Предел прочности металла шва и сварного соединения должен быть не ниже
Прочность сварных соединений — это свойство, не разрушаясь, воспринимать определенные нагрузки в тех или иных заданных условиях. При этом учитывают как рабочие, так и предельные нагрузки. Под рабочими нагрузками понимают суммарные напряжения, возникающие от собственного веса, внешних нагрузок, возникающих в процессе эксплуатации, и собственных напряжений, создающихся при сварке, сборке и т.д.
Предельными считаются нагрузки, когда наступает текучесть в основном сечении, возникшая под действием статических, повторно-переменных и динамических сил. При этом возникают максимально допустимые повреждения или деформации, за которыми следует потеря эксплуатационной способности конструкции. При расчете несущей способности сварочного шва ориентируются на допустимое напряжение в наиболее опасном сечении элемента «s» и допустимое напряжение, составляющее некоторую часть от предела текучести «нвэ». При этом обязательно должно выдерживаться соотношение: HSЭ i s. При таком соотношении элемент конструкции удовлетворяет требованиям прочности. Для большей уверенности применяют коэффициент запаса прочности «п», который гарантирует не наступление текучести и для низкоуглеродистых сталей лежит в пределах 1,35 - 1,50, a HSЭ = 160 Мпа.
Допустимое напряжение в наиболее опасном сечении «s» определяют по формуле:
Где F — площадь поперечного сечения элемента, а N — осевое усилие, прикладываемое к нему.
Говоря о прочности сварочного соединения, не следует забывать о его пористости и трещинах, оказывающих значительное влияние на этот показатель. Поры в сварочном шве возникают при выделении газов в процессе кристаллизации металла. Как правило, это азот, водород или окись углерода, получаемые в результате химических реакций. Но поры в сварочном шве могут возникать не только от газов. Это явление случается при повышенной тугоплавкости, вязкости и плотности шлаков, которые не покидают пределы сварочного шва.
Поры могут быть внутренними или наружными, располагаться по оси шва или на его границах, форма их может быть округлая, овальная или более сложная, а их размеры могут колебаться от нескольких микрон до нескольких миллиметров. Уменьшению пористости сварочного шва способствует предсварочная подготовка, которая заключается в тщательной зачистке сварного соединения от грязи, масел, ржавчины и прочих посторонних включений. Борются с пористостью при помощи правильно подобранных режимов сварки, защитными покрытиями и флюсами, вводимыми в сварочную ванну.
Трещины в массиве шва и околошовной зоны могут быть холодными и горячими. Горячие трещины (рис.1) возникают в процессе кристаллизации жидкой фазы металла.
Рис. 1 Наличие горячих трещин в сварных соединениях: 1 —2 —3 — поперечные трещины шва и зоны вокруг него в материале; 4 —5 — трещины продольные
Этому явлению способствуют линейные сокращения металла, возникающие в результате внутренних напряжений. Размеры и направление горячих трещин могут быть самыми различными и зависят от соответствия материала, электродов и режимов сварки.
Для определения этого соответствия сначала сваривают пробный образец, который подвергают тщательному анализу. Наличие трещин может определяться визуально под увеличением, а ответственные детали подвергают просветке или облучению.
Холодные трещины чаще всего имеют микроскопический характер и возникают при температурах не более 200°С. Причинами появления холодных трещин может быть хрупкость металла при быстром его охлаждении, остаточные напряжения в сварных соединениях или повышенное содержание водорода.
Коррозия сварных соединений снижает прочность шва и его долговечность. В связи с большими структурными изменениями сварных соединений они обладают большей коррозийной активностью по сравнению с основным металлом. Коррозия может быть общей и местной.
При общей коррозии поражается вся поверхность металла, что свидетельствует о его низкой коррозийной стойкости. Местная коррозия проявляется в наличии отдельных ржавых пятен, точек. Она может быть как поверхностная, так и межкристаллитная.
Наиболее опасна межкристаллитная коррозия, которая проникает вглубь зерен, не разрушая их. Наиболее характерные коррозийные разрушения сварного соединения показаны на рис.2.
Избежать этого опасного явления помогает правильный подбор материалов, сварочных электродов, применение защитных покрытий и замедлителей, которые наносят на поверхность металла или в коррозионную среду. Хорошие результаты дает применение сварочной проволоки с высокой коррозийной стойкостью. При сварке такой проволокой получается шов с большей коррозийной стойкостью, чем основной металл. На коррозийную активность сварочного шва оказывают влияние и выбранные режимы сварки.
Рис.2. Коррозионные разрушения при сварке: А — общая коррозия: 1 — равномерное распределение; 2 — шовная коррозия; 3 — интенсивная коррозия всего металла; 4 — ржавчина в зоне термического влияния; Б — местная коррозия: 1 — коррозия в термической зоне (межкристалитная); 2 — шовная коррозия; 3 — коррозия в зоне сплавления; 4 — точечная коррозия; В — усталость (коррозийное вытрескивание)
Понятие о расчете швов на прочность
При расчете сварных соединений на прочность в первую очередь необходимо знать площадь поперечного сечения сварного шва. Перемножая толщину сварного шва на его длину, получим площадь поперечного сечения сварного шва. При растяжении допускаемое усилие в сварном соединении определяется по следующей формуле:
Р = σр •S • l.
P = σсж •S • l ,
где l — длина шва; S — толщина соединяемых элементов; σр— допускаемое напряжение в сварном шве при растяжении; σсж — допускаемое напряжение в сварном шве при сжатии.
При расчете на прочность нахлесточного соединения применяют следующую расчетную формулу:
P = τср • 0,7K • l ,
где P —допускаемое усилие: τcр—допускаемое напряжение наплавленного металла при срезе; К —длина катета; l — длина сварного шва.
Большая Энциклопедия Нефти и Газа
Равнопрочность сварного соединения труб с основным металлом важна как для газопроводов, так и для нефтепроводов. В нефтепроводах вследствие возможного возникновения в них при эксплуатации циклических и ударных нагрузок разрушение сварных соединений наблюдается заметно чаще, чем в газопроводах. [3]
Обеспечивается равнопрочность сварного соединения и основного металла, поэтому сварку используют при изготовлении самых ответственных конструкций, работающих при высоких давлениях и температурах, при вибрационных и динамических ( ударных) нагрузках. Сваркой соединяют различные металлы практически любой толщины. С помощью сварки можно изготовлять сварно-литые и сварно-кованые детали и узлы любых размеров, которые не могут быть отлиты или откованы целыми. [4]
Условия равнопрочности сварного соединения из низколегированной стали обеспечиваются значительно проще при действии статической нагрузки, чем при действии вибрационной нагрузки. Это объясняется повышенной чувствительностью низколегированной стали к концентрации напряжений. [5]
Для обеспечения равнопрочности сварного соединения после сварки производят полную термообработку изделия, которая заключается в закалке и последующем высоком отпуске или в нормализации. [6]
В настоящее время равнопрочность сварных соединений , работающих на статическую нагрузку ( см. § 23) с основным металлом, обеспечивается при сварке покрытыми электродами и другими сварочными материалами. Прочность сварных соединений зависит от прочности металла шва, ширины перегретого металла в зоне термического влияния, совместной ширины металла шва и ширины перегретого металла, характера приложения внешней нагрузки, температуры эксплуатации изделия и других факторов. [7]
При сварке обеспечивается равнопрочность сварного соединения ( по цветному металлу) при действии статической нагрузки. Сварные соединения обладают удовлетворительной пластичностью. [8]
Если необходимо обеспечить равнопрочность сварного соединения и основного металла, то в качестве нормативного значения определяемого свойства сварного соединения принимают нормативное значение одноименного свойства основного металла в соответствующем состоянии - исходном или после термической обработки. [9]
При этом обеспечивается равнопрочность сварных соединений , достаточно высокие пластичность и ударная вязкость металла шва, а также высокая стойкость против коррозии в сильных агрессивных средах, для которых предназначаются эти стали. Однако при использовании проволоки с-ниобием в сварных швах в заводских условиях часто наблюдаются горячие трещины, несмотря на наличие в наплавленном металле ферритной фазы. [10]
Сварка может обеспечить механическую равнопрочность сварных соединений медных, алюминиевых, медных с алюминиевыми проволок диаметром 1 6 - 5 мм. [11]
Высокопрочные трубы для обеспечения равнопрочности сварных соединений необходимо сваривать швами с временным сопротивлением не ниже основного металла. При этом должна быть достигнута высокая пластичность швов, а также высокая ударная вязкость при положительных и отрицательных температурах. [12]
Расчеты предусматривают возможность обеспечения равнопрочности сварных соединений основному металлу конструкций путем рационального выбора технологии изготовления элементов нефтегазохимического оборудования ( режимов сварки, термообработки и т.п.) и сварочных материалов. [13]
Из формулы вытекает требование статической равнопрочности сварных соединений с основным металлом: jRiH aB oV, где a B - временное сопротивление разрыву сварного соединения. [14]
Применением соответствующих толстопокрытых электродов обеспечивается равнопрочность сварного соединения с основным ( свариваемым) металлом. [15]
Прочность сварных соединений
Расчет сварного шва на прочность
В сварных соединениях некоторые швы являются рабочими, а некоторые — связующими (рис. 60). Рабочими называются швы, воспринимающие нагрузку от внешних усилий. При разрушении рабочего шва может разрушиться и сварное соединение. Связующими называются швы, служащие для соединения нескольких элементов конструкции (например, полос), несущих основную нагрузку. Наплавленный металл связующих швов деформируется вместе с основным металлом элементов, связанных данным швом. Если связующий шов разрушится, то соединение может работать, так как нагрузка воспринимается элементами основного металла. На прочность рассчитываются только рабочие швы.
Прочность сварного соединения должна быть не ниже прочности основного металла.
Прочность сварного соединения характеризуется величиной фактических напряжений, возникающих в нем от действующих усилий. Чтобы соединение было прочным, фактические напряжения должны быть ниже тех, при которых металл шва разрушается. Принимаемые при расчете напряжения называются расчетными и обозначаются ст.
Расчетное напряжение, т. е. напряжение от расчетных усилий, не должно превышать расчетного сопротивления металла R. т. е. σ ≤ R
Величина расчетных сопротивлений (напряжений) регламентируется нормами, установленными для тех или иных конструкций, в зависимости от их назначения, применяемого металла, условий работы, методов контроля и пр.
Расчетное напряжение всегда ниже предела текучести данного металла. Отношение предела текучести σт к расчетному напряжению σ называется запасом прочности.
nз = σт/σ
где nз — запас прочности.
Для стальных изделий запас прочности по пределу текучести обычно равен nз=1,2-1,6. Для металлов, не обладающих ясно выраженным пределом текучести, запас прочности определяют по отношению к временному сопротивлению разрыву oв. В этом случае запас прочности составляет обычно nз = 3 - 4.
Расчетные сопротивления металла стыковых швов Rс св , принимаемые при расчетах сварных швов стальных строительных конструкций, регламентируются «Строительными нормами и правилами». По этим нормам для ручной, полуавтоматической и автоматической сварки стыковых швов на стали Ст3 и Ст4 величина Rс св при растяжении равна:
- для обычных методов контроля швов (наружным осмотром и обмером) Rс св = 1800 кгс/см 2 ;
- для повышенных способов контроля (рентгено- и гаммаграфия, ультразвуковая и магнитографическая дефектоскопия и др.) Rс св = 2100 кгс/см 2 ,
- при срезе Rс св = 1300 кгс/см 2 .
При сварке указанными способами угловых швов Ст3 и Ст4 для всех видов контроля принимают Rс св =1500 кгс/см 2 (при сжатии, растяжении и срезе).
Стыковые швы на прочность рассчитывают по формуле N = Rс св *S*l
где N - предельно допускаемое действующее расчетное усилие, кгс;
Rс св - расчетное сопротивление растяжению для металла шва, кгс/см 2 ;
S - толщина металла в расчетном сечении, см; l - длина шва, см.
Например, если Rс св = 1800 кгс/см 2 ; S = 1 см, l = 20 см, то такой шов может безопасно работать при наибольшем усилии, равном N = 1800*1*20 = 36000 кгс.
Прочность лобовых угловых швов рассчитывают по формуле N = 0,7*K*Rу св
где К - высота катета шва, см;
Rу св - расчетное сопротивление срезыванию в угловом шве, кгс/см 2 ;
I - длина шва, см.
Прочность фланковых угловых швов рассчитывается по формуле N = 2*0,7*К*Rу св
Пример: Требуется расчитать угловой фланковый шов. Действующее усилие N=6000кгс; катет шва К=0,8 см; принимая во внимание расчетное сопротивление на срезывание Rу св =1500 кгс/см 2 , определяем по формуле необходимую длину шва:
На рисунке справа показаны обозначения при расчете швов на прочность.
Также следует отметить: по длине фланкового шва напряжения распределяются неравномерно и максимальное значение их приходится на конец шва состороны приложения усилия. Поэтому при расчете на прочность фланкового шва за расчетную принимают длину шва, равную не более 50 катетам.
Автор: Администрация
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Читайте также: