При фотоэффекте с поверхности металла

Обновлено: 22.01.2025

Тип 19 № 9003

Металлическую пластинку облучают светом, частота которого 6 · 10 14 Гц. Работа выхода электронов с поверхности этого металла равна 3 · 10 –19 Дж. Частоту света уменьшили на 20%.

Определите, как в результате этого изменились энергия падающих на металл фотонов и максимальная кинетическая энергия фотоэлектронов.

Для каждой величины определите соответствующий характер изменения:

3) не изменилась.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

При уменьшении частоты света на 20% (т. е. в 0,8 раз), она станет равной 4,8 · 10 14 Гц. В этом случае энергия фотона станет приблизительно равной 3,2 · 10 - 19 Дж, что больше работы выхода. Следовательно, фотоэффект происходить еще будет.

Уменьшение частоты света приведет к уменьшению энергии падающего излучения, а значит, максимальная кинетическая энергия фотоэлектронов уменьшится.

Аналоги к заданию № 8952: 9003 Все

Задания Д21 № 9542

Работа выхода электрона для некоторого металла равна 2,5 эВ. Пластинка из этого металла облучается светом с частотой 8·10 14 Гц. Установите соответствие между физическими величинами и их численными значениями, выраженными в СИ. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

А) красная граница фотоэффекта λкр

Б) максимальная кинетическая энергия фотоэлектронов

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

«Красная граница» фотоэффекта — это максимальная длина волны при которой ещё происходит фотоэффект и она зависит от работы выхода, не зависит от энергии налетающих фотонов.

Энергия налетающих фотонов передаётся электронам и расходуется на преодоление электронами работы выхода из металла и увеличение кинетической энергии электронов

Аналоги к заданию № 9510: 9542 Все

Тип 19 № 26056

Металлическую пластину освещали монохроматическим светом с длиной волны нм. Что произойдет с импульсом фотонов и кинетической энергией вылетающих электронов при освещении этой пластины монохроматическим светом с длиной волны нм одинаковой интенсивности? Фотоэффект наблюдается в обоих случаях.

Импульс фотоновКинетическая энергия вылетающих электронов

Импульс фотона обратно пропорционален длине его волны: Таким образом, при увеличении длины волны, импульс фотонов уменьшается (2). Кинетическая энергия вылетающих электронов связана с энергией фотонов и работой выхода, согласно уравнению фотоэффекта, соотношением

Работа выхода зависит только от химических свойств металлов, а значит, в результате увеличения длины кинетическая энергия фотоэлектронов уменьшится (2).

Тип 19 № 26040

При исследовании зависимости кинетической энергии фотоэлектронов от частоты падающего света фотоэлемент освещался через светофильтры. В первой серии опытов использовался синий светофильтр, а во второй — жёлтый. В каждом опыте измеряли запирающее напряжение.

Как изменяются напряжение запирания и кинетическая энергия фотоэлектронов?

Для каждой физической величины определите соответствующий характер изменения.

3) не изменилась

Запирающее напряжениеКинетическая энергия фотоэлектронов

Использование светофильтра позволяет вырезать из спектра определенный участок длин волн. Смена синего светофильтра на жёлтый приводит к увеличению длины световой волны (так как длина волны синего излучения меньше чем жёлтого).

При фотоэффекте энергия падающего излучения расходуется на работу выхода электрона (которая постоянна для вещества из которого выбиваются электроны) и остаток переходит в кинетическую энергию электрона: Энергия падающего излучения уменьшается при увеличении длины волны, следовательно, кинетическая энергия фотоэлектронов также уменьшается

Запирающее напряжение — это напряжение, при котором прекращается фототок. Оно прямо пропорционально кинетической энергии фотоэлектронов, и, значит, тоже будет уменьшаться.

Тип 19 № 26052

При исследовании зависимости кинетической энергии фотоэлектронов от частоты падающего света фотоэлемент освещался через светофильтры. В первой серии опытов использовался красный светофильтр, а во второй — жёлтый. В каждом опыте измеряли запирающее напряжение. Как изменялись запирающее напряжение и кинетическая энергия фотоэлектронов?

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе

Запирающее напряжениеКинетическая энергия

Использование светофильтра позволяет вырезать из спектра определенный участок длин волн. Смена красного светофильтра на жёлтый приводит к снижению длины световой волны (так как длина волны красного излучения больше чем жёлтого).

Запирающее напряжение — это напряжение, при котором прекращается фототок. Величина запирающего напряжения для определённого фотокатода прямо пропорциональна частоте ν падающего света. А значит, при уменьшении длины волны частота увеличивается и увеличивается запирающее напряжение.

При фотоэффекте энергия падающего излучения расходуется на работу выхода электрона (которая постоянна для вещества, из которого выбиваются электроны) и остаток переходит в кинетическую энергию электрона: Энергия падающего излучения увеличивается при уменьшении длины волны, следовательно, кинетическая энергия фотоэлектронов также увеличивается

Урок 22. Фотоэффект

Квантовая физика - раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения.

Фотоэффект – это вырывание электронов из вещества под действием света.

Квант - (от лат. quantum — «сколько») — неделимая порция какой-либо величины в физике.

Ток насыщения - некоторое предельное значение силы фототока.

Задерживающее напряжение - минимальное обратное напряжение между анодом и катодом, при котором фототок равен нулю.

Работа выхода – это минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл. которую нужно сообщить электрону, для того чтобы он мог преодолеть силы, удерживающие его внутри металла.

Красная граница фотоэффекта – это минимальная частота или максимальная длина волны света излучения, при которой еще возможен внешний фотоэффект.

Основная и дополнительная литература по теме урока:

1. Мякишев Г. Я., Буховцев Б. Б., Чаругин В. М. Физика. 11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 259 – 267.

2. Рымкевич А. П. Сборник задач по физике. 10-11 класс.- М.:Дрофа,2009. – С. 153 – 158.

3. Элементарный учебник физики. Учебное пособие в 3 т./под редакцией академика Ландсберга Г. С.: Т.3. Колебания и волны. Оптика. Атомная и ядерная физика. – 12-е изд. – М.: ФИЗМАТЛИТ, 2001. С. 422 – 429.

4. Тульчинский М. Е. Качественные задачи по физике в средней школе. Пособие для учителей. Изд. 4-е, переработ. и доп. М. «Просвещение», 1972. С. 157.

Теоретический материал для самостоятельного изучения

В начале 20-го века в физике произошла величайшая революция. Попытки объяснить наблюдаемые на опытах закономерности распределения энергии в спектрах теплового излучения оказались несостоятельными. Законы электромагнетизма Максвелла неожиданно «забастовали». Противоречия между опытом и практикой были разрешены немецким физиком Максом Планком.

Гипотеза Макса Планка: атомы испускают электромагнитную энергию не непрерывно, а отдельными порциями – квантами. Энергия Е каждой порции прямо пропорциональна частоте ν излучения света: E = hν.

Коэффициент пропорциональности получил название постоянной Планка, и она равна:

h = 6,63 ∙ 10 -34 Дж∙с.

После открытия Планка начала развиваться самая современная и глубокая физическая теория – квантовая физика.

Квантовая физика - раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения.

Поведение всех микрочастиц подчиняется квантовым законам. Но впервые квантовые свойства материи были обнаружены именно при исследовании излучения и поглощения света.

В 1886 году немецкий физик Густав Людвиг Герц обнаружил явление электризации металлов при их освещении.

Явление вырывания электронов из вещества под действием света называется внешним фотоэлектрическим эффектом.

Законы фотоэффекта были установлены в 1888 году профессором московского университета Александром Григорьевичем Столетовым.


Схема установки для изучения законов фотоэффекта

Первый закон фотоэффекта: фототок насыщения - максимальное число фотоэлектронов, вырываемых из вещества за единицу времени, - прямо пропорционален интенсивности падающего излучения.


Зависимость силы тока от приложенного напряжения

Увеличение интенсивности света означает увеличение числа падающих фотонов, которые выбивают с поверхности металла больше электронов.

Второй закон фотоэффекта: максимальная кинетическая энергия фотоэлектронов не зависит от интенсивности падающего излучения и линейно возрастает с увеличением частоты падающего излучения.

Третий закон фотоэффекта: для каждого вещества существует граничная частота такая, что излучение меньшей частоты не вызывает фотоэффекта, какой бы ни была интенсивность падающего излучения. Эта минимальная частота излучения называется красной границей фотоэффекта.

где Ав – работа выхода электронов;

h – постоянная Планка;

νmin - частота излучения, соответствующая красной границе фотоэффекта;

с – скорость света;

λкр – длина волны, соответствующая красной границе.

Фотоэффект практически безынерционен: фототок возникает одновременно с освещением катода с точностью до одной миллиардной доли секунды.

Работа выхода – это минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл.

Для большинства веществ фотоэффект возникает только под действием ультрафиолетового облучения. Однако некоторые металлы, например, литий, натрий и калий, испускают электроны и при облучении видимым светом.

Известно, что фототоком можно управлять, подавая на металлические пластины различные напряжения. Если на систему подать небольшое напряжение обратной полярности, "затрудняющее" вылет электронов, то ток уменьшится, так как фотоэлектронам, кроме работы выхода, придется совершать дополнительную работу против сил электрического поля.

Задерживающее напряжение - минимальное обратное напряжение между анодом и катодом, при котором фототок равен нулю.

Максимальная кинетическая энергия электронов выражается через задерживающее напряжение:

где

Е – заряд электрона;

Теорию фотоэффекта разработал Альберт Эйнштейн. На основе квантовых представлений Эйнштейн объяснил фотоэффект. Электрон внутри металла после поглощения одного фотона получает порцию энергии и стремится вылететь за пределы кристаллической решетки, т.е. покинуть поверхность твердого тела. При этом часть полученной энергии он израсходует на совершение работы по преодолению сил, удерживающих его внутри вещества. Остаток энергии будет равен кинетической энергии:

В 1921 году Альберт Эйнштейн стал обладателем Нобелевской премии, которая, согласно официальной формулировке, была вручена «за заслуги перед теоретической физикой и особенно за открытие закона фотоэлектрического эффекта».

Если фотоэффект сопровождается вылетом электронов с поверхности вещества, то его называют внешним фотоэффектом или фотоэлектронной эмиссией, а вылетающие электроны - фотоэлектронами. Если фотоэффект не сопровождается вылетом электронов с поверхности вещества, то его называют внутренним.

Примеры и разбор решения заданий

1. Монохроматический свет с длиной волны λ падает на поверхность металла, вызывая фотоэффект. Фотоэлектроны тормозятся электрическим полем. Как изменятся работа выхода электронов с поверхности металла и запирающее напряжение, если уменьшить длину волны падающего света?

Работа выхода

Запирающее напряжение

Работа выхода - это характеристика металла, следовательно, работа выхода не изменится при изменении длины волны падающего света.

Запирающее напряжение - это такое минимальное напряжение, при котором фотоэлектроны перестают вылетать из металла. Оно определяется из уравнения:

Следовательно, при уменьшении длины волны падающего света, запирающее напряжение увеличивается.

2. Красная граница фотоэффекта для вещества фотокатода λ0 = 290 нм. При облучении катода светом с длиной волны λ фототок прекращается при напряжении между анодом и катодом U = 1,5 В. Определите длину волны λ.

Запишем уравнение для фотоэффекта через длину волны:

Условие связи красной границы фотоэффекта и работы выхода:

Запишем выражение для запирающего напряжения – условие равенства максимальной кинетической энергии электрона и изменения его потенциальной энергии при перемещении в электростатическом поле:

Решая систему уравнений (1), (2), (3), получаем формулу для вычисления длины волны λ:

При фотоэффекте с поверхности металла

Задания Д21 № 3622

При освещении металлической пластины светом наблюдается фотоэффект. Частоту света плавно изменяют. Установите соответствие между графиками и физическими величинами, зависимости которых от частоты падающего света эти графики могут представлять. К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.

1) работа выхода фотоэлектрона из металла

2) максимальный импульс фотоэлектронов

3) энергия падающего на металл фотона

4) максимальная кинетическая энергия фотоэлектронов

Энергия фотона прямо пропорциональна частоте: На графике Б изображена именно такая зависимость физической величины от частоты, поэтому этот график соответствует энергии падающего на металл фотона (Б — 3).

Работа выхода фотоэлектрона характеризует свойства материала металлической пластины и не зависит от частоты падающего на нее света, поэтому график этой величины должен представлять собой горизонтальную линию. Максимальный импульс фотоэлектронов связан с с максимальной кинетической энергией соотношением а потому его зависимость от частоты будет нелинейной.

Задания Д21 № 3116

Металлическую пластину освещали монохроматическим светом с длиной волны нм. Что произойдет с частотой падающего света, импульсом фотонов и кинетической энергией вылетающих электронов при освещении этой пластины монохроматическим светом с длиной волны нм одинаковой интенсивности? Фотоэффект наблюдается в обоих случаях.

Частота падающего светаИмпульс фотоновКинетическая энергия фотоэлектронов

Частота света связана с длиной волны и скоростью света соотношением Следовательно, увеличение длины волны падающего света соответствует уменьшению частоты (A — 2). Импульс фотона обратно пропорционален длине его волны: Таким образом, при увеличении длины волны, импульс фотонов уменьшается (Б — 2). Кинетическая энергия вылетающих электронов связана с энергией фотонов и работой выхода, согласно уравнению фотоэффекта, соотношением

Работа выхода зависит только от химических свойств металлов, а значит, в результате увеличения длины кинетическая энергия фотоэлектронов уменьшится (В — 2).

Задания Д21 № 3158

Квант света выбивает электрон из металла. Как изменятся при увеличении энергии фотона в этом опыте следующие три величины: работа выхода электрона из металла, максимальная возможная скорость фотоэлектрона, его максимальная кинетическая энергия?

Задания Д21 № 3623

При освещении металлической пластины светом наблюдается фотоэффект. Длину волны света плавно изменяют. Установите соответствие между графиками и физическими величинами, зависимости которых от длины волны падающего света эти графики могут представлять. К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.

2) импульс падающего на металл фотона

3) сила фототока

Работа выхода фотоэлектрона характеризует свойства материала металлической пластины и не зависит от длины волны падающего на нее света, поэтому график этой величины должен представлять собой горизонтальную линию. Тоже самое и для силы фототока: она определяется интенсивностью света, а не его длиной волны. Разберемся с оставшимися вариантами ответа.

Импульс фотона обратно пропорционален длине волны: На графике А изображена именно такая зависимость физической величины от длины волны, поэтому этот график соответствует импульсу падающего на металл фотона (А — 2).

Сила фототока может зависеть от длины волны фотонов тоже. При наличии ускоряющего напряжения доля фотонов (максимальный угол отклонения начальной скорости от направления на анод, при котором электрон еще попадает на анод) зависит от модуля их начальной скорости, и, следовательно, от энергии падающих фотонов.

Рассмотрим уединенный металлический шарик в вакууме, на который падает свет. В этом случае нет ускоряющего напряжения, ни анода с катодом.

Тип 19 № 7193

На металлическую пластинку направили пучок света от лазера, вызвав фотоэффект. Интенсивность лазерного излучения плавно увеличивают, не меняя его частоты. Как меняются в результате этого число вылетающих в единицу времени фотоэлектронов и их максимальная кинетическая энергия?

Запишите в ответ выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Интенсивность лазерного излучения — количество фотонов, прошедших через единицу площади за единицу времени. Значит, при увеличении интенсивности число фотонов увеличится и увеличится число фотоэлектронов. По второму закону фотоэффекта кинетическая энергия фотоэлектронов зависит от работы выхода материала и от энергии фотона. При увеличении интенсивности энергия фотонов не изменяется, а значит максимальная кинетическая энергия фотоэлектронов остается неизменной.

VI Международная студенческая научная конференция Студенческий научный форум - 2014


Внешний фотоэффект. Отрыв электронов от атомов под действием падающих фотонов (квантов) света называется фотоэффектом.

Различают три вида фотоэффекта: внешний, внутренний и вентильный. Внешний фотоэлектрический эффект – вырывание электронов из твердых тел и жидкостей под действием электромагнитного излучения был открыт в 1887 году Г. Герцем, а детально исследовано Столетовым. Теория фотоэффекта на основе квантовых представлений создана Эйнштейном.

Внешний фотоэффект наблюдается в твердых телах (металлах, полупроводниках, диэлектриках), а также в газах на отдельных атомах и молекулах (фотоионизация)[1].

Явление фотоэффекта получило широкое практическое применение. Приборы, в основе принципа действия которых лежит фотоэффект, называются фотоэлементами. Фотоэлементы, использующие внешний фотоэффект, преобразуют энергию излучения в электрическую лишь частично. Так как эффективность преобразования небольшая, то в качестве источников электроэнергии фотоэлементы не используют, но зато применяют их в различных схемах автоматики для управления электрическими цепями с помощью световых пучков.Внутренний фотоэффект используют в фоторезисторах. Вентильный фотоэффект, возникающий в полупроводниковых фотоэлементах с p-n переходом, используется для прямого преобразования энергии излучения в электрическую энергию (солнечные батареи).

Наиболее полное исследование явления фотоэффекта было выполнено Ф.Ленардом в 1900 г. К этому времени уже был открыт электрон (1897 г., Дж. Томсон), и стало ясно, что фотоэффект (или точнее – внешний фотоэффект) состоит в вырывании электронов из вещества под действием падающего на него света.

Экспериментальное изучение фотоэффекта. Первые фундаментальные исследования фотоэффекта выполнены русским ученым А. Г. Столетовым. Принципиальная схема для исследования фотоэффекта приведена на рис.1. В электрическую сеть включался конденсатор, положительной обкладкой которого была медная сетка С, а отрицательной — цинковая пластина D. Когда от источника света S лучи направлялись на отрицательно заряженную пластину D, в цепи возникал электрический ток. Когда пластина Dзаряжалась положительно, а сетка С отрицательно, гальванометр Gне обнаруживал электрического тока.

Столетов установил следующие закономерности, не утратившие своего значения до нашего времени:

наиболее эффективное действие оказывают ультрафиолетовые лучи;

под действием света вещество теряет только отрицательные заряды;

сила тока, возникающего под действием света, прямо пропорциональна его интенсивности.

В 1899 г. Ф. Ленард (1862 - 1947, немецкий физик) и У. Томсон методом отклонения зарядов в электрическом и магнитном полях определили удельный заряд частиц, вырываемых светом из катода, доказав, что эти частицы являются электронами. Это было подтверждено в 1922 г. опытами А. Ф. Иоффе и Н. И. Добронравова, исследовавшими фотоэффект на микроскопических заряженных металлических пылинках.

Приведенная на рис. 2[7] экспериментальная установка позволяет исследовать вольтамперную характеристику фотоэффекта — зависимость фототока, образуемого потоком электронов, испускаемых катодом под действием света, от напряжения между электродами. Такая зависимость, соответствующая двум различным освещенностямкатода (частота света в обоих случаях одинакова), приведена на рис. 3[9]. По мере увеличенияфототок постепенно возрастает, т. е. все большее число фотоэлектронов достигает анода. Пологий характер кривых показывает, что электроны вылетают из катода с различными скоростями[1].

Явление фотоэффекта и его закономерности были объяснены А.Эйнштейном в 1905 г. на основе предложенной им квантовой теории фотоэффекта. Согласно Эйнштейну, свет частотой ν не только испускается, как это предполагал Планк, но и распространяется в пространстве и поглощается веществом отдельными порциями (квантами), энергия которых

Таким образом, распространение света нужно рассматривать не как непрерывный волновой процесс, а как поток локализованных в пространстве дискретных световых квантов, движущихся со скоростью c=3∙10 8 м/с распространения света в вакууме. Кванты электромагнитного излучения получили название фотонов.

Законы внешнего фотоэффекта. Формулировка 1-го закона фотоэффекта: количество электронов, вырываемых светом с поверхности металла за 1с, прямо пропорционально интенсивности света.

Согласно 2-му закону фотоэффекта, максимальная кинетическая энергия вырываемых светом электронов линейно возрастёт с частотой света и не зависит от его интенсивности.

3-ий закон фотоэффекта: для каждого вещества существует красная граница фотоэффекта, т. е. минимальная частота света ν0 (или максимальная длина волны λ0), при которой ещё возможен фотоэффект, и если ν < ν0 , то фотоэффект уже не происходит.

Первый закон объяснён с позиции электромагнитной теории света: чем больше интенсивность световой волны, тем большему количеству электронов будет передана достаточная для вылета из металла энергия. Другие законы фотоэффекта противоречат этой теории.

Теоретическое объяснение этих законов было дано в 1905 Эйнштейном. Согласно ему, электромагнитное излучение представляет собой поток отдельных квантов (фотонов) с энергией hν каждый (h-постоянная Планка). При фотоэффекте часть падающего электромагнитного излучения от поверхности металла отражается, а часть проникает внутрь поверхностного слоя металла и там поглощается. Поглотив фотон, электрон получает от него энергию и, совершая работу выхода, покидает металл:

где -максимальная кинетическая энергия, которую может иметь электрон при вылете из металла. Она может быть определена:

Uз - задерживающее напряжение. В теории Эйнштейна законы фотоэффекта объясняются следующим образом:

Интенсивность света пропорциональна числу фотонов в световом пучке и поэтому определяет число электронов, вырванных из металла.

Второй закон следует из уравнения:

Из этого же уравнения следует, что фотоэффект возможен лишь в том случае, когда энергия поглощённого фотона превышает работу выхода электрона из металла. Т. е. частота света при этом должна превышать некоторое определённое для каждого вещества значение, равное A>h. Эта минимальная частота определяет красную границу фотоэффекта:

При меньшей частоте света энергии фотона не хватает для совершения электроном работы выхода, и поэтому фотоэффект отсутствует.

Квантовая теория Эйнштейна позволила объяснить и ещё одну закономерность, установленную Столетовым. В 1888 Столетов заметил, что фототок появляется почти одновременно с освещением катода фотоэлемента. По классической волновой теории электрону в поле световой электромагнитной волны требуется время для накопления необходимой для вылета энергии, и поэтому фотоэффект должен протекать с запаздыванием по крайне мере на несколько секунд. По квантовой теории же, когда фотон поглощается электроном, то вся энергия фотона переходит к электрону и никакого времени для накопления энергии не требуется.

С изобретением лазеров появилась возможность экспериментировать с очень интенсивными пучками света. Применяя сверхкороткие импульсы лазерного излучения, удалось наблюдать многофотонные процессы, когда электрон, прежде чем покинуть катод, претерпевал столкновение не с одним, а с несколькими фотонами. В этом случае уравнение фотоэффекта записывается:

чему соответствует красная граница[6].

Кроме того, установлена практическая безинерционностьфотоэффекта: ток немедленно возникает при освещении поверхности тела, при условии, что частота света ν > v0.Качественное объяснение фотоэффекта с волновой точки зрения на первый взгляд не должно было бы представлять трудностей. Действительно, под действием поля световой волны в металле возникают вынужденные колебания электронов, амплитуда которых (например, при резонансе) может быть достаточной для того, чтобы электроны покинули металл; тогда и наблюдается фотоэффект. Кинетическая энергия, с которой электрон вырывается из металла, должна была бы зависеть от интенсивности падающего света, так как с увеличением последней электрону передавалась бы большая энергия. Однако этот вывод противоречит II закону фотоэффекта. Так как, по волновой теории, энергия, передаваемая электронам, пропорциональна интенсивности света, то свет любой частоты, но достаточно большой интенсивности должен был бы вырывать электроны из металла; иными словами, «красной границы» фотоэффекта не должно быть, что противоречит III закону фотоэффекта. Кроме того, волновая теория не смогла объяснить безинерционность фотоэффекта, установленную опытами. Таким образом, фотоэффект необъясним с точки зрения волновой теории света.

Подтверждением правильности формулы

является определение из нее постоянной Планка. Из выражения видно, что задерживающая разность потенциалов Uз линейно зависит только от частоты падающего излучения.

Исследуя зависимость задерживающей разности потенциалов от частоты падающего на фотоэлемент излучения, можно определить постоянную Планка, работу выхода электрона из катода, красную границу для данного фотокатода.

В наиболее точных опытах, проведенных в 1928г. П. И. Лукирским и С.С. Прилежаевым, вакуумная трубка, изображенная на рис. 5, представляла собой сферический конденсатор. Стеклянный шар, посеребренный изнутри, являлся внешней обкладкой конденсатора и играл роль анода А. Катод К имел вид шарика из исследуемого металла.

В этой установке на анод попадают все электроны с такой начальной скоростью υ0, такчто 0 2 ³ е|U0|,где U0 — задерживающее напряжение. Это повышает точность определения максимальной скорости фотоэлектронов υ0и позволяет наиболее точно определить постоянную Планка

Среднее значение h, полученное из наиболее точных опытов по внешнему фотоэффекту, оказалось равным 6,543·10 -34 Дж·с. Это согласуется с результатами других методов определения h. Тем самым подтверждается правильность уравнения Эйнштейна для фотоэффекта и идей Эйнштейна о квантовом характере взаимодействия света с электронами при фотоэффекте.

Последующее изучение свойств света. Блестящим экспериментальным подтверждением идеи Эйнштейна о распространении света в виде потока отдельных фотонов и квантовом характере взаимодействия электромагнитного излучения с веществом явились опыты А. Ф. Иоффе и Н. И. Добронравова по изучению фотоэффекта на микроскопических пылинках из висмута[1]. Пылинка уравновешивалась в электрическом поле плоского конденсатора. Одна из пластин конденсатора изготовлялась из тончайшей алюминиевой фольги, которая являлась одновременно антикатодом миниатюрной рентгеновской трубки.

Антикатод бомбардировался ускоренными до 12 кВ фотоэлектронами, испускаемыми катодом при освещении ультрафиолетовым светом. Освещенность катода подбиралась такой слабой, чтобы из него в 1 с вырывалось лишь 1000 фотоэлектронов. Это же означает, что рентгеновское излучение антикатода состояло из отдельных импульсов (1000 импульсов в 1 с). Из опыта следовало, что в среднем через каждые 30 мин уравновешенная пылинка выходила из равновесия, т. е. рентгеновское излучение освобождало из нее фотоэлектрон, приобретающий энергию согласно уравнению Эйнштейна.

В толстой эбонитовой пластинке просверлены отверстия L и R. Через отверстие R из образовавшейся полости откачивался воздух, чтобы полость стала прозрачной для ультрафиолета. Через отверстие L, закрывавшееся кварцевым окошком, проходили ультрафиолетовые лучи, освещавшие конец алюминиевой проволочки К с диаметром 0,2 мм. Образовавшиеся фотоэлектроны ускорялись электрическим напряжением 12 000 В, приложенным между проволочкой и алюминиевой фольгой A, закрывающей полость сверху. Толщина фольги (~ 5 × 10 -3 мм) подбиралась так, что она практически не поглощала рентгеновские лучи, возбуждавшиеся в ней при торможении электронов. Освещение кончика проволочки К подбиралось настолько слабым, что число фотоэлектронов и связанных с ними рентгеновских импульсов составляло около 1000 в секунду. Алюминиевая фольга одновременно служила нижней обкладкой конденсатора. От нее на расстоянии примерно 0,02 см уравновешивалась висмутовая пылинка W размером около б × 10 -5 см.

Опыты показали, что в среднем раз в 30 минут пылинка выходила из равновесия, т. е. с такой средней частотой рентгеновские лучи вырывали из нее электрон. В течение указанного времени образовывалось около N=30×60×1000 = 1,8 × 10 6 рентгеновских импульсов. По классическим представлениям энергия каждого импульса должна распространяться во все стороны в виде сферической волны. Каждый из таких импульсов отдавал бы пылинке ничтожную часть своей энергии из-за малости телесного угла, под которым пылинка видна из ближайшего места фольги, где возбуждались рентгеновские лучи. Кроме того, эта энергия распределялась бы между множеством электронов пылинки. При таких условиях было бы совершенно невероятно, чтобы в течение 30 минут большая доля энергии электронов пылинки сосредоточилась только на одном электроне, который должен вылететь из пылинки.

Ясно, что с точки зрения классической волновой теории результаты опытов Иоффе и Добронравова непонятны. Напротив, в квантовой теории они вполне естественны.

Таким образом, квантовая теория света полностью объясняет явление внешнего фотоэффекта. Тем самым было получено экспериментальное подтверждение того, что свет помимо волновых свойств обладает также и корпускулярными свойствами.

Литература:

Тюрин Ю.И., Чернов И.П., Крючков Ю.Ю. Физика. Ч.3. Оптика. Квантовая физика (Атомная физика): Учебное пособие – Томск: Изд-во ТГУ, 2005.

Савельев И.В. Курс общей физики, т. 3 Оптика, Атомная физика, Физика атомного ядра и элементарных частиц - М.: Наука, 1970.

Грабовский Р.И. Курс физики – Спб.:Лань, 2005.

Тарасов Л.В. Введение в квантовую оптику: Учеб. пособие для вузов. –М.: Высш. шк., 1987.

Гапонов В.И. Электроника: Учеб. пособие для вузов. – М.: Гос. изд-во физ.-матем. лит., 1960. Ч. 1, 2.

Читайте также: