При освещении металлической пластины светом длиной волны наблюдается

Обновлено: 23.01.2025

Ход урока.

Организационный этап. ( Вступительное слово учителя)

Мы знаем, что физика – наука о природе. Вспомним Ф.И.Тютчева:

Не то, что мните вы, природа:

Не слепок, не бездушен лик, -

В ней есть душа, в ней есть свобода.

В ней есть любовь, в ней есть язык.

Да, у природы есть свой язык, и мы должны его понимать. На каждом уроке физики, при изучении любого явления мы учимся этому языку.

На предыдущих уроках мы познакомились с вами с «азбукой» квантовой физики и сегодня продолжим «читать» книгу природы.

Энергией» hv » снабжен,

Летит к нам квант, то бишь фотон.

Его хватает электрон,

И … до свидания, дом родной!

Это четверостишие вашего одноклассника. О чем в нем идет речь? Расшифруйте его физический смысл.

Закрепление изученного материала и продолжение формирования понятия фотоэффект.

1.Фронтальный опрос

Путь познания природы таков: открытие – исследование – объяснение. При изучении нашей темы этим этапам можно сопоставить три даты : 1887—1890 –1905 г.г. С именами каких ученых можно связать каждый этап? Какое значение имели их работы для квантовой физики?

1887 г.—Генрих Герц открыл явление фотоэффекта.

1890 г.—Александр Григорьевич Столетов установил

количественные закономерности фотоэффекта.

И только преждевременная смерть не позволила

ему довести исследования до конца и установить,

что является носителями фототока. Мы гордимся

выдающимися трудами ученого.

1905 г.—Альберт Эйнштейн обосновал квантовую природу

фотоэффекта и все его закономерности.

Что называют фотоэлектрическим эффектом ?

Сформулируйте законы внешнего фотоэффекта.

Ответьте на вопросы по статье А.Г. Столетова «Актино-электрические исследования».

Сравните установку А.Г.Столетова с установкой, изображенной в учебнике. Назовите их принципиальное сходство и различие.

Найдите, какие именно ( по номерам) из перечисленных А.Г.Столетовым результатов опыта превратились в известные нам законы фотоэффекта.

а) фотоэффект безынерционен ( №7. Разряжающее действие лучей обнаруживается даже при весьма кратковременном освещении, причем между моментом освещения и моментом соответственно разряда не протекает заметного времени.);

б) сила тока прямо пропорциональна энергии световой волны (№8. Разряжающее действие… пропорционально энергии лучей, падающих на разряжаемую поверхность.);

в) существует «красная граница фотоэффекта» (№4. Разряжающим действием обладают… если не исключительно, то с громадным превосходством перед прочими, лучи самой преломляемости, недостающие в солнечном спектре ( 295*10 мм). Чем спектр обильнее такими лучами, тем сильнее действие.

Какой из законов не мог быть установлен А.Г.Столетовым. Почему?

Найдите ошибку в следующем утверждении: « Чем больше освещенность, тем большая энергия передается отдельным электронам вещества. Чем большая энергия передается электронам, тем больше должна быть при вылете их кинетическая энергия. Это значит, что кинетическая энергия электронов должна зависеть от интенсивности света».

Какое напряжение называется задерживающим?

На что расходуется энергия фотонов при фотоэффекте?

В чем сущность гипотезы Эйнштейна в теории фотоэффекта?

Что такое фотон?

Что такое красная граница фотоэффекта?

2. Решите задачу:

Никогда не знаешь, что может тебе пригодиться в жизни ! Убедимся в этом, решив следующую задачу :

«Дверь имела хитроумное устройство: при попытке постороннего её открыть, ультрафиолетовая лампа с длиной волны 0.1 мкм освещала вольфрамовую пластинку фотоэлемента. Вырванные электроны замыкали электрическую цепь, которая открывала шлюз. В коридор устремлялась вода, кишащая пиявками, крокодилами, пираньями и акулами. Джеймс Бонд, агент 007, вдруг вспомнил, что в детстве мама говорила ему: - Запомни, сынок, работа выхода электронов из вольфрама 4,5 эВ! –Зачем это мне, мама? - Удивлялся маленький Джеймсик. – Никогда не знаешь, что может пригодиться тебе в жизни, - отвечала мама. Тогда он быстро произвел вычисления и подключил к фотоэлементу источник постоянного тока, дающий на его зажимах напряжение в 7,95 В, потянул за ручку двери и …»

Какие же вычисления произвел Джеймс Бонд? Что, в итоге, произошло?

3. Проверка домашнего задания.

На предыдущем уроке вы выполняли виртуальную практическую работу «Проверка законов фотоэффекта». Сейчас, используя обработанные вами дома данные этой работы, с помощью интерактивной доски и компьютерной модели фотоэффекта (Приложение 3) продемонстрируйте нам :

Зависимость тока насыщения от мощности излучения. Как зависит количество электронов, вырываемых светом с поверхности металла за 1 сек от мощности светового потока? ( вспомните определение силы тока).

Докажите, что зависимость максимальной кинетической энергии фотоэлектронов от частоты излучения равнозначна зависимости задерживающего напряжения от длины волны. Продемонстрируйте эту зависимость.

Продемонстрируйте наличие «красной» границы фотоэффекта для любого металла.

Покажите, как с помощью этой модели можно определить постоянную Планка?

Каковы границы применимости данной компьютерной модели?

Какие бы вы внесли дополнения в неё?

4..Решение графических задач :

Используя системы координат на интерактивной доске и ваши домашние работы, постройте:

1). График зависимости I от Р.

2).График зависимости кинетической энергии электронов от частоты излучения.

III Обобщение теории Эйнштейна с помощью алгоритм решения задач на фотоэффект .

Ознакомимся с алгоритмом применения уравнения Эйнштейна для фотоэффекта

к решению задач повышенной сложности. » Отправим «фотоэлектрон в путешествие по электрическим и магнитным полям, т.е.объединим уравнения электродинамики и теорию фотоэффекта (получают раздаточный материал) и используем его при решении домашних задач. (см. Приложение 1).

IV Работа с коррекционным тестом .

Выполним самостоятельную работу (тест) опираясь на данный алгоритм. (см. Приложение 2.)

V Рефлексия.

«Увидели» явление фотоэффекта, повторили его физический смысл и его законы, используя возможности ИКТ и применяя деятельностный подход в обучении.

Ваше мнение об уроке:

Сегодня я узнал…

VI Домашнее задание :

В стихотворении А.С.Пушкина читаем «… гений, парадоксов друг». Знаете ли вы что такое парадокс? Парадокс – это неожиданное явление, не соответствующее обычным представлениям. Дома просмотрите §66 учебника, стр.163, и найдите, в чем парадокс фотоэффекта.

Ответ: парадокс состоит в том, что при увеличении потока падающего света заданной длины волны не происходит увеличения скорости фотоэлектронов, а свет длиной меньшей порогового значения вообще не может выбить из металла электроны независимо от мощности светового потока.

Решить задачи: КИМ для подготовки к ЕГЭ. Раздел «Квантовая механика»

С1, С3, С6, используя алгоритм применения уравнения Эйнштейна для

решения задач на фотоэффект.

Приложение 1.

применения уравнения Эйнштейна для фотоэффекта

к решению задач

1. Фотоэффект описывается уравнением Эйнштейна:

в котором - энергия светового кванта (фотона),

- работа выхода электрона из металла,

- кинетическая энергия фотоэлектрона.

2. Нахождение энергии фотона.

2.1. Если в задаче приводится значение длины волны, используйте формулу связи длины волны и скорости её распространения с частотой .

2.2. Энергию одного фотона можно найти, зная энергию излучения:

где N – число фотонов.

Энергия излучения связана с интенсивностью излучения (поверхностной плотностью потока излучения) соотношением

2.3. Энергия фотона связана с собственными характеристиками фотона как световой частицы. Формула связи импульса и энергии фотона:

3. Нахождение работы выхода электрона из металла.

Значение работы выхода электрона может быть определено:

3.1. с помощью справочной таблицы «Работа выхода электрона из металла», если известен металл и нет усложняющих нахождение работы выхода величин.

3.2. через значение красной границы фотоэффекта для данного металла в данном состоянии .

4. Поведение фотоэлектрона после вылета из металла может быть описано из следующих соображений:

4.1. В задерживающем однородном электрическом поле, согласно теореме о кинетической энергии, изменение кинетической энергии фотоэлектрона равно работе сил поля , т. е. (См. Физика – 10 под ред. Пинского, § 43).

4.2. Следует помнить, что движение фотоэлектронов вдоль силовых линий однородного электрического поля – движение с постоянным ускорением . Поэтому, в зависимости от постановки вопроса задачи, следует применять либо формулы электростатики (например, формулу связи напряжённости и напряжения однородного электрического поля для расчёта расстояния d , пройденного электроном до остановки в задерживающем поле), либо формулы кинематики равноускоренного движения, позволяющие рассчитать перемещение d и скорость фотоэлектрона в определённый момент времени ().

4.3. Если фотоэлектроны попадают в однородное магнитное поле, то в зависимости от угла между вектором скорости и вектором магнитной индукции они движутся прямолинейно ( = 0º, = 180º), по окружности ( = 90º) или по спирали (90º > > 0º).

Например, при = 90º фотоэлектрон движется под действием силы Лоренца с ускорением по окружности радиуса , при этом период обращения фотоэлектрона равен (См. Физика – 10 под ред. Пинского, § 55)

4.4. В скрещенных электрическом и магнитном полях фотоэлектрон может двигаться прямолинейно с постоянной скоростью при условии (См. Физика – 10 под ред. Пинского, § 55)

4.5. Зная максимальную скорость вылета фотоэлектрона, несложно определить импульс электрона, длину волны де Бройля и т. д.

5. Полезно помнить , что в простейших случаях вычисления можно проводить во внесистемных единицах, принимая значение постоянной Планка h = .

При освещении металлической пластины светом длиной волны наблюдается

Тип 24 № 29127

Обкладки плоского воздушного конденсатора изготовлены из двух тонких квадратных металлических пластин со стороной a (на рисунке показан вид сбоку). Расстояние между обкладками d

В соответствии с формулой для ёмкости параллельно соединенных конденсаторов, ёмкость рассматриваемого конденсатора в данный момент равна

3. Заряд конденсатора в данный момент равен

Поскольку пластина движется равномерно, то x = Vt и

Следовательно, сила тока, текущего через источник, равна

Этот постоянный ток источника заряжает конденсатор, поскольку его ёмкость возрастает при вдвигании пластины в пространство между обкладками.

4. Полученный результат справедлив при

В момент времени пластина займет всё пространство между обкладками конденсатора, после чего начнёт выходить наружу. Из соображений симметрии ясно, что при

через источник будет протекать точно такой же по модулю, но противоположный по знаку ток −I0, поскольку ёмкость, а значит, и заряд конденсатора будут уменьшаться.

5. График зависимости силы электрического тока I, протекающего через источник напряжения, от времени t изображён на рисунке. Отметим, что в рамках рассматриваемой модели в определённые моменты времени сила тока изменяется скачкообразно: в момент t = 0 — от 0 до I0; в момент от I0 до −I0; в момент — от –I0 до 0.

Тип 25 № 4432

Две тонкие вертикальные металлические пластины расположены параллельно друг другу, расстояние между ними равно 2 см. Площадь поперечного сечения каждой из пластин равна 15 000 см 2 . Левая пластина имеет заряд пКл, заряд второй пластины Найдите чему равен модуль напряжённости электрического поля между пластинами на расстоянии 0,5 см от левой пластины. Ответ приведите в вольтах на метр, округлите до сотых.

Описанная система образует плоский конденсатор. Электростатическое поле внутри плоского конденсатора однородно. Оно связано с напряжением на конденсаторе соотношением Напряжение можно найти, зная емкость конденсатора и заряд: Таким образом, искомая напряженность поля равна

Когда подставляетe в формулу напряженности d нельзя жe сокращать,так как в емкости конденастора у вас d=расстоянию между пластинами,а в в формуле напряженности расстояние от левой пластины которое дано в условии (0,5 см).

Элек­тро­ста­ти­че­ское поле внут­ри плоского кон­ден­са­то­ра од­но­род­но.

объясните, пожалуйста, как найти заряд конденсатора в целом, если известны значения зарядов пластин?

Заряд кон­ден­са­то­ра равен за­ря­ду пла­стин.

Задания Д32 C3 № 4583

Металлическая пластина облучается светом. Работа выхода электронов из данного металла равна 3,7 эВ. Вылетающие из пластины фотоэлектроны попадают в однородное электрическое поле напряжённостью 130 В/м. Вектор напряжённости поля направлен к пластине перпендикулярно её поверхности. Измерения показали, что на расстоянии 10 см от пластины максимальная кинетическая энергия фотоэлектронов равна 15,9 эВ. Определите частоту падающего на пластину света.

Согласно уравнению фотоэффекта, частота света равна

Направление напряженности электрического поля совпадает с направлением силы, действующей на положительный заряд. Электроны заряжены отрицательно, поэтому поле, направленное перпендикулярно к пластине, будет ускорять электроны. На отрезке длиной x электрическое поле совершит работу по разгону электрона величиной Таким образом, максимальная кинетическая энергия электронов на расстоянии 10 см от пластины равна

Таким образом, работа частота равна

Задания Д32 C3 № 7163

Металлическая пластина облучается светом частотой υ = 1,6 · 10 15 Гц. Работа выхода электронов из данного металла равна 3,7 эВ. Вылетающие из пластины фотоэлектроны попадают в однородное электрическое поле напряжённостью 130 В/м, причём вектор напряжённости направлен к пластине перпендикулярно её поверхности. Какова максимальная кинетическая энергия фотоэлектронов на расстоянии 10 см от пластины?

Согласно уравнению Эйнштейна для фотоэффекта энергия поглощаемого фотона равна сумме работы выхода фотоэлектрона из металла и максимальной кинетической энергии фотоэлектрона:

В электрическом поле на электрон действует сила, направление которой противоположно направлению вектора напряжённости поля. Поэтому в нашем случае фотоэлектроны будут ускоряться полем. В точке измерения их максимальная кинетическая энергия где U — разность потенциалов между поверхностью пластины и эквипотенциальной поверхностью на расстоянии L = 10 см от неё. Поскольку поле однородное и вектор Е перпендикулярен пластине, то U = EL. Решая систему уравнений, находим: Отсюда:

Задания Д8 B14 № 2437

Основным свойством pn-перехода является

1) уменьшение сопротивления при нагревании

2) уменьшение сопротивления при освещении

3) односторонняя проводимость

4) увеличение сопротивления при нагревании

Основным свойством pn-перехода является односторонняя проводимость. На этом основано его широкое применение в приборах, называемых полупроводниковыми диодами.

Не могли бы вы описать что из себя представляет "p—n-переход", в смысле это переход чего во что?

В pn-переходе никаких превращений, как, например, в фазовый переходе, не происходит. Так называется область на стыке двух полупроводников p- и n-типа, в которой происходит переход от одного типа проводимости к другому.

В качества напоминания:

1) Полупроводник p-типа — полупроводник, в котором основными носителями заряда являются дырки.

2) Полупроводники n-типа — полупроводник, в котором основные носители заряда — электроны проводимости.

Спасибо, теперь буду знать! =)

Задания Д21 № 3176

При освещении металлической пластины светом частотой наблюдается явление фотоэлектрического эффекта. Установите соответствие между физическими величинами, характеризующими процесс фотоэффекта, перечисленными в первом столбце, и их изменениями во втором столбце при увеличении частоты падающего на пластину света в 2 раза.

А) длина световой волны

Б) энергия фотона

В) работа выхода

Г) максимальная кинетическая энергия фотоэлектрона

1) остаётся неизменной

2) увеличивается в 2 раза

3) уменьшается в 2 раза

4) увеличивается более чем в 2 раза

5) увеличивается менее чем в 2 раза

В вопросе Г) максимальная кинетическая энергия фотоэлектрона увеличится менее чем в 2 раза. Из приведенных вами формул получается, что Е2/Е1=(2hv-A)/(hv-A)=2 -A/(hv-A)

Задания Д21 № 3181

При освещении металлической пластины светом длиной волны наблюдается явление фотоэлектрического эффекта. Установите соответствие между физическими величинами, характеризующими процесс фотоэффекта, перечисленными в первом столбце, и их изменениями во втором столбце при уменьшении в 2 раза длины волны падающего на пластину света.

А) частота световой волны

1) остается неизменной

Отношение больше единицы, значит, максимальная кинетическая энергия фотоэлектронов увеличится более чем в 2 раза (Г — 4).

Тип 26 № 3420

Дифракционная решетка с периодом м расположена параллельно экрану на расстоянии 1,8 м от него. Между решеткой и экраном вплотную к решетке расположена линза, которая фокусирует свет, проходящий через решетку, на экране. Какого порядка максимум в спектре будет наблюдаться на экране на расстоянии 21 см от центра дифракционной картины при освещении решетки нормально падающим пучком света длиной волны 580 нм? Угол отклонения лучей решеткой считать малым, так что

Поскольку в условии сказано, что линза фокусирует свет на экран, а после прохождения дифракционной решетки на нее по-прежнему падают параллельные пучки света (правда направленные под разными углами к главной оптической оси), значит, что на экране располагается фокальная плоскость линзы, ее фокус равен F = 1,8 м. Дифракционные максимумы наблюдаются под углами (эти углы отсчитываются как раз от оптической оси линзы), определяемыми соотношением где k — номер максимума. После прохождения решетки все лучи, относящиеся к определенному максимуму параллельны друг другу. Линза преломляет все лучи, кроме луча, прошедшего через ее оптический центр. Пересечение этого луча с плоскостью экрана и определяет положение дифракционного максимума на экране. Нулевой максимум располагается прямо за оптическим центром. Определим номер максимума, отстоящего от этой точки на Из рисунка ясно, что В условии задачи сказано, что углы можно считать малыми, а значит, для номера максимума имеем:

21. Квантовая физика (изменение физических величин в процессах, установление соответствия)

На металлическую пластинку направили пучок света от лазера, вызвав фотоэффект. Интенсивность лазерного излучения плавно увеличивают, не меняя его частоты. Как меняются в результате этого число вылетающих в единицу времени фотоэлектронов и их максимальная кинетическая энергия?
Для каждой величины определите соответствующий характер изменения:
1) увеличится
2) уменьшится
3) не изменится
Запишите в ответ выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.


При увеличении интенсивности увеличивается количество фотонов, следовательно, увеличивается количество вылетающих электронов.
Максимальная кинетическая энергия зависит от частоты падающего света и не зависит от его интенсивности
Уравнение Энштейна (фотоэффект): \[h\nu=A_>+E_k\]

При освещении металлической пластины светом длиной волны \(\lambda\) наблюдается явление фотоэлектрического эффекта. Установите соответствие между физическими величинами, характеризующими процесс фотоэффекта, перечисленными в первом столбце, и их изменениями во втором столбце при уменьшении в 2 раза длины волны падающего на пластину света. \[\begin <|c|c|>\hline \text < ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ>& \text< ИХ ИЗМЕНЕНИЯ>\\ \hline \text< А) частота световой волны>& \text< 1) остается неизменной>\\ \text < Б) энергия фотона>& \text< 2) увеличивается в 2 раза>\\ \text < В) работа выхода>& \text< 3) уменьшается в 2 раза>\\ \text< Г) максимальная кинетическая энергия фотоэлектрон>а& \text < 4) увеличивается более чем в 2 раза>\\ & \text < 5) увеличивается менее чем в 2 раза>\\ \hline \end\]


При уменьшении длины волны частота света увеличивается \[\nu=\frac<\lambda>\] A) 2
Энергия фотона: \[E=h\nu=\frac<\lambda>\] Б) 2
Работа выхода – это характеристика материала
В) 1
Уравнение Энштейна (фотоэффект): \[h\nu=A_>+E_k\] Г) 4

На дифракционную решётку с периодом \(d\) перпендикулярно её поверхности падает параллельный пучок света с длиной волны \(\lambda\) . Определите, как изменятся число наблюдаемых главных дифракционных максимумов и расстояние от центра дифракционной картины до первого главного дифракционного максимума, если увеличить длину волны падающего света.
Для каждой величины определите соответствующий характер изменения:
1) увеличится;
2) уменьшится;
3) не изменится.
Запишите в ответ цифры, расположив их в порядке, соответствующем таблице:


Дифракционная решетка: \[dsin\varphi=m\lambda\] Число наблюдаемых максимумов определяется, когда \(sin\varphi=1\)
При увеличении длины волны число наблюдаемых максимумов уменьшается.
Из формулы дифракционной решетки при увеличении длины волны угол, под которым наблюдается максимум увеличивается, следовательно, расстояние между максимумами увеличивается.

На металлическую пластинку падает пучок монохроматического света. При этом наблюдается явление фотоэффекта. На графиках в первом столбце представлены зависимости энергии от длины волны \(\lambda\) и частоты света \(\nu\) . Установите соответствие между графиком и той энергией, для которой он может определять представленную зависимость. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

ВИД ЗАВИСИМОСТИ
1) зависимость максимальной кинетической энергии фотоэлектронов от частоты падающего света
2) зависимость энергии падающих фотонов от частоты падающего света
3) зависимость энергии падающих фотонов от длины волны света
4) зависимость потенциальной энергии взаимодействия
фотоэлектронов с ионами металла от длины волны падающего света


А) График представляет собой часть гиперболы, следовательно, это энергия падающих фотонов от длины волны: \[E=\dfrac<\lambda>\] т.к. длина волны находится в знаменателе.
Б) Рассмотрим уравнение Энштейна: \[h\nu =A+E_\] если \(h \nu < A\) , то кинетическая энергия равна 0, а если \(h\nu>A\) , то кинетическая энергия больше 0, следовательно под Б номер 1

На металлическую пластинку падает пучок монохроматического света. При этом наблюдается явление фотоэффекта. На графике А представлена зависимость энергии фотонов, падающих на катод, от физической величины \(x_1\) , а на графике Б – зависимость максимальной кинетической энергии фотоэлектронов от физической величины \(x_2\) . Какая из физических величин отложена на горизонтальной оси на графике А и какая – на графике Б?
К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.


ФИЗИЧЕСКАЯ ВЕЛИЧИНА x
1) длина волны
2) массовое число
3) заряд ядра
4) частота


А) График представляет собой часть гиперболы, следовательно, это энергия падающих фотонов от длины волны: \[E=\dfrac<\lambda>\] т.к. длина волны находится в знаменателе.
Б) Рассмотрим уравнение Энштейна: \[h\nu =A+E_\] если \(h \nu < A\) , то кинетическая энергия равна 0, а если \(h\nu>A\) , то кинетическая энергия больше 0, следовательно под Б номер 4

Интенсивность монохроматического светового пучка плавно увеличивают, не меняя длину волны света. Как изменяются при этом запирающее напряжение и скорость каждого фотона? Для каждой величины определите соответствующий характер изменения:

Для каждой величины определите соответствующий характер изменения:
1) увеличится
2) уменьшится
3) не изменится
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

“Досрочная волна 2019 вариант 1”


От интенсивности не зависит ни скорость, ни запирающее напряжение: \[h\nu = A+ eU=A+\dfrac\]

Урок 22. Фотоэффект

Продолжите предложение, выбрав правильный вариант ответа.

явление облучения вещества светом

явление вырывания электронов из вещества под действием света

явление распространения фотонов

Фотоэффект

Заполните пропуски в тексте.

Величина фототока насыщения интенсивности света, падающего на катод.

Формулы физических величин

Установите соответствие между физической величиной и формулой.

Красная граница фотоэффекта

Кинетическая энергия фотоэлектрона

Энергия кванта света

Соедините попарно фигуры так, чтобы одна из пар была ответом задачи.

Работа выхода электрона из цинка равна 5,98 $\cdot 10^$Дж. Какова минимальная частота света, при котором будет происходить фотоэффект для цинка?

Законы фотоэффекта

Выделите мышкой 4 слова, которые относятся к теме урока.

1. Учёный, создавший теорию фотоэффекта.

2. Раздел физики, изучающий явление фотоэффекта, называется «_________ физика».

3. Название максимального значения силы тока при фотоэффекте – «ток _________».

4. Металл, из которого была изготовлена пластина в опыте Столетова А.Г.

Заполните пропуски в тексте, выбрав правильные варианты ответа из выпадающего меню.

Работа выхода электронов из ртути равна 4,53 эВ. При частоте излучения ·$10^$Гц запирающее напряжение окажется равным 3 В. Эта частота соответствует длине волны ·$10^$ м.

Учёные

Найдите 3 слова, которые являются фамилиями учёных, внёсших вклад в развитие теории фотоэффекта.

Частота падающего света

Соедините попарно геометрические фигуры так, чтобы ответить на вопрос задачи.

Металлическую пластину освещали монохроматическим светом с длиной волны $\lambda$ = 440 нм. Что произойдет с частотой падающего света при освещении этой пластины монохроматическим светом с длиной волны $\lambda$ = 660 нм, если интенсивность не изменится? Фотоэффект наблюдается в обоих случаях.

Соедините попарно геометрические фигуры так, чтобы каждая пара была ответом на вопросы задачи.

Квант света выбивает электрон из металла. Как изменятся при увеличении энергии фотона в этом опыте следующие три величины: работа выхода электрона из металла, максимальная возможная скорость фотоэлектрона, его максимальная кинетическая энергия?

Путь фотоэлектрона

Заполните пропуск в тексте, выбрав правильный вариант ответа из выпадающего меню.

Вспомните уравнение Эйнштейна для фотоэффекта, формулу связи изменения кинетической энергии частицы с работой силы со стороны электрического поля.

Фотон с длиной волны, соответствующей красной границе фотоэффекта, выбивает электрон из металлической пластинки (катода), помещённой в сосуд, из которого откачан воздух. Электрон разгоняется однородным электрическим полем напряженностью $E = 5\cdot 10^4$ В/м, при этом он приобрёл скорость $v = 3 \cdot 10^6$ м/с. Релятивистские эффекты не учитывать. Электрон в этом электрическом поле пролетел путь $s \approx$ $\cdot 10^$ м.

Читайте также: