R записывается как универсальная газовая постоянная. Теплоемкость металла не зависит от количества свободных электронов.

Классическая электронная теория не объясняет температурную зависимость удельного сопротивления металлов. По теории ρ ~ T , а исходя из экспериментов – ρ ~ T . Примером расхождения теории с практикой служит сверхпроводимость.

Сопротивление металлического проводника

Исходя из классической теории, удельное сопротивление металлов должно постепенно уменьшаться при понижении температуры, причем остается конечным при любой T . Данная зависимость характерна для проведения опытов при высоких температурах. Если T достаточно низкая, тогда удельное сопротивление металлов теряет зависимость от температуры и достигает предельного значения.

Особый интерес представило явление сверхпроводимости. В 1911 году его открыл Х. Каммерлинг-Оннес.

Если имеется определенная температура T к р , различная для разных веществ, тогда удельное сопротивление уменьшается до нуля с помощью скачка, как изображено на рисунке 1 . 12 . 4 .

Критической температурой для ртути считается значение 4 , 1 К , для алюминия – 1 , 2 К , для олова – 3 , 7 К . Наличие сверхпроводимости может быть не только у элементов, но и у химических соединений и сплавов. Ниобий с оловом Ni 3 Sn имеют критическую точку температуры в 18 К . Существуют вещества, которые при низкой температуре переходят в сверхпроводящее состояние, тогда как в обычных условиях ими не являются. Серебро и медь являются проводниками, но при понижении температуры сверхпроводниками не становятся.

Рисунок 1 . 12 . 4 . Зависимость удельного сопротивления ρ от абсолютной температуры T при низких температурах: a – нормальный металл; b – сверхпроводник.

Сверхпроводящее состояние говорит об исключительных свойствах вещества. Одним из важнейших является способность на протяжении длительного времени поддерживать электрический ток, возбужденный в сверхпроводящей цепи, без затухания.

Классическая электронная теория не может объяснить сверхпроводимость. Это стало возможным спустя 60 лет после его открытия, основываясь на квантово-механических представлениях.

Рост интереса к данному явлению увеличивался по мере появления новых материалов, способных обладать высокими критическими температурами. В 1986 было обнаружено сложное соединение с температурой T к р = 35 К . На следующий год сумели создать керамику с критической Т в 98 К , которая превышала Т жидкого азота ( 77 К ) .

Явление перехода веществ в сверхпроводящее состояние при Т , превышающих температуру кипения жидкого азота, называют высокотемпературной сверхпроводимостью.

Позже в 1988 году создали Tl - Ca - Ba - Cu - O соединение с критической Т , достигающей 125 К . На данный момент ученые заинтересованы в поиске новых веществ с наиболее высокими значениями T к р . Они рассчитывают на получение сверхпроводящего вещества при комнатной температуре. Если это будет сделано, произойдет революция в науке и технике. До настоящего времени все свойства и механизмы состава сверхпроводимых керамических материалов до конца не исследованы.

Постоянный электрический ток: определение, механизм, характеристики

Постоянный ток – это упорядоченное движение заряженных частиц, движущихся в одном направлении.

По теории данные заряженные частицы относят к носителям тока. В проводниках и полупроводниках такими носителями являются электроны, в электролитах – заряженные ионы, в газах – электроны и ионы. Металлы характеризуются перемещением только электронов. Отсюда следует, что электрический ток в них – это движение электронов проводимости.

Результат прохождения электрического тока в металлах и электропроводящих растворах заметно отличается. Наличие химических процессов в металлах при протекании тока отсутствует. В электролитах под воздействием тока происходит выделение ионов вещества на электродах. Различие заключается в отличии носителей зарядов металла и электролита. В металлах – это свободные электроны, отделившиеся от атомов, в растворах – ионы, атомы или их группы с зарядами.

Необходимые условия существования электрического тока

Первое необходимое условие существования электрического тока любого вещества – наличие носителей заряда.

Для равновесного состояния зарядов необходимо равнение нулю разности потенциалов между любыми точками проводника. При нарушении данного условия, заряд не сможет переместиться. Отсюда следует, что второе необходимое условие существования электрического тока в проводнике – создание напряжения между некоторыми точками.

Упорядоченное движение свободных зарядов, возникающее в проводнике как результат воздействия электрического поля, называют током проводимости.

Такое движение возможно при перемещении в пространстве заряженного проводника или диэлектрика. Подобный электрический ток получил название конвекционного.

Механизм осуществления постоянного тока

Для постоянного прохождения тока в проводнике следует подсоединить к проводнику или их совокупности устройство, в котором постоянно происходит процесс разделения электрических зарядов для поддержания напряжения в цепи. Данный механизм получил название источника тока (генератора).

Силы, разделяющие заряды, называют сторонними. Они характеризуются неэлектрическим происхождением, действуют внутри источника. При разделении зарядов сторонние силы способны создать разность потенциалов между концами цепи.

Если электрический заряд перемещается по замкнутой цепи, то работа электростатических сил равняется нулю. Отсюда следует, что суммарная работа сил A , действующих на заряд, равна работе сторонних A s t . Определение физической величины, характеризующей источник тока, ЭДС источника ε запишется как:

ε = A q ( 1 ) , где значение q подразумевает положительный заряд. Его движение происходит по замкнутому контуру. ЭДС – это не сила. Единица измерения ε = В .

Природа сторонних сил различна. В гальваническом элементе они являются результатом электрохимических процессов. В машине с постоянным током такой силой является сила Лоренца.

Основные характеристики электрического тока

Условно принято считать направление тока за направление движения положительных частиц. Отсюда следует, что направление тока в металлах характеризуется противоположным направлением относительно направления движения частиц.

Электрический ток обладает силой тока.

Сила тока I – скалярная величина, равняется производной от заряда q по времени для тока, который проходит через поверхность S :

Ток может быть постоянным и переменным. При неизменной силе тока с его направлением по времени ток называют постоянным, а выражение силы тока для него примет вид:

I = q t ( 3 ) , где сила тока рассматривается в качестве заряда, проходящего через поверхность S в единицу времени.

По системе С И основная единица измерения силы тока – Ампер ( А ) .

Плотность – это векторная локальная характеристика. Вектор плотности тока j → способен показывать, каким образом распределяется ток по сечению S . Его направление идет в сторону, куда движутся положительные заряды.

Значение вектора плотности тока по модулю равно:

j = d I d S ' ( 4 ) , где d S ' является проекцией элементарной поверхности d S на плоскость, перпендикулярную вектору плотности тока, d I – элементом силы, которая идет через поверхности d S и d S ' .

Представление плотности в металле возможно по формуле:

j → = - n 0 q e υ → ( 5 ) , где n 0 обозначается концентрацией электронов проводимости, q e = 1 , 6 · 10 - 19 К л – зарядом электрона, υ → – средней скоростью упорядоченного движения электронов. Если значение плотностей тока максимальное, то

Закон сохранения заряда

Закон сохранения заряда

Основным физическим законом считается закон сохранения электрического заряда. При выборе произвольной замкнутой поверхности S , изображенной на рисунке 1 , ограничивающей объем V количество выходящего электричества в единицу времени ( 1 секунду) из объема V можно определить по формуле ∮ s j n d S . Такое же количество электричества выражается через заряд - ∂ q ∂ t , тогда получаем:

∂ q ∂ t = - ∮ S j n d S ( 6 ) , где j n считается проекцией вектора плотности на направление нормали к элементу поверхности d S , при этом:

j n = j cos a ( 7 ) , где a является углом между направлением нормали к d S и вектором плотности тока. Уравнение ( 6 ) показывает частое употребление производной для того, чтобы сделать акцент на неподвижности поверхности S .

Выражение ( 6 ) считается законом сохранения электрического заряда в макроскопической электродинамике. Если ток постоянен во времени, тогда запись этого закона примет вид:

∮ S j n d S = 0 ( 8 ) .

Найти формулу для того, чтобы рассчитать конвекционный ток при его возникновении в длинном цилиндре с радиусом сечения R и наличием его равномерной скорости движения υ , который заряжен по поверхности равномерно. Значение напряженности поля у поверхности цилиндра равняется E . Направление скорости движения вдоль оси цилиндра.

Решение

Основой решения задачи берется определение силы тока в виде:

I = d q d t ( 1 . 1 ) .

Из формулы ( 1 . 1 ) следует, что возможно нахождение элемента заряда, располагающегося на поверхности цилиндра.

Напряженность поля равномерно заряженного цилиндра на его поверхности находится по выражению:

E = σ ε 0 ( 1 . 2 ) , где σ является поверхностной плотностью заряда, ε 0 = 8 , 85 · 10 - 12 К л Н · м 2 . Выразим σ из ( 1 . 2 ) , тогда:

σ = E · ε 0 ( 1 . 3 ) .

Связь поверхностной плотности заряда с элементарным зарядом выражается при помощи формулы:

d q d S = σ ( 1 . 4 ) .

Используя ( 1 . 3 ) , ( 1 . 4 ) , имеем:

d q = E · e 0 d S ( 1 . 5 ) .

Выражение элемента поверхности цилиндра идет через его параметры:

d S = 2 π · R d h ( 1 . 6 ) , где d h является элементом высоты цилиндра. Запись элемента заряда поверхности цилиндра примет вид:

d q = E · ε 0 · 2 h · R d h ( 1 . 7 ) .

Произведем подстановку из ( 1 . 7 ) в ( 1 . 1 ) :

I = d ( E · ε 0 · 2 π · Rdh ) d t = 2 πRε 0 E dh dt ( 1 . 8 ) .

Движение цилиндра идет вдоль оси, тогда запишем:

d h d t = υ ( 1 . 9 ) .

I = 2 π R ε 0 E υ .

Ответ: конвективный ток I = 2 π R ε 0 E υ .

Изменение тока в проводнике происходит согласно закону I = 1 + 3 t . Определить значение заряда, проходящего через поперечное сечение проводника, за время t , изменяющегося от t 1 = 3 с до t 2 = 7 c . Каким должен быть постоянный электрический ток, чтобы за аналогичное время происходило то же значение заряда?

Основа решения задачи – выражение, связывающее силу тока и заряд, проходящий через поперечное сечение проводника:

I = d q d t ( 2 . 1 ) .

Формула ( 2 . 1 ) показывает, что нахождение количества заряда, проходящего через поперечное сечение проводника за время от t 1 до t 2 возможно таким образом:

q = ∫ t 1 t 2 I d t ( 2 . 2 ) .

Произведем подстановку имеющегося по условию закона в ( 2 . 2 ) для получения:

q = ∫ t 1 t 2 ( 1 + 3 t ) d t = ∫ t 1 t 2 d t + ∫ t 1 t 2 3 t d t = t 2 - t 1 + 3 · t 2 2 t 1 t 2 = ( t 2 - t 1 ) + 3 2 t 2 2 - t 1 2 ( 2 . 3 ) .

q = 7 - 3 + 3 2 ( 7 2 - 3 2 ) = 4 + 3 2 · 40 = 64 ( К л ) .

Чтобы определить постоянный ток для получения силы используется формула:

I c o n s t = q t ( 2 . 3 ) , где t считается временем, за которое поперечное сечение проводника пройдет заряд q .

Урок 32. Электрический ток в металлах

Свободные электроны – это электроны, не связанные с определенными атомами.

Сверхпроводимость – физическое явление, заключающееся в скачкообразном падении до нуля сопротивления вещества.

Температурный коэффициент сопротивления - величина, равная относительному изменению электрического сопротивления участка электрической цепи или удельного сопротивления вещества при изменении температуры на 1 К.

Основная и дополнительная литература по теме урока:

Мякишев Г. Я., Буховцев Б.Б., Сотский Н.Н. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 216-224.

Рымкевич А.П. Сборник задач по физике. 10-11 класс. - М.: Дрофа, 2009.- С.81-89.

М.М. Балашов О природе М., Просвещение, 1991г.

Е.А. Марон, А.Е. Марон Сборник качественных задач по физике. М., Просвещение, 2006

Я.И. Перельман Занимательная физика. М.: “Наука”, 1991.

Основное содержание урока

Все тела по проводимости электрического тока делятся на проводники, полупроводники и диэлектрики. Для того чтобы электрическую энергию доставить от источника тока потребителю составляют электрические цепи. В большинстве случаев в электрической цепи используются металлические провода. По физической природе зарядов – носителей электрического тока, электропроводность подразделяют на:

Какие заряженные частицы движутся в металлах при наличии тока?

После открытия в 1897 году английским ученым Дж. Дж. Томсоном электрона стали разрабатываться теории, объясняющие электропроводность металлов. Автором первой теории был Пауль Друде – немецкий физик. Эта теория нуждалась в опытном обосновании. В 1901 г. немецкий физик Э. Рикке поставил опыт по исследованию прохождения тока в металлах.

Результаты опыта свидетельствовали о том, что в переносе заряда в металлах ионы не участвуют. Впоследствии вопросом проводимости металлов заинтересовались и другие учёные. В 1913 году российские учёные Л. И. Мандельштам и Н. Д. Папалекси провели опыты по исследованию проводимости металлов. Суть опытов сводилась к тому, что катушка, на которую наматывали металлическую проволоку приводили во вращательное движение и резко тормозили. При торможении электроны продолжали двигаться по инерции и гальванометр, соединенный с катушкой фиксировал появление тока. По направлению отклонения стрелки гальванометра было установлено, что ток создается движением отрицательно заряженных частиц. На основании измерения отношения заряда частиц к их массе выяснилось, что ток создается движением свободных электронов. Аналогичный опыт был поставлен в 1916 году американскими учеными Т. Стюартом и Р. Толменом. Результаты опытов говорили, что ток в металлах создается движением электронов.


После анализа имеющихся данных о прохождении тока в металлах разными учеными была разработана современная классическая теория проводимости тока металлами. Основные положения электронной теории проводимости металлов.

1. Металл можно описать следующей моделью: кристаллическая решетка ионов погружена в идеальный электронный газ, состоящий из свободных электронов. У большинства металлов каждый атом ионизирован, поэтому концентрация свободных электронов приблизительно равна концентрации атомов 1023- 1029м-3 и почти не зависит от температуры.

2.Свободные электроны в металлах находятся в непрерывном хаотическом движении.

3. Электрический ток в металле образуется только за счет упорядоченного движения свободных электронов.

Опираясь на данную теорию удалось объяснить основные законы электрического тока в металлах. Исходя из электронной теории можно найти связь между силой тока в металлах и скоростью движения электронов.

Сила тока равна произведению заряда электрона, их концентрации, площади сечения проводника и средней скорости движения электронов:

Отсюда

Если в эту формулу подставлять числовые данные силы тока, концентрации и площади сечения для разных металлов, то мы увидим, что средняя скорость движения электронов составляет всего лишь какие-то доли миллиметра в секунду. Когда говорят о скорости распространения тока имеют в виду скорость распространения электрического поля в проводнике, которое равно скорости света.

На силу тока в проводнике влияет и сопротивление проводника. Опыт показывает, что сопротивление металлов зависит от температуры. Увеличение сопротивления можно объяснить тем, при повышении температуры увеличивается скорость и амплитуда хаотического движения ионов кристаллической решетки металла и свободных электронов. Это приводит к более частым их соударениям, что затрудняет направленное движение электронов, то есть увеличивает электрическое сопротивление.

зависимость сопротивления металлов от температуры выражается формулой:

При нагревании размеры проводника практически не меняются, в основном меняется удельное сопротивление. Учет зависимости сопротивления от температуры используется в термометрах сопротивления.

Формула зависимости удельного сопротивления металлического проводника от температуры имеет вид:

где ρ0 - удельное сопротивление при 0 градусов,

α - температурный коэффициент сопротивления.

Графиком зависимости ⍴(t) является прямая.


Хотя коэффициент α довольно мал, учет зависимости сопротивления от температуры при расчете нагревательных приборов совершенно необходим.

При понижении температуры сопротивление металлов должно уменьшаться. В 1911 году датский физик Х. Каммерлинг - Оннес открыл явление, названное сверхпроводимостью. Исследуя зависимость сопротивления ртути от температуры, он обнаружил, что при температуре 4,12 К сопротивление ртути исчезает. В сверхпроводящее состояние могут перейти многие химические соединения и сплавы. Некоторые вещества, переходящие при низких температурах в сверхпроводящее состояние, не являются проводниками при обычных температурах.

Вещества, находящиеся в сверхпроводящем состоянии, приобретают новые свойства. Наиболее важным из них является способность длительное время (многие годы) поддерживать без затухания электрический ток в проводниках.

Классическая электронная теория не способна объяснить явление сверхпроводимости. Теоретическое объяснение явления сверхпроводимости на основе квантово-механических представлений было дано учеными Дж. Бардиным, Дж. Шриффером (США) и Н. Н. Боголюбовым (СССР) в 1957 г.

В 1986 году была обнаружена высокотемпературная сверхпроводимость (при 100 К).

В настоящее время ведутся интенсивные работы по поиску новых веществ переходящими в сверхпроводящее состояние при более высокой температуре. Ученые надеются получить вещество в сверхпроводящем состоянии при комнатной температуре. Если удастся создать сверхпроводник при нормальной температуре, то будет решена проблема передачи электроэнергии по проводам без потерь.

Следует отметить, что до настоящего времени механизм высокотемпературной сверхпроводимости керамических материалов до конца не выяснен.

Открытие вещества, переходящего в сверхпроводящее состояние при комнатной температуре, позволило бы упростить решение многих технических вопросов. Во-первых, отсутствие сопротивления означает отсутствие каких-либо потерь на нагревание. Отсутствие нагревания и потерь энергии на него чрезвычайно важно для электродвигателей и электронной вычислительной техники, а также для передачи электроэнергии.

В сверхпроводниках из-за отсутствия сопротивления протекают чрезвычайно высокие токи, создающие сильные магнитные поля, что может применяться при термоядерном синтезе для удержания высокотемпературной плазмы в реакторе.

На сегодняшний момент в некоторых странах существует железнодорожная сеть с поездами на магнитной подушке. После открытия сверхпроводимости Камерлинг-Оннес, пытаясь создать сверхпроводящий электромагнит, обнаружил, что изменение тока, или же магнитные поля, разрушают эффект сверхпроводимости. Только к середине двадцатого века удалось создать сверхпроводящие электромагниты. На данный момент продолжаются исследования по изучению высокотемпературной сверхпроводимости.

Разбор типовых тренировочных заданий

1. Сопротивление железного проводника при 0 0 С и 600 0 С равны соответственно 2 Ом и 10 Ом. Каков температурный коэффициент железа?

Зависимость сопротивления металлов от температуры определяется формулой

Из этой формулы выразим температурный коэффициент железа – α

После подстановки числовых данных получаем

2. Какова скорость дрейфа электронов в медном проводе диаметром 5 мм, по которому к стартеру грузовика подводится ток 100 А. Молярная масса меди

Сила тока в проводнике равна:

Выразим скорость из этой формулы:

Концентрацию электронов найдем по формуле:

Число электронов найдём по формуле:

Площадь сечения равна:

Учитывая всё это запишем конечную формулу для расчёта скорости дрейфа электронов:

Опорный конспект по теме "Электрический ток в металлах. Работа выхода"

Металлы в твёрдом состоянии имеют кристаллическую структуру: расположение атомов в пространстве характеризуется периодической повторяемостью и образует геометрически правильный рисунок, называемый кристаллической решёткой.


Проводимость металлов обусловлена наличием свободных электронов, которые могут перемещаться между ионами, находящимися в узлах кристаллической решётки.

Газ свободных электронов в кристаллической решетке металла представляет собой модель, показанную на. рисунке 15.1, где выделена траектория одного из электронов.

Если металлический проводник включить в замкнутую цепь, содержащую источник тока, то

свободные электроны продолжают Рисунок 15.1

совершать хаотическое тепловое движение, но теперь — под действием возникшего внешнего электрического поля — они вдобавок начнут перемещаться упорядоченно. Это направленное течение электронного газа, накладывающееся на тепловое движение электронов, и есть электрический ток в металле (поэтому свободные электроны называются также электронами проводимости). Скорость упорядоченного движения электронов в металлическом проводнике составляет приблизительно 0,1 мм/с.

О природе электрического тока в металлах было поставлено множество опытов.

1) Опыт Рикке

В 1901 году немецкий физик Э. Рикке поставил опыт, доказывающий проводимость металлов за счёт свободных электронов.

В электрическую цепь были включены три прижатых друг к другу цилиндра: два медных по краям и один алюминиевый между ними (рисунок 15.2). По этой цепи пропускался электрический ток в течение года.

Рисунок 15.2. Опыт Рикке

За год сквозь цилиндры прошёл заряд более трёх миллионов кулон. Предположим, что каждый атом металла теряет по одному валентному электрону, так что заряд иона равен элементарному заряду qe = 1,6·10 -19 Кл Если ток создаётся движением положительных ионов, то нетрудно подсчитать (сделайте это сами!), что такая величина прошедшего по цепи заряда соответствует переносу вдоль цепи около 2кг меди.

Однако после разъединения цилиндров было обнаружено лишь незначительное проникновение металлов друг в друга, обусловленное естественной диффузией их атомов (и не более того). Электрический ток в металлах не сопровождается переносом вещества, поэтому положительные ионы металла не принимают участия в создании тока.

2) Опыты Стюарта и Толмена

Прямое экспериментальное доказательство того, что электрический ток в металлах создаётся движением свободных электронов, было дано в опыте Т.Стюарта и Р.Толмена (1916 год).

Эксперименту Стюарта–Толмена предшествовали качественные наблюдения, сделанные четырьмя годами ранее русскими физиками Л.И.Мандельштамом и Н.Д.Папалекси. Они обратили внимание на так называемый электроинерционный эффект: если резко затормозить

Однако никаких количественных результатов Мандельштам и Папалекси не получили, и наблюдения их опубликованы не были. Честь назвать опыт своим именем принадлежит Стюарту и Толмену, которые не только наблюдали указанный электроинерционный эффект, но и произвели необходимые измерения и расчёты.

Установка Стюарта и Толмена показана на рисунке

Катушка с большим числом витков металлического провода приводилась в быстрое вращение вокруг своей оси. Концы обмотки с помощью скользящих контактов были подсоединены к специальному прибору — баллистическому гальванометру, который позволяет измерять проходящий через него заряд.

После резкого торможения катушки в цепи возникал импульс тока. Направление тока указывало на то, что он вызван движением отрицательных зарядов. Измеряя баллистическим гальванометром суммарный заряд, проходящий по цепи, Стюарт и Толмен вычислили отношение заряда одной частицы к её массе q/m. Оно оказалось равно отношению заряда к массе электрона, которое в то время уже было хорошо известно:

Так было окончательно выяснено, что носителями свободных зарядов в металлах являются свободные электроны. Как видите, этот давно и хорошо знакомый вам факт был установлен сравнительно поздно — учитывая, что металлические проводники к тому моменту уже более столетия активно использовались в самых разнообразных экспериментах по электромагнетизму (сравните, например, с датой открытия закона Ома — 1826 год. Дело, однако, заключается в том, что сам электрон был открыт лишь в 1897 году).

На этой основе можно объяснить существование работы выхода электронов из металла. Оказывается между металлом и вакуумом существует контактная разность потенциалов. Так как в процессе движения электроны могут покидать его, образуя «электронное облако». Часть электронов снова возвращается в металл, другие снова его покидают. Явление очень похоже на испарение жидкости. Толщина этого слоя равна нескольким межатомным расстояниям и составляет d = (10 -10 – 10 -9 ) м. По вычислениям контактная разность потенциалов составляет примерно φ = 1,4 В.

Для выхода электрона из металла тоже совершаться работа, которая называется работой выхода. В вакууме работа выхода вычисляется по формуле:

Для всех металлов работу выхода можно определить по справочнику:


3) Классическая электронная теория проводимости металлов

В 1900 году П.Друде создал классическую электронную теорию проводимости металлов, которую затем развил Г. Лоренц. Согласно этой теории , электронный газ в металле рассматривается по аналогии с идеальным газом.

Основные положения теории:

1) Свободные электроны в металлах ведут себя как молекулы идеального газа и подчиняются его законам.

2) Движение свободных электронов в металлах подчиняется законам механики Ньютона.

3) Свободные электроны в процессе хаотического движения сталкиваются не между собой, а с ионами кристаллической решётки.

4) При столкновении электронов с ионами, электроны передают свою кинетическую энергию полностью.

Теория, построенная учёными является приближенной (грубой), но объясняет многие законы электрического тока в металлах. Количественная теория движения электронов в металле строиться на законах квантовой физики.

Решение задач

Задача 1 Сможет ли вылететь электрон из алюминия, летящий со скоростью 8500 км/с, если работа выхода электрона из алюминия равна 4,25эВ (табличная величина)?

Дано: = 8500 км/с = 85·10 5 м/с, Авых = 4,25 эВ

Найти: сможет ли вылететь электрон из алюминия - ?

Решение: для ответа на вопрос необходимо сравнить кинетическую энергию электрона с работой выхода электрона из металла, если Екин> Авых, то электрону хватит этой кинетической энергии, чтобы вылететь из металла.

Переведём работу выхода из электрон Вольт в Джоули Авых = 4,25 эВ = 4,25·1,6·10 -19 = 6,8·10 -19 Дж.

Найдём кинетическую энергию электрона:

Так как Екин> Авых, значит электрон сможет вылететь из алюминия Ответ: электрон сможет вылететь из алюминия.

Читайте также: