Презентация электрический ток в металлах
Основы электронной
теории проводимости
Пауль Друде Карл
Людвиг —
немецкий физик
В начале XX века была
создана классическая
электронная теория
проводимости металлов (П.
Друде, 1900 г., Х.Лоренц,
1904 г.), которая дала простое
и наглядное объяснение
большинства электрических и
тепловых свойств металлов.
Хендрик Антон Лоренцголландский физик
1)
2)
3)
4)
5)
6)
Движение электронов подчиняется законам классической
механики.
Электроны друг с другом не взаимодействуют.
Электроны взаимодействуют только с ионами
кристаллической решётки, взаимодействие это сводится
к соударению.
В промежутках между соударениями электроны
движутся свободно.
Электроны проводимости образуют «электронный газ»,
подобно идеальному газу. «Электронный газ»
подчиняется законам идеального газа.
При любом соударении электрон передаёт всю
накопленную энергию.
Электрический ток в металлах
Ионы кристаллической решетки
металла не принимают участие в
создании тока. Их перемещение
при прохождении тока означало
бы перенос вещества вдоль
проводника, что не наблюдается.
Например, в опытах Э. Рикке (1901
г.) масса и химический состав
проводника не изменялся при
прохождении тока в течении года.
Вывод:
Не происходит переноса
вещества =>
1) Ионы металла не принимают
участия в переносе
электрического заряда.
2) Носители заряда - частицы,
входящие в состав всех
металлов
6. Электроны взаимодействуют не друг с другом, а с ионами кристаллической решётки. При каждом соударении электрон передаёт свою
Экспериментальное доказательство
того, что ток в металлах создается
свободными электронами, было дано
в опытах Л.И. Мандельштама и Н. Д.
Папалекси (1913 г., результаты не
были опубликованы), а также Т.
Стюарта и Р. Толмена (1916 г.). Они
обнаружили, что при резкой
остановке быстро вращающейся
катушки в проводнике катушки
возникает электрический ток,
создаваемый отрицательно
заряженными частицами —
электронами.
• Выводы:
1.
2.
Носителями заряда в металле
являются отрицательно заряженные
частицы.
q
e
Отношение
m
m
=> Электрический ток в металлах
обусловлен движением электронов
10. Ионы совершают тепловые колебания, вблизи положения равновесия – узлов кристаллической решётки. Свободные электроны движутся
Металлический проводник состоит из:
1) положительно заряженных ионов, колеблющихся около
положения равновесия, и
2) 2) свободных электронов, способных перемещаться по
всему объему проводника.
В металле в отсутствие
электрического поля электроны
проводимости хаотически
движутся и сталкиваются, чаще
всего с ионами кристаллической
решетки. Совокупность этих
электронов можно приближенно
рассматривать как некий
электронный газ, подчиняющийся законам идеального газа.
Средняя скорость теплового движения электронов при
комнатной температуре составляет примерно 105 м/с.
Зависимость сопротивления проводника R от температуры:
При нагревании размеры проводника меняются мало, а в основном
меняется удельное сопротивление.
Удельное сопротивление проводника зависит от температуры:
где ро - удельное сопротивление
при 0 градусов,
t - температура,
α- температурный коэффициент сопротивления
( т.е. относительное изменение удельного
сопротивления проводника при нагревании
его на один градус)
Для всех металлических проводников
α > 0 и слабо изменяется с изменением
температуры. Для большинства металлов в
интервале температур от 0 ° до 100 °С
коэффициент α изменяется от 3,3⋅10–3 до 6,2⋅10–3
К–1 (таблица 1).
У химически чистых металлов
Существуют специальные сплавы, сопротивление
которых практически не изменяется при
нагревании, например, манганин и константан. Их
температурные коэффициенты сопротивления
очень малы и равны соответственно 1⋅10–5 К–1 и
5⋅10–5 К–1.
Таким образом, для металлических проводников с
ростом температуры увеличивается удельное
сопротивление, увеличивается сопротивление
проводника и уменьшается эл.ток в цепи.
Сопротивление проводника при изменении температуры
можно рассчитать по формуле: R = Ro ( 1 + t )
где Ro - сопротивление проводника при 0 градусов
Цельсия
t - температура проводника
- температурный коэффициент сопротивления
15. Сопротивление проводника
Сопротивление - это физическая величина, характеризующая степень
противодействия проводника направленному движению зарядов.
Удельное сопротивление – это сопротивление цилиндрического
проводника единичной длины и единичной площади поперечного сечения.
Сверхпроводимость – физическое явление, заключающееся в
скачкообразном падении сопротивления до нуля при некоторой
критической температуре ( Т кр)
R
S
– удельное
сопротивление,
-
длина проводника,
S - площадь
поперечного сечения
R Ом
t = 0
0-
(1+
∆Т)
сверхпроводник
удельное
сопротивление при t =200С;
- температурный
коэффициент сопротивления
= 1/ 273 0К-1
∆Т – изменение температуры
Ом мм 2
м
металл
0
Ткр
293
Т,К
Сверхпроводимость, свойство
многих проводников, состоящее в том, что
их электрическое сопротивление скачком
падает до нуля при охлаждении ниже
определённой критической температуры
Тк, характерной для данного материала.
Сверхпроводимость обнаружена у более
чем 25 металлических элементов, у
большого числа сплавов и
интерметаллических соединений, а также
у некоторых полупроводников.
В 1911 году голландский
физик Камерлинг-Оннес
обнаружил, что при охлаждении
ртути в жидком гелии её
сопротивление сначала
меняется постепенно, а затем
при температуре 4,2 К резко
падает до нуля.
Г. Камерлинг-Оннес был удостоен Нобелевской премии по физике 1913 г. «за
исследования свойств вещества при низких температурах».
В дальнейшем было выяснено, что более 25 химических элементов —
металлов при очень низких температурах становятся сверхпроводниками.
У каждого из них своя критическая температура перехода в состояние с
нулевым сопротивлением. Самое низкое значение ее у вольфрама — 0,012
К, самое высокое у ниобия — 9 К.
Сверхпроводимость наблюдается не только у чистых металлов, но и у
многих химических соединений и сплавов. При этом сами элементы,
входящие в состав сверхпроводящего соединения, могут и не являться
сверхпроводниками. Например, NiBi, Au2Bi, PdTe, PtSb и другие.
До 1986 г. были известны сверхпроводники, обладающие этим свойством
при очень низких температурах — ниже –259 °С. В 1986-1987 годах были
обнаружены материалы с температурой перехода в сверхпроводящее
состояние около –173 °С. Это явление получило название
высокотемпературной сверхпроводимости, и для его наблюдения можно
использовать вместо жидкого гелия жидкий азот.
19. Сверхпроводимость
20. Сверхпроводимость металлов и сплавов
У многих металлов и сплавов при
температурах, близких с T=0 К,
наблюдается резкое уменьшение
удельного сопротивления – это
явление называется
сверхпроводимостью металлов.
P
0
Т
Оно было обнаружено голландским физиком
Х.Камерлингом – Онессом в 1911 году у ртути
( Ткр=4,2оК).
21. Общие сведения
• Свойством сверхпроводимости обладают около
половины металлов и несколько сотен сплавов.
• Сверхпроводящие свойства зависят от типа
кристаллической структуры. Изменение её может
перевести вещество из обычного в сверхпроводящее
состояние.
• Критические температуры изотопов элементов,
переходящих в сверхпроводящее состояние, связаны с
массами изотопов соотношением:
Тэ(Мэ)1/2= const (изотопический эффект)
Сильное магнитное поле разрушает эффект
сверхпроводимости. Следовательно, при помещении в
магнитное поле свойство сверхпроводимости может
исчезнуть.
22. Реакция на примеси
• Введение примеси в сверхпроводник уменьшает резкость
перехода в сверхпроводящее состояние.
• В нормальных металлах ток исчезает примерно через 10-12
с. В сверхпроводнике ток, может циркулировать годами
(теоретически 105 лет!).
23. Физическая природа сверхпроводимости
• Явление сверхпроводимости можно понять и
обосновать только с помощью квантовых
представлений
Они были представлены в 1957 году американскими
учеными Дж.Бардиным, Л.Купером, Дж.Шриффером
и советским академиком Н.Н. Боголюбовым.
В 1986 году была открыта высокотемпературная
сверхпроводимость соединений лантана, бария и др.
элементов (Т= 1000К - это температура кипения
жидкого азота).
Однако нулевое сопротивление — не
единственная отличительная черта
сверхпроводимости. Ещё из теории
Друде известно, что проводимость
металлов увеличивается с понижением
температуры, то есть электрическое
сопротивление стремится к нулю.
Одним
из
главных
отличий сверхпроводников от
идеальных
проводников
является эффект Мейснера,
открытый в 1933 году, т.е.
полное
вытеснение
магнитного
поля из материала при
переходе в сверхпроводящее
состояние. Впервые явление
наблюдалось в 1933 году
немецкими
физиками
Мейснером и Оксенфельдом
26. Гроб Мухаммеда — опыт, демонстрирующий этот эффект в сверхпроводниках. По преданию, гроб с телом пророка Магомета висел в
Гроб Мухаммеда — опыт,
демонстрирующий этот эффект
в сверхпроводниках.
По преданию, гроб с телом пророка
Магомета висел в пространстве без всякой
поддержки, поэтому этот опыт называют
экспериментом с «магометовым гробом».
Отталкиваясь от неподвижного
сверхпроводника, магнит всплывает
сам и продолжает парить до тех пор,
пока внешние условия не выведут
сверхпроводник из сверхпроводящей
фазы. В результате этого эффекта
магнит, приближающийся к
сверхпроводнику, «увидит» магнит
обратной полярности точно такого же
размера, что и вызывает левитацию.
27. Применение сверхпроводимости
1.Сооружаются мощные электромагниты со
сверхпроводящей обмоткой, которые создают магнитное
поле без затрат электроэнергии на длительном интервале
времени, т.к. выделения теплоты не происходит.
2.Сверхпроводящие магниты используются в ускорителях элементарных
частиц, магнитогидродинамических игенераторах, преобразующих
энергию струи раскаленного ионизированного газа, движущегося в
магнитном поле, в электрическую энергию.
3.Высокотемпературная сверхпроводимость в недалеком
будущем приведет к технической революции в
радиоэлектронике, радиотехнике.
4. Если удастся создать сверхпроводники при комнатной
температуре, то генераторы и электродвигатели станут
исключительно компактны и передавать электроэнергию будет
возможно на большие расстояния без потерь.
Электрический ток в металлах
презентация к уроку по физике (8 класс) по теме
В презентации представлен материал для проведения урока физики в 8 классе по теме "Электрический ток в металлах" по учебнику А.В. Перышкина "Физика. 8 класс".
Вложение | Размер |
---|---|
elektricheskiy_tok_v_metallah.ppt | 300 КБ |
Подтяните оценки и знания с репетитором Учи.ру
За лето ребенок растерял знания и нахватал плохих оценок? Не беда! Опытные педагоги помогут вспомнить забытое и лучше понять школьную программу. Переходите на сайт и записывайтесь на бесплатный вводный урок с репетитором.
Вводный урок бесплатно, онлайн, 30 минут
Предварительный просмотр:
Подписи к слайдам:
Электрический ток в металлах Учитель физики Шахова Наталья Егоровна ГБОУ СОШ №422 Кронштадт
В узлах кристаллической решётки металла расположены положительные ионы, а в пространстве между ними движутся свободные электроны. Свободные электроны не связаны с ядрами своих атомов Металлы в твёрдом состоянии, как известно, имеют кристаллическое строение. Частицы в кристаллах расположены в определённом порядке, образуя пространственную (кристаллическую) решётку.
Отрицательный заряд всех свободных электронов по абсолютному значению равен положительному заряду всех ионов решётки. Поэтому в обычных условиях металл электрически нейтрален. Свободные электроны в нём движутся беспорядочно. Но если в металле создать электрическое поле, то свободные электроны начнут двигаться направленно под действием электрических сил. Возникнет электрический ток. Беспорядочное движение электронов при этом сохраняется, подобно тому как сохраняется беспорядочное движение в стайке мошкары, когда под действием ветра она перемещается в одном направлении. Итак, электрический ток в металлах представляет собой упорядоченное движение свободных электронов .
Мандельштам Леонид Исаакович (1879—1944) Российский физик, академик. Внёс существенный вклад в развитие радиофизики и радиотехники. Папалекси Николай Дмитриевич (1880—1947) Российский физик, академик. Занимался исследованиями в области радиотехники, радиофизики, радиоастрономии.
Скорость движения самих электронов в проводнике под действием электрического поля невелика — несколько миллиметров в секунду, а иногда и еще меньше. Но как только в проводнике возникает электрическое поле, оно с огромной скоростью, близкой к скорости света в вакууме (300 000 км/с), распространяется по всей длине проводника. Одновременно с распространением электрического поля все электроны начинают двигаться в одном направлении по всей длине проводника. Так, например, при замыкании цепи электрической лампы в упорядоченное движение приходят и электроны, имеющиеся в спирали лампы.
Когда говорят о скорости распространения электрического тока в проводнике, то имеют в виду скорость распространения по проводнику электрического поля.
ВОПРОСЫ: Как объяснить, что в обычных условиях металл электрически нейтрален? Что происходит с электронами металла при возникновении в нём электрического поля? Что представляет собой электрический ток в металле? Какую скорость имеют в виду, когда говорят о скорости распространения электрического тока в проводнике?
По теме: методические разработки, презентации и конспекты
ИНТЕГРИРОВАННЫЙ УРОК ХИМИИ И ФИЗИКИ В 8 КЛАССЕ ПО ТЕМЕ « МЕТАЛЛЫ. ЭЛЕКТРИЧЕСКИЙ ТОК В МЕТАЛЛАХ»
ИНТЕГРИРОВАННЫЙ УРОК ХИМИИ И ФИЗИКИ В 8 КЛАССЕПО ТЕМЕ« МЕТАЛЛЫ. ЭЛЕКТРИЧЕСКИЙ ТОК В МЕТАЛЛАХ» .
Электрический ток в металлах
Наиболее убедительное доказательство электронной природы тока в металлах было получено в опытах с инерцией электронов. Идея таких опытов и первые качественные результаты принадлежат русским физи.
Конспект лекций для студентов 1 курса колледжа по теме "Электрический ток в металлах "
Материал предназначен для самостоятельной подготовки студентов к уроку и систематизации имеющийся знаний.
ИНТЕГРИРОВАННЫЙ УРОК ХИМИИ И ФИЗИКИ В 8 КЛАССЕ ПО ТЕМЕ « МЕТАЛЛЫ. ЭЛЕКТРИЧЕСКИЙ ТОК В МЕТАЛЛАХ» УЧИТЕЛЬ МКОУ Куликовской ООШ Скуба З.М.
Конспект урока «Электрический ток в металлах и электролитах. Действие электрического тока». 8 класс.
Цели урока. Познакомить учащимся с особенностями электрического тока в металлах и электролитах; ознакомить учащихся с превращениями энергии электрического тока в другие виды энергии.Демонстрации: нагр.
8 класс. Урок Электрический ток в металлах. Направление электрического тока.
Тема урока. Электрический ток в металлах. Направление электрического тока.Цель урока: Продолжить изучение природы электрического тока в металлах.План урока.Актуализация опорных знаний.Изучение нового .
Электрический ток в металлах
презентация к уроку по физике (11 класс) на тему
Электрический ток в металлах 11 класс Учитель Кечкина Н.И. МБОУ «Средняя школа № 12» г. Дзержинск
Закон Ома с точи зрения электронной теории Электрический ток в металлах обусловлен движением свободных электронов. Опыт Э. Рикке Результат: проникновение меди в алюминий не обнаружено. Опыты Л.И. Мандельштам и Н.Д. Папалекси 1912 г. Р. Толмен и Т. Стюарт 1916 г. Ц- цилиндр; Щ – щетки (контакты); ОО ’ – изолированные полуоси Результат: при остановке стрелка гальванометра отклонялась, фиксируя ток. По направлению тока определили – по инерции движутся отрицательные частицы. По величине заряда – электроны.
Длина свободного пробега λ – среднее расстояние между двумя последовательными столкновениями электронов с дефектами. Электрическое сопротивление нарушение периодичности кристаллической решетки. Причины: тепловое движение атомов; наличие примесей. Рассеивание электронов. Мера рассеивания Классическая электронная теория Лоренца (электрическая проводимость металлов): В проводнике имеются свободные электроны, которые движутся непрерывно и хаотично; Каждый атом теряет 1 электрон, превращаясь в ион; λ равна расстоянию между ионами в кристаллической решетке проводника. e – заряд электрона, Кл n – количество электронов, прошедших через поперечное сечение проводника в ед. времени m – масса электрона, кг u - средняя квадратичная скорость беспорядочного движения электронов, м/с γ
Закон Джоуля-Ленца с точи зрения электронной теории γ Закон джоуля-Ленца в дифференциальной форме. Классическая электронная теория Лоренца объясняет законы Ома и Джоуля-Ленца, которые подтверждаются экспериментально. Ряд выводов не подтверждается экспериментально. НО Удельное сопротивление (величина обратная проводимости), пропорциональна корню квадратному из абсолютной температуры. Классическая электронная теория Лоренца имеет границы применимости. Опыты ρ~ T
Презентация на тему: "Электрический ток в металлах"
В презентации кратко описываются свойва электрического тока в металлах, его природа, опыт Рикка, Опыт Л.И. Мандельштама и Н.Д. Папалекси, Опыт Т.Стюарта и Р.Толмена, Область применения электрического тока. Классическая электронная теория, сверхпроводимость металлов. Состоит из 15 слайдов.
Просмотр содержимого документа
«Презентация на тему: "Электрический ток в металлах"»
ЧТО ПРЕДСТАВЛЯЕТ СОБОЙ ЭЛЕКТРИЧЕСКИЙ ТОК В МЕТАЛЛАХ?
Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. Опыты показывают, что при протекании тока по металлическому проводнику не происходит переноса вещества, следовательно, ионы металла не принимают участия в переносе электрического заряда.
ПРИРОДА ЭЛЕКТРИЧЕСКОГО ТОКА В МЕТАЛЛАХ
Электрический ток в металлических проводниках никаких изменений в этих проводниках, кроме их нагревания, не вызывает.
Концентрация электронов проводимости в металле очень велика: по порядку величины она равна числу атомов в единице объёма металла. Электроны в металлах находятся в непрерывном движении. Их беспорядочное движение напоминает движение молекул идеального газа. Это дало основание считать, что электроны в металлах образуют своеобразный электронный газ. Но скорость беспорядочного движения электронов в металле значительно больше скорости молекул в газе.
Немецкий физик Карл Рикке провёл опыт, в котором электрический ток пропускал в течении года через три прижатых друг к другу, отшлифованных цилиндра - медный, алюминиевый и снова медный. После окончания было установлено, что имеются лишь незначительные следы взаимного проникновения металлов, которые не превышают результатов обычной диффузии атомов в твёрдых телах. Измерения, проведённые с высокой степенью точности, показали, что масса каждого из цилиндров осталась неизменной. Поскольку массы атомов меди и алюминия существенно отличаются друг от друга, то масса цилиндров должна была бы заметно измениться, если бы носителями заряда были ионы . Следовательно, свободными носителями заряда в металлах являются не ионы. Огромный заряд, который прошёл через цилиндры, был перенесён, очевидно, такими частицами, которые одинаковы и в меди, и в алюминии. Естественно предположить, что ток в металлах осуществляют именно свободные электроны.
Карл Виктор Эдуард Рикке
ОПЫТ Л.И. МАНДЕЛЬШТАМА И Н.Д. ПАПАЛЕКСИ
Русские ученые Л. И. Мандельштам и Н. Д. Папалекси в 1913 году поставили оригинальный опыт. Катушку с проводом стали крутить в разные стороны. Раскрутят, по часовой стрелке, потом резко остановят и — назад. Рассуждали они примерно так: если электроны и вправду обладают массой, то, когда катушка внезапно останавливается, электроны еще некоторое время должны двигаться по инерции. Так и получилось. Подсоединили к концам провода телефон и услышали звук, а это означало что через него протекает ток.
Мандельштам Леонид Исаакович
Николай Дмитриевич Папалекси (1880—1947)
ОПЫТ Т.СТЮАРТА И Р.ТОЛМЕНА
Опыт Мандельштама и Папалекси в 1916 году повторили американские ученые Толмен и Стюарт.
- Катушка с большим числом витков тонкой проволоки приводили в быстрое вращение вокруг своей оси. Концы катушки с помощью гибких проводов присоединили к чувствительному баллистическому гальванометру. Раскрученная катушка резко тормозилась, в цепи возникал кратковременных ток, обусловленный инерцией носителей заряда. Полный заряд, протекающий по цепи, измерялся по отбросу стрелки гальванометра.
Батлер Стюарт Томас
Ричард Чейз Толмен
КЛАССИЧЕСКАЯ ЭЛЕКТРОННАЯ ТЕОРИЯ
Предположение о том, что за электрический ток в металлах ответственны электроны, существовало и до проведения опыта Стюарта и Толмена. В 1900 году немецкий ученый П. Друде на основании гипотезы о существовании свободных электронов в металлах создал свою электронную теорию проводимости металлов, названную после классической электронной теорией . Согласно этой теории, электроны в металлах ведут себя как электронный газ, во многом схожий с идеальным газом . Он заполняет пространство между ионами, образующими кристаллическую решетку металла
На рисунке показана траектория одного из свободных электронов в кристаллической решетке металла
ОСНОВНЫЕ ПОЛОЖЕНИЯ ТЕОРИИ:
- Наличие большого числа электронов в металлах способствует их хорошей проводимости.
- Под действием внешнего электрического поля на беспорядочное движение электронов накладывается упорядоченное движение, т.е. возникает ток.
- Сила электрического тока, идущего по металлическому проводнику, равна:
- Так как внутреннее строение у разных веществ различное, то и сопротивление тоже будет различным.
- При увеличении хаотического движения частиц вещества происходит нагревание тела, т.е. выделение тепла. Здесь соблюдается закон Джоуля-Ленца:
l = e * n * S * Ū д
СВЕРХПРОВОДИМОСТЬ МЕТАЛЛОВ И СПЛАВОВ
- Некоторые металлы и сплавы обладают сверхпроводимостью, свойством обладать строго нулевым электрическим сопротивлением при достижении ими температуры ниже определённого значения (критическая температура).
Явление сверхпроводимости было обнаружено голландским физиком Х.Камерлингом – Онессом в 1911 году у ртути ( Т кр =4,2 о К).
ОБЛАСТЬ ПРИМЕНЕНИЯ ЭЛЕКТРИЧЕСКОГО ТОКА:
- получение сильных магнитных полей
- передача электроэнергии от источника к потребителю
- мощные электромагниты со сверхпроводящей обмоткой в генераторах, электродвигателях и ускорителях, в нагревательных приборах
В настоящее время в энергетике существует большая проблема, связанная с большими потерями при передаче электроэнергии по проводам.
Возможное решение проблемы:
- строительство дополнительных ЛЭП - замена проводов на большие поперечные сечения - повышение напряжения - расщепление фазы
Презентация по физике на тему "ЭЛЕКТРИЧЕСКИЙ ТОК В МЕТАЛЛАХ"
В начале XX века была создана классическая электронная теория проводимости металлов (П. Друде, 1900 г., Х.Лоренц, 1904 г.), которая дала простое и наглядное объяснение большинства электрических и тепловых свойств металлов.
Пауль Друде Карл Людвиг — немецкий физик
Хендрик Антон Лоренц- голландский физик
Движение электронов подчиняется законам классической механики.
Электроны друг с другом не взаимодействуют.
Электроны взаимодействуют только с ионами кристаллической решётки, взаимодействие это сводится к соударению.
В промежутках между соударениями электроны движутся свободно.
Электроны проводимости образуют «электронный газ», подобно идеальному газу. «Электронный газ» подчиняется законам идеального газа.
При любом соударении электрон передаёт всю накопленную энергию.
Классическая электронная
теория Друде - Лоренца.
Электрический ток в металлах
Ионы кристаллической решетки металла не принимают участие в создании тока. Их перемещение при прохождении тока означало бы перенос вещества вдоль проводника, что не наблюдается. Например, в опытах Э. Рикке (1901 г.) масса и химический состав проводника не изменялся при прохождении тока в течении года.
Вывод:
Не происходит переноса вещества =>
1) Ионы металла не принимают участия в переносе электрического заряда.
2) Носители заряда - частицы, входящие в состав всех металлов
Опыт Рикке
1901 г.
Электроны взаимодействуют не друг с другом, а с ионами кристаллической решётки. При каждом соударении электрон передаёт свою кинетическую энергию.
Экспериментальное доказательство того, что ток в металлах создается свободными электронами, было дано в опытах Л.И. Мандельштама и Н. Д. Папалекси (1913 г., результаты не были опубликованы), а также Т. Стюарта и Р. Толмена (1916 г.). Они обнаружили, что при резкой остановке быстро вращающейся катушки в проводнике катушки возникает электрический ток, создаваемый отрицательно заряженными частицами — электронами.
Опыт Мандельштама и Папалекси
Вывод:
Носители электрического заряда движутся по инерции
1913 г.
Опыт Толмена и Стюарта
Выводы:
Носителями заряда в металле являются отрицательно заряженные частицы.
Отношение
=> Электрический ток в металлах обусловлен движением электронов
1916 г.
Ионы совершают тепловые колебания, вблизи положения равновесия – узлов кристаллической решётки. Свободные электроны движутся хаотично и при своём движении сталкиваются с ионами кристаллической решётки
Металлический проводник состоит из:
положительно заряженных ионов, колеблющихся около положения равновесия, и
2) свободных электронов, способных перемещаться по всему объему проводника.
В металле в отсутствие электрического поля электроны проводимости хаотически движутся и сталкиваются, чаще всего с ионами кристаллической решетки. Совокупность этих электронов можно приближенно рассматривать как некий
электронный газ, подчиняющийся законам идеального газа. Средняя скорость теплового движения электронов при комнатной температуре составляет примерно 105 м/с.
Зависимость сопротивления проводника R от температуры:
При нагревании размеры проводника меняются мало, а в основном меняется удельное сопротивление.
Удельное сопротивление проводника зависит от температуры:
где ро - удельное сопротивление
при 0 градусов,
t - температура,
- температурный коэффициент сопротивления
( т.е. относительное изменение удельного
сопротивления проводника при нагревании
его на один градус)
Для всех металлических проводников
α > 0 и слабо изменяется с изменением температуры. Для большинства металлов в интервале температур от 0 ° до 100 °С коэффициент α изменяется от 3,3⋅10–3 до 6,2⋅10–3 К–1 (таблица 1).
У химически чистых металлов
Существуют специальные сплавы, сопротивление которых практически не изменяется при нагревании, например, манганин и константан. Их температурные коэффициенты сопротивления очень малы и равны соответственно 1⋅10–5 К–1 и 5⋅10–5 К–1.
Таким образом, для металлических проводников с ростом температуры увеличивается удельное сопротивление, увеличивается сопротивление проводника и уменьшается эл.ток в цепи.
Сопротивление проводника при изменении температуры можно рассчитать по формуле: R = Ro ( 1 + t )
где Ro - сопротивление проводника при 0 градусов Цельсия
t - температура проводника
- температурный коэффициент сопротивления
Сопротивление проводника
Сопротивление - это физическая величина, характеризующая степень противодействия проводника направленному движению зарядов.
Удельное сопротивление – это сопротивление цилиндрического проводника единичной длины и единичной площади поперечного сечения.
Сверхпроводимость – физическое явление, заключающееся в скачкообразном падении сопротивления до нуля при некоторой критической температуре ( Т кр)
– удельное сопротивление,
- длина проводника,
S - площадь
поперечного сечения
= ( 1 + ∆Т)
- удельное сопротивление при t =200С;
- температурный коэффициент сопротивления = 1/ 273 0К-1
∆Т – изменение температуры
Сверхпроводимость, свойство многих проводников, состоящее в том, что их электрическое сопротивление скачком падает до нуля при охлаждении ниже определённой критической температуры Тк, характерной для данного материала. С. обнаружена у более чем 25 металлических элементов, у большого числа сплавов и интерметаллических соединений, а также у некоторых полупроводников.
В 1911 году голландский физик Камерлинг-Оннес
обнаружил, что при охлаждении
ртути в жидком гелии её
сопротивление сначала
меняется постепенно, а затем
при температуре 4,2 К резко падает до нуля.
Г. Камерлинг-Оннес был удостоен Нобелевской премии по физике 1913 г. «за исследования свойств вещества при низких температурах».
В дальнейшем было выяснено, что более 25 химических элементов — металлов при очень низких температурах становятся сверхпроводниками. У каждого из них своя критическая температура перехода в состояние с нулевым сопротивлением. Самое низкое значение ее у вольфрама — 0,012 К, самое высокое у ниобия — 9 К.
Сверхпроводимость наблюдается не только у чистых металлов, но и у многих химических соединений и сплавов. При этом сами элементы, входящие в состав сверхпроводящего соединения, могут и не являться сверхпроводниками. Например, NiBi, Au2Bi, PdTe, PtSb и другие.
До 1986 г. были известны сверхпроводники, обладающие этим свойством при очень низких температурах — ниже –259 °С. В 1986-1987 годах были обнаружены материалы с температурой перехода в сверхпроводящее состояние около –173 °С. Это явление получило название высокотемпературной сверхпроводимости, и для его наблюдения можно использовать вместо жидкого гелия жидкий азот.
Сверхпроводимость
Академик В.Л. Гинзбург, нобелевский лауреат за работы по сверхпроводимости
Сверхпроводимость металлов и сплавов
У многих металлов и сплавов при температурах, близких с T=0 К, наблюдается резкое уменьшение удельного сопротивления – это явление называется сверхпроводимостью металлов.
Оно было обнаружено голландским физиком Х.Камерлингом – Онессом в 1911 году у ртути ( Ткр=4,2оК).
Т
P
0
Общие сведения
Свойством сверхпроводимости обладают около половины металлов и несколько сотен сплавов.
Сверхпроводящие свойства зависят от типа кристаллической структуры. Изменение её может перевести вещество из обычного в сверхпроводящее состояние.
Критические температуры изотопов элементов, переходящих в сверхпроводящее состояние, связаны с массами изотопов соотношением:
Тэ(Мэ)1/2= const (изотопический эффект)
Сильное магнитное поле разрушает эффект сверхпроводимости. Следовательно, при помещении в магнитное поле свойство сверхпроводимости может исчезнуть.
Реакция на примеси
Введение примеси в сверхпроводник уменьшает резкость перехода в сверхпроводящее состояние.
В нормальных металлах ток исчезает примерно через 10-12 с. В сверхпроводнике ток, может циркулировать годами (теоретически 105 лет!).
Физическая природа сверхпроводимости
Явление сверхпроводимости можно понять и обосновать только с помощью квантовых представлений
Они были представлены в 1957 году американскими учеными Дж.Бардиным, Л.Купером, Дж.Шриффером и советским академиком Н.Н. Боголюбовым.
В 1986 году была открыта высокотемпературная сверхпроводимость соединений лантана, бария и др. элементов (Т= 1000К - это температура кипения жидкого азота).
Однако нулевое сопротивление — не единственная отличительная черта сверхпроводимости. Ещё из теории Друде известно, что проводимость металлов увеличивается с понижением температуры, то есть электрическое сопротивление стремится к нулю.
Одним из главных отличий сверхпроводников от идеальных проводников является эффект Мейснера, открытый в 1933 году, т.е. полное вытеснение магнитного поля из материала при переходе в сверхпроводящее состояние. Впервые явление наблюдалось в 1933 году немецкими физиками Мейснером и Оксенфельдом
Гроб Мухаммеда — опыт, демонстрирующий этот эффект в сверхпроводниках.
По преданию, гроб с телом пророка Магомета висел в пространстве без всякой поддержки, поэтому этот опыт называют экспериментом с «Магомедовым гробом».
Отталкиваясь от неподвижного сверхпроводника, магнит всплывает сам и продолжает парить до тех пор, пока внешние условия не выведут сверхпроводник из сверхпроводящей фазы. В результате этого эффекта магнит, приближающийся к сверхпроводнику, «увидит» магнит обратной полярности точно такого же размера, что и вызывает левитацию.
Применение сверхпроводимости
1.Сооружаются мощные электромагниты со сверхпроводящей обмоткой, которые создают магнитное поле без затрат электроэнергии на длительном интервале времени, т.к. выделения теплоты не происходит.
2.Сверхпроводящие магниты используются в ускорителях элементарных частиц, магнитогидродинамических игенераторах, преобразующих энергию струи раскаленного ионизированного газа, движущегося в магнитном поле, в электрическую энергию.
3.Высокотемпературная сверхпроводимость в недалеком будущем приведет к технической революции в радиоэлектронике, радиотехнике.
4. Если удастся создать сверхпроводники при комнатной температуре, то генераторы и электродвигатели станут исключительно компактны и передавать электроэнергию будет возможно на большие расстояния без потерь.
Читайте также: