Предел огнестойкости металлических конструкций r15
Предел огнестойкости конструкции (заполнения проемов противопожарных преград) — промежуток времени от начала огневого воздействия в условиях стандартных испытаний до наступления одного из нормированных для данной конструкции (заполнения проемов противопожарных преград) предельных состояний.
Пределы огнестойкости строительных конструкций определяются в условиях стандартных испытаний. Наступление пределов огнестойкости несущих и ограждающих строительных конструкций в условиях стандартных испытаний или в результате расчетов устанавливается по времени достижения одного или последовательно нескольких из следующих признаков предельных состояний:
- потеря несущей способности(R);
- потеря целостности(E);
- потеря теплоизолирующей способностивследствие повышения температуры на необогреваемой поверхности конструкции до предельных значений (I) или достижения предельной величины плотности теплового потока на нормируемом расстоянии от необогреваемой поверхности конструкции (W).
Предел огнестойкости для заполнения проемов в противопожарных преградах наступает при потере целостности (E), теплоизолирующей способности (I), достижении предельной величины плотности теплового потока (W) и (или) дымогазонепроницаемости (S)
Методы определения пределов огнестойкости строительных конструкций и признаков предельных состояний устанавливаются нормативными документами по пожарной безопасности.
Условные обозначения пределов огнестойкости строительных конструкций содержат буквенные обозначения предельного состояния и группы.
Знак предела огнестойкости строительной конструкции состоит из условных обозначений, нормируемых для данной конструкции предельных состояний и цифры, соответствующей времени достижения одного из этих состояний (первого по времени) в минутах. Напр., REI 30 – предел огнестойкости 30 мин – по потере несущей способности, целостности и теплоизолирующей способности независимо от того, какие из трёх предельных состояний конструкции I огнестойкости наступит ранее.
Для нормирования пределов огнестойкости несущих и ограждающих конструкций используют следующие предельные состояния:
- для колонн, балок, ферм, арок и рам— только потеря несущей способности конструкции и узлов — R;
- для наружных несущих стен и покрытий— потеря несущей способности и целостности — R, E, для наружных ненесущих стен — E;
- для ненесущих внутренних стен и перегородок— потеря теплоизолирующей способности и целостности — E, I;
- для несущих внутренних стен и противопожарных преград— потеря несущей способности, целостности и теплоизолирующей способности — R, E, I
Фактический предел огнестойкости определяют как правило расчетным путем, но для типовых конструкций могут применяться и экспериментальные методы определения фактического предела огнестойкости.
Предел огнестойкости металлических конструкций
Пределы огнестойкости большинства незащищенных металлических конструкций очень малы и находятся в пределах: (R10 — R15) для стальных конструкций; (R6 – R8)* для алюминиевых конструкций. Исключение составляют колонны массивного сплошного сечения, у которых предел огнестойкости без огнезащиты может достигать R 45, но применение таких конструкций в строительной практике встречается крайне редко.
Несмотря на то, что металл материал негорючий, при нагреве он теряет прочность, поэтому металл имеет низкий предел огнестойкости.
В случаях, когда минимальный требуемый предел огнестойкости конструкции (за исключением конструкций в составе противопожарных преград) указан R 15 (RE 15, REI 15), допускается применять незащищенные стальные конструкции независимо от их фактического предела огнестойкости, за исключением случаев, когда предел огнестойкости несущих элементов здания по результатам испытаний составляет менее R 8 (п. 5.4.2 СП 2.13130.2009)
Если возникает необходимость обеспечить огнестойкость металлических конструкций зданий выше, чем R15, то применяют различные способы повышения огнестойкости этих конструкций, например, окраска огнезащитными составами или облицовка защитными огнестойкими материалами. В качестве облицовок могут быть использованы бетонные плитки, керамические материалы, штукатурка и т.п. Например, слой штукатурки в 2,5 см повышает предел огнестойкости металлических конструкций до R50. Облицовка в 0,5 кирпича повышает предел огнестойкости металлических конструкций до R 300. Огнезащитные покрытия при воздействии высокой температуры вспучиваются и теплоизолируют металлическую поверхность. Например, слой такой обмазки толщиной 2-3 мм при воздействии высоких температур вспучивается и на некоторое время создает на поверхности защищаемой металлической конструкции слой пористого материала, толщиной 25-35 мм. Данный способ огнезащиты позволяет увеличить огнестойкость металлических конструкций до величин R45-R60.
Предел огнестойкости деревянных конструкций
В отличие от металла дерево является горючим материалом, поэтому пределы огнестойкости деревянных конструкций зависят от двух факторов: времени от начала воздействия пожара до воспламенения древесины и времени от начала воспламенения древесины до наступления того или иного предельного состояния конструкции:
τ= τ воспл+ τ гор
Скорость уменьшения рабочего сечения деревянных конструкций на пожаре составляет от 0,6 до 1,0 мм/мин, поэтому деревянные конструкции, особенно с массивным сечением могут иметь достаточно большие значения пределов огнестойкости. Конечно необходимо учитывать, что с уменьшением сечения уменьшается прочность конструкции и если брус был нагружен на 90%, то и предел огнестойкости будет низким, если на 10%, то чтобы произошло разрушение нужно больше времени.
Традиционным способом повышения огнестойкости деревянных конструкций является нанесение штукатурки. Слой штукатурки толщиной 2 см на деревянной колонне повышает ее предел огнестойкости до R 60. Эффективным способом огнезащиты деревянных конструкций являются разнообразные краски вспучивающиеся и невспучивающиеся, а также пропитка антипиренами. Необходимо обращать внимание на обеспечение достаточной огнестойкости деревянных конструкций, имеющих узлы крепления, опоры, затяжки, армирование из металлических элементов.
Предел огнестойкости железобетонных конструкций
Огнестойкость железобетонных конструкций зависит от многих факторов: конструктивной схемы, геометрии, уровня эксплуатационных нагрузок, толщины защитных слоев бетона, типа арматуры, вида бетона, и его влажности и др. В условиях пожара предел огнестойкости железобетонных конструкций наступает, как правило: а) за счет снижения прочности бетона при его нагреве; б) теплового расширения и температурной ползучести арматуры; в) возникновения сквозных отверстий или трещин в сечениях конструкций; г) в результате утраты теплоизолирующей способности. Наиболее чувствительными к воздействию пожара являются изгибаемые железобетонные конструкции: плиты, балки, ригели, прогоны. Их предел огнестойкости в условиях стандартных испытаний обычно находится в пределах R45-R90. Столь малое значение пределов огнестойкости изгибаемых элементов объясняется тем, что рабочая арматура растянутой зоны этих конструкций, которая вносит основной вклад в их несущую способность, защищена от пожара лишь тонким защитным слоем бетона. Это и определяет быстроту прогрева рабочей арматуры конструкции до критической температуры.
Огнестойкость сжатых железобетонных элементов исчерпывается при пожаре за счет снижения прочности поверхностных, наиболее прогреваемых слоев бетона и сопротивления рабочей арматуры при нагреве. Это приводит к быстрому снижению несущей способности конструкции при пожаре. В момент времени воздействия пожара, когда несущая способность конструкции снизится до уровня рабочих нагрузок, и наступит ее предел огнестойкости по признаку «R».
Для железобетонных колонн предел огнестойкости обычно находится в пределах R90-R150.
При необходимости увеличения пределов огнестойкости железобетонных конструкций рекомендуется следующие мероприятия:
— увеличение толщины защитного слоя бетона;
— облицовка негорючими материалами;
— снижение пожарной нагрузки в помещении;
— снижение механической нагрузки на конструкцию;
— применение рабочей арматуры с более высокой критической температурой прогрева при пожаре.
В настоящее время если подбирать материал по пределу огнестойкости, то лучше всего применять железобетонные конструкции т.к. они имеют достаточно большой предел огнестойкости даже без дополнительных мероприятий и соответственно будут стоить дешевле.
Требуемый предел огнестойкости
Требуемый предел огнестойкости конструкции устанавливается согласно таблице 21, 23, 24 ФЗ 123 в зависимости от степени огнестойкости здания и типа конструкции, либо прописывается в СТУ, если они разрабатываются для конкретного сооружения.
Таблица 21. Соответствие степени огнестойкости и предела огнестойкости строительных конструкций зданий, сооружений и пожарных отсеков
Степень | Предел огнестойкости строительных конструкций | ||||||
огне- стойкости зданий, сооружений | Несущие стены, колонны и другие | Наружные ненесущие стены | Перекры- тия между- этажные (в том числе | Строительные конструкции бесчердачных покрытий | Строительные конструкции лестничных клеток | ||
и пожарных отсеков * | несущие элементы | чердачные и над подва- лами) | настилы (в том числе с утепли- телем) | фермы, балки, прогоны | внутрен- ние стены | марши и площадки лестниц | |
________________ * Наименование графы в редакции, введенной в действие с 12 июля 2012 года Федеральным законом от 10 июля 2012 года N 117-ФЗ.. | |||||||
I | R 120 | Е 30 | REI 60 | RE 30 | R 30 | REI 120 | R 60 |
II | R 90 | Е 15 | REI 45 | RE 15 | R 15 | REI 90 | R 60 |
III | R 45 | Е 15 | REI 45 | RE 15 | R 15 | REI 60 | R 45 |
IV | R 15 | Е 15 | REI 15 | RE 15 | R 15 | REI 45 | R 15 |
V | не норми- руется | не норми- руется | не норми- руется | не норми- руется | не норми- руется | не норми- руется | не норми- руется |
Таблица 23. Пределы огнестойкости противопожарных преград
Наименование противопожарных преград | Тип противо- пожарных преград | Предел огнестойкости противо- пожарных преград | Тип заполнения проемов в противо- пожарных преградах | Тип тамбур- шлюза |
Стены | 1 | REI 150 | 1 | 1 |
2 | REI 45 | 2 | 2 | |
Перегородки | 1 | EI 45 | 2 | 1 |
2 | EI 15 | 3 | 2 | |
Светопрозрачные перегородки с | 1 | EIW 45 | 2 | 1 |
остеклением площадью более 25 процентов | 2 | EIW 15 | 3 | 2 |
Перекрытия | 1 | REI 150 | 1 | 1 |
2 | REI 60 | 2 | 1 | |
3 | REI 45 | 2 | 1 | |
4 | REI 15 | 3 | 2 |
Таблица 24. Пределы огнестойкости заполнения проемов в противопожарных преградах
Наименование элементов заполнения проемов в противопожарных преградах | Тип заполнения проемов в противопожарных преградах | Предел огнестойкости |
Двери (за исключением дверей с остеклением более 25 процентов и | 1 | EI 60 |
дымогазонепроницаемых дверей), ворота, | 2 | EI 30 |
люки, клапаны, шторы и экраны | 3 | EI 15 |
Двери с остеклением более 25 процентов | 1 | EI W 60 |
2 | EI W 30 | |
3 | EI W 15 | |
Дымогазонепроницаемые двери (за | 1 | EIS 60 |
исключением дверей с остеклением более | 2 | EIS 30 |
25 процентов) | 3 | EIS 15 |
Дымогазонепроницаемые двери с | 1 | EIWS 60 |
остеклением более 25 процентов, | 2 | EIWS 30 |
шторы и экраны | 3 | EIWS 15 |
Двери шахт лифтов (при условии, что к ним устанавливаются требования по пределам огнестойкости) | 2 | EI 30 (в зданиях высотой не более 28 метров предел огнестойкости дверей шахт лифтов принимается Е 30) |
(Строка в редакции, введенной в действие с 30 июля 2017 года Федеральным законом от 29 июля 2017 года N 244-ФЗ. | ||
Окна | 1 | Е 60 |
2 | Е 30 | |
3 | Е 15 | |
Занавесы | 1 | EI 60 |
Ройтман В.М. Инженерные решения по оценке огнестойкости проектируемых и реконструируемых зданий. М., Ассоциация «Пожнаука», 2001.
This article has 1 Comment
потеря теплоизолирующей (ограждающей) способности (I) — характеризуется повышением температуры на необогреваемой поверхности конструкции до предельных значений
Определение предела огнестойкости строительных конструкций. Таблица
Согласно Федерального закона от 22.07.2008 N 123-ФЗ (ред. от 30.04.2021) “Технический регламент о требованиях пожарной безопасности” Статья 35. Классификация строительных конструкций по огнестойкости.
Строительные конструкции зданий и сооружений в зависимости от их способности сопротивляться воздействию пожара и распространению его опасных факторов в условиях стандартных испытаний подразделяются на строительные конструкции со следующими пределами огнестойкости:
- ненормируемый;
- не менее 15 минут;
- не менее 30 минут;
- не менее 45 минут;
- не менее 60 минут;
- не менее 90 минут;
- не менее 120 минут;
- не менее 150 минут;
- не менее 180 минут;
- не менее 240 минут;
- не менее 360 минут.
Пределы огнестойкости строительных конструкций определяются в условиях стандартных испытаний.
Наступление пределов огнестойкости несущих и ограждающих строительных конструкций в условиях стандартных испытаний или в результате расчетов устанавливается по времени достижения одного или последовательно нескольких из следующих признаков предельных состояний:
Пределы огнестойкости строительных конструкций имеют следующие обозначения:
- потеря несущей способности (R);
- потеря целостности (Е);
- потеря теплоизолирующей способности вследствие повышения температуры на необогреваемой поверхности конструкции до предельных значений (I);
- достижение предельной величины плотности теплового потока на нормируемом расстоянии от необогреваемой поверхности конструкции (W).
Предел огнестойкости для заполнения проемов в противопожарных преградах наступает:
- при потере целостности (Е),
- теплоизолирующей способности (I),
- достижении предельной величины плотности теплового потока (W) и (или) дымогазонепроницаемости (S).
Внимание: методические материалы для проведения занятий по данной теме по кнопке скачать после статьи!
Степени и пределы
(зданий, сооружений, строений и пожарных отсеков)
Смотрим таблицу 21 согласно Федерального закона от 22.07.2008 N 123-ФЗ “Технический регламент о требованиях пожарной безопасности”.
Соответствие степени огнестойкости и предела огнестойкости строительных конструкций зданий, сооружений и пожарных отсеков.
Строительные конструкции бесчердачных покрытий
Строительные конструкции лестничных клеток
Примечание. Порядок отнесения строительных конструкций к несущим элементам здания и сооружения устанавливается нормативными документами по пожарной безопасности.
Металлических
Испытание предела огнестойкости дверей
Пределы огнестойкости большинства незащищенных металлических конструкций очень малы и находятся в пределах: (R10 – R15) для стальных конструкций; (R6 – R8) для алюминиевых конструкций. Исключение составляют колонны массивного сплошного сечения, у которых предел огнестойкости без огнезащиты может достигать R 45, но применение таких конструкций в строительной практике встречается крайне редко.
Пособие по определению пределов огнестойкости строительных конструкций, пределов распространения огня по конструкциям и групп возгораемости материалов (утверждено приказом ЦНИИСК 351/л от 19.12.1984 с изменениями 2016 года).
В случаях, когда минимальный требуемый предел огнестойкости конструкции (за исключением конструкций в составе противопожарных преград) указан R15 (RE15, REI15), допускается применять незащищенные стальные конструкции независимо от их фактического предела огнестойкости, за исключением случаев, когда предел огнестойкости несущих элементов здания по результатам испытаний составляет менее R8 (СП 2.13130.2012).
Причина столь быстрого исчерпания незащищенными металлическими конструкциями способности сопротивляться воздействию пожара заключается в больших значениях теплопроводности и малых значениях теплоемкости. Высокая теплопроводность металла практически не вызывает температурного градиента внутри сечения металлической конструкции. Это приводит к тому, что при пожаре температура незащищенных металлических конструкций быстро достигает критических температур прогрева металла, при которых происходит снижение прочностных свойств материала до такой величины, что конструкция становится неспособной выдерживать приложенную к ней внешнюю нагрузку, в результате чего наступает предельное состояние конструкции по признаку потере несущей способности (R).
Значения критической температуры Tcr прогрева различных металлических конструкций при нормативной эксплуатационной нагрузке приведены в таблице:
Низколегированная сталь марки:
Алюминевые сплавы марки:
Как видно из таблицы критические температуры для алюминиевых конструкций в 2-3 раза ниже, чем у стальных элементов. Если возникает необходимость обеспечить огнестойкость металлических конструкций зданий выше, чем R15, то применяют различные способы повышения огнестойкости этих конструкций: облицовка несгораемыми материалами, нанесение на поверхность специальных огнезащитных покрытий (красок и обмазок), наполнение полых конструкций водой постоянным или аварийным, с естественной или принудительной циркуляцией.
Деревянных
Испытания на предел огнестойкости
В отличие от металла дерево является горючим материалом, поэтому пределы огнестойкости деревянных конструкций зависят от двух факторов: времени от начала воздействия пожара до воспламенения древесины времени от начала воспламенения древесины до наступления того или иного предельного состояния конструкции.
Традиционным способом повышения огнестойкости деревянных конструкций является нанесение штукатурки. Слой штукатурки толщиной 2 см на деревянной колонне повышает ее предел огнестойкости до R60. Эффективным способом огнезащиты деревянных конструкций являются разнообразные краски вспучивающиеся и невспучивающиеся, а также пропитка антипиренами.
Время от начала теплового воздействия до воспламенения древесины в зависимости от способа огнезащиты приведено в таблице:
Способ огнезащиты | Время до воспламенения древесины, мин |
Без огнезащиты и пропитке антипиренами | 4 |
При защите: штукатуркой гипсовой толщиной 10…12мм |
штукатуркой цементной по металлической сетке толщиной 10…12мм
полужесткой минераловатной плитой толщиной 70мм
Железобетонных
Испытание предела огнестойкости окон
Огнестойкость железобетонных конструкций зависит от многих факторов: конструктивной схемы, геометрии, уровня эксплуатационных нагрузок, толщины защитных слоев бетона, типа арматуры, вида бетона, и его влажности и др.
В условиях пожара предел огнестойкости железобетонных конструкций наступает, как правило:
а) за счет снижения прочности бетона при его нагреве;
б) теплового расширения и температурной ползучести арматуры;
в) возникновения сквозных отверстий или трещин в сечениях конструкций;
г) в результате утраты теплоизолирующей способности.
Наиболее чувствительными к воздействию пожара являются изгибаемые железобетонные конструкции: плиты, балки, ригели, прогоны. Их предел огнестойкости в условиях стандартных испытаний обычно находится в пределах R45-R90. Столь малое значение пределов огнестойкости изгибаемых элементов объясняется тем, что рабочая арматура растянутой зоны этих конструкций, которая вносит основной вклад в их несущую способность, защищена от пожара лишь тонким защитным слоем бетона. Это и определяет быстроту прогрева рабочей арматуры конструкции до критической температуры.
Данные о фактических пределах огнестойкости бетонных и железобетонных конструкций приведены в таблицах:
Таблица 1. Пределы огнестойкости свободно опертых плит.
Вид бетона и характеристика плит | Минимальные толщина плиты (t) и расстояние до оси арматуры (a), мм | Пределы огнестойкости, мин. | |||||||
15 | 30 | 60 | 90 | 120 | 150 | 180 | |||
Тяжелый | толщина плиты | t | 30 | 50 | 80 | 100 | 120 | 140 | 155 |
опирание по двум сторонам или по контуру |
Вид бетона и характеристика плит | Минимальные толщина плиты (t) и расстояние до оси арматуры (a), мм | Пределы огнестойкости, мин. | |||||||
15 | 30 | 60 | 90 | 120 | 150 | 180 | |||
Легкий(γв = 1,2т/м 3 ) | толщина плиты | t | 30 | 40 | 60 | 75 | 90 | 105 | 120 |
опирание по двум сторонам или по контуру при |
Примечания:
1) Минимальная толщина плиты t обеспечивает значение предела огнестойкости по признаку “I” , а расстояние до оси арматуры – значение предела огнестойкости по признаку “R”.
2) Пределы огнестойкости многопустотных и ребристых с ребрами вверх панелей и
настилов следует принимать по таблице 1, умножая их на коэффициент 0,9.
3) Пределы огнестойкости статически неопределимых конструкций больше, чем пределы огнестойкости статически определимых на 25%, если отношение площади арматуры над опорной к площади арматуры в пролете равно 0,5, и на 50%, если это отношение равно 1,0.
4) Эффективная толщина многопустотной плиты для оценки предела огнестойкости определяется делением площади поперечного сечения плиты, за вычетом площади пустот, на ее ширину.
Таблица 2. Пределы огнестойкости статически определимых свободно опертых балок из тяжелого бетона, нагреваемых с 3-х сторон.
Пособие по определению пределов огнестойкости строительных конструкций, пределов распространения огня по конструкциям и групп возгораемости материалов (утверждено приказом ЦНИИСК 351/л от 19.12.1984 с изменениями 2016 года)
Внимание ! К сожалению не удалось загрузить документ для просмотра
Попробуйте обновить страницу или (нажмите F5)
Возможно формат файла не поддерживается.
Материал доступен по кнопке скачать!
ПО ОПРЕДЕЛЕНИЮ ПРЕДЕЛОВ ОГНЕСТОЙКОСТИ КОНСТРУКЦИЙ,
ПРЕДЕЛОВ РАСПРОСТРАНЕНИЯ ОГНЯ ПО КОНСТРУКЦИЯМ
И ГРУПП ВОЗГОРАЕМОСТИ МАТЕРИАЛОВ
(утверждено приказом ЦНИИСК от 19.12.1984 N 351/л с изменениями 2016 года)
2.21. Предел огнестойкости железобетонных конструкций зависит от их статической схемы работы. Предел огнестойкости статически неопределимых конструкций больше, чем предел огнестойкости статически определимых, если в местах действия отрицательных моментов имеется необходимая арматура. Увеличение предела огнестойкости статически неопределимых изгибаемых железобетонных элементов зависит от соотношения площадей сечения арматуры над опорой и в пролете согласно табл.1.
Увеличение предела огнестойкости изгибаемого статически неопределимого элемента, %, по сравнению с пределом огнестойкости статически определимого элемента
Примечание. Для промежуточных отношений площадей увеличение предела огнестойкости принимается по интерполяции.
Влияние статической неопределимости конструкций на предел огнестойкости учитывается при соблюдении следующих требований:
а) не менее 20% требуемой на опоре верхней арматуры должно проходить над серединой пролета;
б) верхняя арматура над крайними опорами неразрезной системы должна заводиться на расстояние не менее 0,4 в сторону пролета от опоры и затем постепенно обрываться ( - длина пролета);
в) вся верхняя арматура над промежуточными опорами должна продолжаться к пролету не менее чем на 0,15 и затем постепенно обрываться.
Изгибаемые элементы, заделанные на опорах, могут рассматриваться как неразрезные системы.
2.22. В табл.2 приведены требования к железобетонным колоннам из тяжелого и из легкого бетона. Они включают требования по размерам колонн, подвергаемых воздействию огня со всех сторон, а также находящихся в стенах и нагреваемых с одной стороны. При этом размер относится только к колоннам, нагреваемая поверхность которых находится на одном уровне со стеной, или для части колонны, выступающей из стены и несущей нагрузку. Предполагается, что в стене отсутствуют отверстия вблизи колонны в направлении минимального размера .
Для колонн сплошного круглого сечения в качестве размера следует принимать их диаметр.
Колонны с параметрами, приведенными в табл.2, имеют внецентренно приложенную нагрузку или нагрузку со случайным эксцентриситетом при армировании колонн не более 3% от поперечного сечения бетона, за исключением стыков.
Предел огнестойкости железобетонных колонн с дополнительным армированием в виде сварных поперечных сеток, установленных с шагом не более 250 мм следует принимать по табл.2, умножая их на коэффициент 1,5.
2.23. Предел огнестойкости ненесущих бетонных и железобетонных перегородок приведены в табл.3. Минимальная толщина перегородок гарантирует, что температура на необогреваемой поверхности бетонного элемента в среднем повысится не более чем на 160 °С и не превысит 220 °С при стандартном испытании на огнестойкость. При определении следует учитывать дополнительные защитные покрытия и штукатурки согласно указаниям пп.2.15 и 2.16.
0,25 0,5 0,75 1 1,5 2 2,5 3
2.24. Для несущих сплошных стен предел огнестойкости, толщина стены приведены в табл.4. Эти данные применимы к железобетонным центрально- и внецентренносжатым стенам при условии расположения суммарной силы в средней трети ширины поперечного сечения стены. При этом отношение высоты стены к ее толщине не должно превышать 20. Для стеновых панелей с платформенным опиранием при толщинах не менее 14 см пределы огнестойкости следует принимать по табл.4, умножая их на коэффициент 1,5.
до оси арматуры Минимальные размеры железобетонных стен, мм, с пределами огнестойкости, ч
10 15 20 30 30 30
Огнестойкость ребристых стеновых плит должна определяться по толщине плит. Ребра должны быть связаны с плитой хомутами. Минимальные размеры ребер и расстояния до осей арматуры в ребрах должны удовлетворять требованиям, предъявляемым к балкам и приведенным в табл.6 и 7.
Наружные стены из двухслойных панелей, состоящих из ограждающего слоя толщиной не менее 24 см из крупнопористого керамзитобетона класса В2-В2,5 (=0,6-0,9 т/м) и несущего слоя толщиной не менее 10 см, с напряжениями сжатия в нем не более 5 МПа, имеют предел огнестойкости 3,6 ч.
При применении в стеновых панелях или перекрытиях сгораемого утеплителя следует предусмотреть при изготовлении, установке или монтаже защиту этого утеплителя по периметру несгораемым материалом.
Стены из трехслойных панелей, состоящие из двух ребристых железобетонных плит и утеплителя, из несгораемых или трудносгораемых минераловатных или фибролитовых плит при общей толщине поперечного сечения 25 см, имеют предел огнестойкости не менее 3 ч.
Предел распространения огня по этим конструкциям равен нулю.
2.25. Для растянутых элементов пределы огнестойкости, ширина поперечного сечения и расстояние до оси арматуры приведены в табл.5. Эти данные относятся к растянутым элементам ферм и арок с ненапрягаемой и с преднапряженной арматурой, обогреваемым со всех сторон. Полная площадь поперечного сечения бетона элемента должна быть не менее , где - соответствующий размер для , приведенный в табл.5.
Минимальная ширина поперечного сечения и расстояние до оси арматуры Минимальные размеры железобетонных растянутых элементов, мм, с пределами огнестойкости, ч
предел огнестойкости незащищенных металлических конструкций
Предел огнестойкости незащищенных металлических конструкций:
для стали R10-R15; для алюминия R6-R8
Рис 1 - Испытания стальной конструкции (металлической трубы) на предел огнестойкости R15
Пределы огнестойкости большинства незащищенных металлических конструкций находятся в пределах:
R10 - R15 - для стальных конструкций;
R6 – R8 - для алюминиевых конструкций.
Колонны большого сечения являются исключением, у них предел огнестойкости без огнезащиты возможен до R 45, но применение колонн без огнезащиты очень редко.
Видео - Испытания стальной конструкции (металлической трубы) на предел огнестойкости R15
Рис 2 - Стальная конструкция (металлическая труба) после огневого воздействия в 60 минут
Согласно СП 2.13130.2012 "Системы противопожарной защиты"
Если требуемый предел огнестойкости конструкции (за исключением конструкций в составе противопожарных преград) R 15, допускается применять незащищенные стальные конструкции независимо от их фактического предела огнестойкости, за исключением случаев, когда предел огнестойкости хотя бы одного из элементов несущих конструкций (структурных элементов ферм, балок, колонн и т.п.) по результатам испытаний составляет менее R 8.
При огневом воздействие температура незащищенных металлических конструкций стремительно достигает критических температур прогрева металла, при которых происходит снижение прочностных свойств материала.
Факторы, определяющие огнестойкость металлических конструкций:
1) В результате потери прочности (металлическая конструкций будет сопротивляться разрушению под действием внешних нагрузок)
2) За счет потери устойчивости (металлическая конструкция будет стремится вернуться к состоянию равновесия после малых отклонений)
Рис 3 - Стальная конструкция (металлическая труба) под воздействием нагрузки в 200-250 кг
Значения критической температуры прогрева различных металлических конструкций:
1) Алюминиевый сплав марок AMг-6 - 225 град С
2) Сталь углеродистая Ст3, Ст5 - 470 град С
3) Низколегированная сталь марки 25Г2С - 550 град С
4) Алюминиевый сплав марок д1Т, Д16Т - 250 град С
Как видно из выше перечисленного списка критические температуры для алюминиевых конструкций в 2-3 раза ниже, чем у стальных элементов.
Предел огнестойкости металлических конструкций r15
Предел огнестойкости конструкции - промежуток времени от начала огневого воздействия в условиях стандартных испытаний до наступления одного из нормированных для данной конструкции предельных состояний.
Для несущих стальных конструкций предельное состояние - несущая способность, то есть показатель R.
Хотя металлические (стальные) конструкции выполнены из несгораемого материалов, фактический предел огнестойкости в среднем составляет 15 мин. Это объясняется достаточно быстрым снижением прочностных и деформативных характеристик металла при повышенных температурах во время пожара. Интенсивность нагрева МК зависит от ряда факторов, к которым относятся характер нагрева конструкций и способы их защиты.
Различают несколько температурных режимов пожара:
- режим пожара в туннеле;
- режим углеводорожного пожара;
- режимы наружного пожара и т.д.
При определении пределов огнестойкости создается стандартный температурный режим, характеризуемый следующей зависимостью
где Т - температура в печи, соответствующая времени t, град С;
То - температура в печи до начала теплового воздействия (принимают равной температуре окружающей среды), град. С;
t - время, исчисляемое от начала испытания, мин.
Температурный режим углеводородного пожара выражается следующей зависимостью
Наступление предела огнестойкости металлических конструкций наступает в результате потери прочности или за счет потери устойчивости самих конструкций или их элементов. Тому и другому случаю соответствует определенная температура нагрева металла, называемая критической, т.е. при которой происходит образование пластичного шарнира.
Расчет предела огнестойкости сводится к решению двух задач: статической и теплотехнической.
Статическая задача имеет целью определения несущей способности конструкций с учетом изменения свойств металла при высоких температурах, т.е. определения критической температуры в момент наступления предельного состояния при пожаре.
В результате решения теплотехнической задачи определяется время нагрева металла от начала действия пожара до достижения в расчетном сечении критической температуры, т.е. решение этой задачи позволяет определить фактический предел огнестойкости конструкции.
Основы современного расчета предела огнестойкости стальных конструкций представлены в книге "Огнестойкость строительных конструкций" *И.Л. Мосалков, Г.Ф. Плюснина, А.Ю. Фролов Москва, 2001 г. Спецтехника), где расчету предела огнестойкости стальных конструкции посвящен раздел 3 на стр. 105-179.
Метод расчета пределов огнестойкости стальных конструкций с огнезащитными покрытиями изложены в Методических рекомендациях ВНИИПО "Средства огнезащиты для стальных конструкций. Расчетно-экспертиментальный метод определения предела огнестойкости несущих металлических коснтрукций с тонкослойными огнезащитными покрытиями".
Результатом расчета является вывод о фактическом пределе огнестойкости конструкции, в том числе с учетом решений по ё огнезащиты.
Для решения теплотехнической задачи, т.е. задачи в которой необходимо определить время прогрева конструкции до критической температуры, необходимо знать расчетную схему нагружения, приведенную толщину металлической конструкции, количество обогреваемых сторон, марку стали, сечения (момент сопротивляние), а также теплозащитные свойства огнезащитных покрытий.
Эффективность средств огнезащиты стальных конструкций определяется по ГОСТ Р 53295-2009 "Средства огнезащиты для стальных конструкций. Общие требования. Метод определения огнезащитной эффективности". К сожалению данный стандарт не может применяться для определения пределов огнестойкости, об этом прямо написано в п. 1 "Область применения": " Настоящий стандарт не распространяется на определение пределов огнестойкости строительных конструкций с огнезащитой".
Дело в том что по ГОСТу в результате испытаний устанавливается время прогрева конструкции до условно критической температуры в 500С, в то время как расчетная критическая температура зависит от "запаса прочности" конструкции и её значение может быть как меньше 500С, так и больше.
За рубежом средства огнезащиты проходят испытания на огнезащитную эффективность по достижению критической температуры 250С, 300С, 350С, 400С, 450С, 500С, 550С, 600С, 650С, 700С, 750С.
Требуемые пределы огнестойкости установлены ст. 87 и таблицей № 21 Техническим регламентом о требованиях пожарной безопасности.
Степень огнестойкости определяется в соответствие с требованиями СП 2.13130.2012 "Системы противопожарной защиты. Обеспечение огнестойкости объектов защиты".
В соответствие с требованиями п. 5.4.3 СП 2.13130.2012 . допускается применять незащищенные стальные конструкции независимо от их фактического предела огнестойкости, за исключением случаев, когда предел огнестойкости хотя бы одного из элементов несущих конструкций (структурных элементов ферм, балок, колонн и т.п.) по результатам испытаний составляет менее R 8. Здесь фактический предел огнестойкости определяется расчетом.
Кроме того этим же пунктом ограничено применение тонкослойных огнезащитных покрытий (огнезащитных красок) для несущих конструкций с приведенной толщиной металла 5,8 мм и менее в зданиях I и II степеней огнестойкости.
Несущие стальные кострукции являются в большинстве случаев элементами рамно-связевого каркаса здания, устойчивость которого зависит как от предела огнестойкости несущих колонн, так и от элементов покрытия, балок и связей.
В соответствие с требованиями п. 5.4.2 СП 2.13130.2012 " К несущим элементам зданий относятся несущие стены, колонны, связи, диафрагмы жесткости, фермы, элементы перекрытий и бесчердачных покрытий (балки, ригели, плиты, настилы), если они участвуют в обеспечении общей устойчивости и геометрической неизменяемости здания при пожаре. Сведения о несущих конструкциях, не участвующих в обеспечении общей устойчивости и геометрической неизменяемости здания, приводятся проектной организацией в технической документации на здание".
Таким образом все элементы рамно-связевого каркаса здания должны иметь предел огнестойкости по наибольшему из них.
Читайте также: