Поверхность металла освещают светом частотой при этом наблюдается
Монохроматический свет с энергией фотонов Eф падает на поверхность металла, вызывая фотоэффект. Запирающее напряжение, при котором фототок прекращается, равно Uзап. Как изменятся модуль запирающего напряжения Uзап и длина волны λкр, соответствующая «красной границе» фотоэффекта, если энергия падающих фотонов Eф увеличится?
Для каждой величины определите соответствующий характер изменения:
Запишите в ответ выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Энергия налетающих фотонов передаётся электронам и расходуется на преодоление электронами работы выхода из металла и увеличение скорости электронов Запирающее напряжение определяется максимальной кинетической энергией вылетевших электронов: С увеличением энергии налетающих фотонов увеличится запирающее напряжение. «Красная граница» фотоэффекта — это максимальная длина волны при которой ещё происходит фотоэффект и она зависит от работы выхода, не зависит от энергии налетающих фотонов. Следовательно, при увеличении энергии налетающих фотонов длина волны, соответствующая «красной границе» фотоэффекта не изменится.
Источник: Демонстрационная версия ЕГЭ—2015 по физике., Демонстрационная версия ЕГЭ—2022 по физике, ЕГЭ по физике 2022. Досрочная волна. Вариант 2
Задания Д32 C3 № 9255Частота красной границы фотоэффекта для калия равна 5,33 · 10 14 Гц. Если другой металл облучить светом с такой же длиной волны, то кинетическая энергия вылетевших электронов будет в 3 раза меньше работы выхода для этого вещества. Чему равна частота красной границы фотоэффекта для неизвестного металла?
Согласно уравнению фотоэффекта, энергия фотона, работа выхода и максимальная кинетическая энергия электрона связаны соотношением:
Красная граница фотоэффекта — это минимальная частота при которой ещё происходит фотоэффект и она зависит от работы выхода и не зависит от энергии налетающих фотонов
Запишем закон фотоэффекта для неизвестного металла:
Ответ: 4 · 10 14 Гц.
Тип 18 № 6986Красная граница фотоэффекта для вещества фотокатода λ0 = 290 нм. При облучении катода светом с длиной волны λ фототок прекращается при напряжении между анодом и катодом U = 1,9 В. Определите длину волны λ. Ответ выразить в нм и округлить до целого. Заряд электрона принять равным 1,6·10 −19 Кл, постоянную Планка — 6,6·10 −34 Дж·с, а скорость света — 3·10 8 м/с.
Уравнение Эйнштейна для фотоэффекта Условие связи красной границы фотоэффекта и работы выхода: Выражение для запирающего напряжения — условие равенства максимальной кинетической энергии электрона и изменения его потенциальной энергии при перемещении в электростатическом поле: Совмещая выражения, получим:
Добрый день! 201 нм - это волны не оптического диапазона. Их нельзя называть термином"свет". Это ультрафиолетовое излучение.
Если там постоянную планка h брать 6,6*10 в степени -34, то там будет получатся следующее выражение:199,264297612, что приблизительно равно 199, если до целого округлять. А если взять постоянную планка, как должно быть, то там так и получится:201,030066815, округлив до целого, получаем: 201. Значит, у вас ошибка. Взадании сказано брать постоянную планка 6,6*10 в степени -34 я внимательно перерешал с этой постоянной планка там получается 199 исправьте ошибку пожалуйста. если бы мы брали постоянную планка 6,64*10 в степени -34, то там бы получилось 201. у вас ошибка
Задания Д32 C3 № 9044При увеличении в 2 раза частоты света, падающего на поверхность металла, запирающее напряжение для вылетающих с этой поверхности фотоэлектронов увеличилось в 3 раза. Первоначальная длина волны падающего света была равна 250 нм. Какова частота, соответствующая «красной границе» фотоэффекта для этого металла?
где — частота, соответствующая «красной границе» фотоэффекта, e — заряд электрона, — запирающее напряжение.
2. Запишем уравнение фотоэффекта для двух частот:
3. Найдём частоту, соответствующая «красной границе» фотоэффекта:
Задания Д21 № 9510Максимальная кинетическая энергия фотоэлектронов, вылетающих из металлической пластинки при её освещении монохроматическим светом, равна 0,8 эВ. Красная граница фотоэффекта для этого металла 495 нм. Установите соответствие между физическими величинами и их численными значениями, выраженными в СИ. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.
А) работа выхода металла
Б) энергия фотона в световом потоке, падающем на пластинку
Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:
«Красная граница» фотоэффекта — это максимальная длина волны при которой ещё происходит фотоэффект и она зависит от работы выхода, не зависит от энергии налетающих фотонов.
Энергия налетающих фотонов передаётся электронам и расходуется на преодоление электронами работы выхода из металла и увеличение кинетической энергии электронов
Тип 24 № 25043Учащимся в классе при электрическом освещении лампами накаливания показали опыт: цинковый шар электрометра зарядили эбонитовой палочкой, потёртой о сукно. При этом стрелка электрометра отклонилась, заняв положение, указанное на рисунке, и в дальнейшем не меняла его. Когда на шар направили свет аргоновой лампы, стрелка электрометра быстро опустилась вниз. Объясните разрядку электрометра, учитывая приведённые спектры (зависимость интенсивности света I от длины волны ) лампы накаливания и аргоновой лампы. Красная граница фотоэффекта для цинка
1) Эбонитовая палочка, потертая о шерсть, заряжается отрицательно. Следовательно, электрометр получит от нее отрицательный заряд (избыток электронов).
2) При освещении заряженного отрицательно цинкового шара светом от лампы накаливания не происходило вырывания электронов с поверхности цинка, так как, судя по диаграмме, максимальная освещенность приходилась на длины волн больше 500 нм, что больше, чем красная граница фотоэффекта для цинка. Потому электрометр не разряжался.
3) При освещении заряженного отрицательно цинкового шара светом от аргоновой лампы фотоэффект наблюдался, так как, судя по диаграмме, максимальная освещенности приходилась на длины волны больше 250 нм, что меньше, чем красная граница фотоэффекта для цинка. В результате вырывания электронов с поверхности цинкового шара, заряд уменьшался, из-за чего электрометр разряжался.
Тип 18 № 2301Фотоэффект наблюдают, освещая поверхность металла светом фиксированной частоты. При этом задерживающая разность потенциалов равна U. После изменения частоты света задерживающая разность потенциалов увеличилась на На какую величину изменилась частота падающего света? (Ответ дать в 10 14 Гц, округлив до десятых. Элементарный заряд — 1,6·10 −19 Кл, постоянная Планка — 6,6·10 −34 Дж·с.)
Запишем уравнение Эйнштейна для фотоэффекта для начальной частоты света
и для измененной частоты
Вычтя из второго равенства первое, получим соотношение:
Тип 18 № 2309Фотоэффект наблюдают, освещая поверхность металла светом с частотой При этом задерживающая разность потенциалов равна U. Частота света увеличилась на Каково изменение задерживающей разности потенциалов? (Ответ выразите в вольтах, округлив до сотых.) Заряд электрона принять равным 1,6·10 −19 Кл, а постоянную Планка — 6,6·10 −34 Дж·с.
Запишем уравнение Эйнштейна для фотоэффекта для начальной частоты света и для измененной частоты Вычтя из второго равенства первое, получим соотношение:
Тип 18 № 2310Фотоэффект наблюдают, освещая поверхность металла светом с частотой При этом задерживающая разность потенциалов равна U. Частота света увеличилась на Каково изменение задерживающей разности потенциалов? (Ответ выразите в вольтах и округлите с точностью до десятых.) Заряд электрона принять равным 1,6·10 −19 Кл, а постоянную Планка — 6,6·10 −34 Дж·с.
Тип 18 № 2311Фотоэффект наблюдают, освещая поверхность металла светом с частотой При этом задерживающая разность потенциалов равна U. Частота света увеличилась на Каково изменение задерживающей разности потенциалов? (Ответ выразите в вольтах и округлите с точностью до сотых.) Заряд электрона принять равным 1,6·10 −19 Кл, а постоянную Планка — 6,6·10 −34 Дж·с.
Тип 18 № 2312В задаче указано "ответ выразите в вольтах", очевидно это опечатка, должно быть "в электронвольтах", иначе ответ ровно в 1.6*10^(-19) раз больше, чем в решении
В задании спрашивается о напряжении.
Тип 18 № 2313Фотоэффект наблюдают, освещая поверхность металла светом с частотой При этом задерживающая разность потенциалов равна U. После изменения частоты света задерживающая разность потенциалов увеличилась на Каково изменение частоты падающего света? (Ответ дать в 10 14 Гц, округлив до десятых. Заряд электрона принять равным 1,6·10 −19 Кл, а постоянную Планка — 6,6·10 −34 Дж·с.)
Запишем уравнение Эйнштейна для фотоэффекта для начальной частоты света и для изменённой частоты Вычтя из второго равенства первое, получим соотношение:
Тип 18 № 2314Фотоэффект наблюдают, освещая поверхность металла светом с частотой При этом задерживающая разность потенциалов равна U. После изменения частоты света задерживающая разность потенциалов увеличилась на Каково изменение частоты падающего света? (Ответ дайте в 10 14 Гц, округлив до десятых.) Заряд электрона принять равным 1,6·10 −19 Кл, а постоянную Планка — 6,6·10 −34 Дж·с.
Тип 18 № 2315 Тип 18 № 2316 Задания Д21 № 3116Металлическую пластину освещали монохроматическим светом с длиной волны нм. Что произойдет с частотой падающего света, импульсом фотонов и кинетической энергией вылетающих электронов при освещении этой пластины монохроматическим светом с длиной волны нм одинаковой интенсивности? Фотоэффект наблюдается в обоих случаях.
3) не изменилась.
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Частота падающего света | Импульс фотонов | Кинетическая энергия фотоэлектронов |
Частота света связана с длиной волны и скоростью света соотношением Следовательно, увеличение длины волны падающего света соответствует уменьшению частоты (A — 2). Импульс фотона обратно пропорционален длине его волны: Таким образом, при увеличении длины волны, импульс фотонов уменьшается (Б — 2). Кинетическая энергия вылетающих электронов связана с энергией фотонов и работой выхода, согласно уравнению фотоэффекта, соотношением
Работа выхода зависит только от химических свойств металлов, а значит, в результате увеличения длины кинетическая энергия фотоэлектронов уменьшится (В — 2).
Задания Д21 № 3622При освещении металлической пластины светом наблюдается фотоэффект. Частоту света плавно изменяют. Установите соответствие между графиками и физическими величинами, зависимости которых от частоты падающего света эти графики могут представлять. К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.
1) работа выхода фотоэлектрона из металла
2) максимальный импульс фотоэлектронов
3) энергия падающего на металл фотона
4) максимальная кинетическая энергия фотоэлектронов
Энергия фотона прямо пропорциональна частоте: На графике Б изображена именно такая зависимость физической величины от частоты, поэтому этот график соответствует энергии падающего на металл фотона (Б — 3).
Работа выхода фотоэлектрона характеризует свойства материала металлической пластины и не зависит от частоты падающего на нее света, поэтому график этой величины должен представлять собой горизонтальную линию. Максимальный импульс фотоэлектронов связан с с максимальной кинетической энергией соотношением а потому его зависимость от частоты будет нелинейной.
Тип 18 № 3641В опыте по изучению фотоэффекта одну из пластин плоского конденсатора облучают светом с энергией фотона 6 эВ. Напряжение между пластинами изменяют с помощью реостата, силу фототока в цепи измеряют амперметром. На графике приведена зависимость фототока I от напряжения U между пластинами. Какова работа выхода электрона с поверхности металла, из которого сделаны пластины конденсатора? (Ответ дать в электрон-вольтах.)
Из графика видно, что фототок пропадает, если подать на пластины конденсатора обратное напряжение в 4 В. Это так называемое запирающее напряжение, когда все вылетающие фотоэлектроны, не успев долететь до противоположной пластины, возвращаются назад под действием электрического поля пластин. Согласно уравнению фотоэффекта Эйнштейна, энергия фотонов связана с работой выхода и запирающим напряжением соотношением: Следовательно, работа выхода для пластины конденсатора равна:
Задания Д21 № 3760Для наблюдения фотоэффекта поверхность некоторого металла облучают светом, частота которого равна Затем частоту света увеличивают вдвое. Как изменятся следующие физические величины: длина волны падающего света, работа выхода электрона, максимальная кинетическая энергия вылетающих электронов?
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться
кинетическая энергия
вылетающих электронов
Длина волны связана с частотой излучения и скоростью света соотношением Следовательно, излучение с вдвое большей частотой имеет вдвое меньшую длину волны.
Работа выхода является характеристикой металла и не зависит от частоты падающего излучения, поэтому работа выхода останется неизменной. Следовательно, увеличение частоты света приведет увеличению максимальной кинетической энергии вылетающих электронов.
Почему длина волны уменьшается? Длина воны=скорость света/частота света. Частота уменьшается, следовательно длина волны увеличивается.
В условии написано: «Затем частоту света увеличивают вдвое».
Тип 24 № 7933В опыте по изучению фотоэффекта катод освещается жёлтым светом, в результате чего в цепи возникает ток (рисунок 1). Зависимость показаний амперметра I от напряжения U между анодом и катодом приведена на рисунке 2. Используя законы фотоэффекта и предполагая, что отношение числа фотоэлектронов к числу поглощённых фотонов не зависит от частоты света, объясните, как изменится представленная зависимость I(U), если освещать катод зелёным светом, оставив мощность поглощённого катодом света неизменной.
1. При изменении света с жёлтого на зелёный его длина волны уменьшится, частота увеличится (νз > νж).
2. Работа выхода электронов из материала не зависит от частоты падающего света, поэтому в соответствии с уравнением Эйнштейна для фотоэффекта: hυ = Aвых + Emax — увеличится максимальная кинетическая энергия фотоэлектронов Emax. Так как то увеличится и модуль запирающего напряжения Uз.
3. Мощность поглощённого света связана с частотой волны ν соотношением P = NφEφ = Nφhν, где Nφ — число фотонов, падающих на катод за 1 с, Eφ= hν — энергия одного фотона (соотношение Планка). Так как мощность света не изменилась, а энергия фотонов Eφ увеличилась, то уменьшится число фотонов, падающих на катод за 1 с.
4. Сила тока насыщения Iнас определяется числом выбитых светом за 1 с электронов Ne, которое пропорционально числу падающих на катод за 1 с фотонов, поэтому сила тока насыщения уменьшится.
Ответ: точка отрыва графика от горизонтальной оси U сдвинется влево, горизонтальная асимптота графика Iнас сдвинется вниз.
Поверхность металла освещают светом частотой при этом наблюдается
Фотоэффект. Подготовка к ЕГЭ
Великий немецкий физик – теоретик, основатель квантовой теории- современной теории движения, взаимодействия и взаимных превращений микроскопических частиц.
Атомы испускают энергию согласно
отдельными порциями - квантами
E = h v
h = 6,63 ∙ 10 -34 Дж ∙ с
Эксперимент
№ 1. Цинковую пластину, соединенную с электроскопом, заряжают отрицательно и облучают ультрафиолетовым светом.
Она быстро разряжается.
№ 2. Если же её зарядить положительно, то заряд пластины не изменится.
Свет вырывает электроны с поверхности пластины
Это явление было открыто немецким учёным Генрихом Герцем
– это вырывание электронов из вещества под действием света
№ 3. Стеклянным экраном перекрывают источник ультрафиолетового излучения. Отрицательно заряженная пластина уже не теряет электроны, какова бы ни была интенсивность излучения.
Количественные закономерности фотоэффекта были установлены русским физиком А. Г. Столетовым
Почему световые волны малой частоты не могут вырывать электроны, если даже амплитуда волны велика и, следовательно, велика сила, действующая на электрон?
Этот факт нельзя объяснить на основе волновой теории света.
Схема экспериментальной установки
Источник монохроматического света длины волны λ
Двойной ключ для изменения полярности
Электроизмерительные приборы для снятия вольтамперной характеристики
Потенциометр для регулирования напряжения
Источник напряжения U
Законы фотоэффекта
Количество электронов, вырываемых светом с поверхности металла за 1 секунду, прямо пропорционально поглощаемой за это время энергии световой волны.
Фототок насыщения прямо пропорционален падающему световому потоку.
Пока ничего удивительного нет:
чем больше энергия светового пучка, тем эффективнее его действие
По модулю задерживающего напряжения можно судить
Максимальное значение силы тока
называется током насыщения.
о скорости фотоэлектронов
и об их кинетической энергии
Ток насыщения определяется количеством электронов, испущенных за 1 секунду освещенным электродом.
Максимальная кинетическая энергия фотоэлектронов линейно возрастает с частотой света и не зависит от его интенсивности.
Для каждого вещества существует максимальная длина волны, при которой фотоэффект еще наблюдается. При больших длинах волн фотоэффекта нет.
Почему энергия фотоэлектронов определяется только частотой света и почему лишь при малой длине волны свет вырывает электроны?
Теория фотоэффекта
А. Эйнштейн 1905 год
Свет имеет прерывистую структуру и поглощается отдельными порциями - квантами
Фотоэффект практически безинерционен, так как с момента облучения металла светом до вылета электронов проходит время 10 с.
Поглотив квант света, электрон получает от него энергию и, совершая работу выхода, покидает вещество.
Красная граница фотоэффекта
Для каждого вещества существует красная граница фотоэффекта , т. е. существует наименьшая частота min , при которой еще возможен фотоэффект.
Минимальная частота света соответствует Е к = 0
Экспериментальное определение постоянной Планка
Как следует из уравнения Эйнштейна,
тангенс угла наклона прямой, выражающей зависимость запирающего потенциала Uз от частоты ν , равен отношению постоянной Планка h к заряду электрона e:
Это позволяет экспериментально определить значение постоянной Планка.
Такие измерения были выполнены Р. Милликеном в 1914 г. и дали хорошее согласие со значением, найденным Планком.
Часть 2
1. Один из способов измерения постоянной Планка основан на определении максимальной кинетической энергии электронов при фотоэффекте с помощью измерения напряжения, задерживающего их. В таблице представлены результаты одного из первых таких опытов.
Задерживающее напряжение U , в
Частота света, v • 10 , Гц
Постоянная Планка по результатам этого эксперимента равна
Решение задачи № 1
hν 1 = А +
h ( v 2 – v 1 ) = е (Uз 2 – U з 1 )
hν 2 = А +
h =
= еU з
h = 5,7 · 10 -34 Дж·с
2. Фотоэффект наблюдают, освещая поверхность металла светом фиксированной частоты. При этом задерживающая разность потенциалов равна U . После изменения частоты света задерживающая разность потенциалов увеличилась на Δ U = 1,2 В.
Насколько изменилась частота падающего света?
Обратите ВНИМАНИЕ
– стандартные и очень схожие задачи. Встречаются во многих вариантах ЕГЭ.
Решение задачи № 2
h v 1 = А +
v 2 – v 1 =
v 2 – v 1 = 2, 9 • 10 Гц
3. Красная граница фотоэффекта исследуемого металла соответствует длине волны кр = 600 нм. При освещении этого металла светом длиной волны максимальная кинетическая энергия выбитых из него фотоэлектронов в 3 раза меньше энергии падающего света.
Какова длина волны падающего света?
Решение задачи № 3
400 нм
4. Фотоэлектроны, вылетающие из металлической пластины, тормозятся электрическим полем. Пластина освещена светом, энергия фотонов которого 3 эВ. На рисунке приведен график зависимости фототока от напряжения тормозящего поля. Какова работа выхода электрона с поверхности пластины?
Решение задачи № 4
5. Слой оксида кальция облучается светом и испускает электроны. На рисунке показан график зависимости максимальной энергии фотоэлектронов от частоты падающего света. Какова работа выхода фотоэлектронов из оксида кальция? Ответ округлите до десятых .
Ответ: 2,1 эВ
3. Красная граница фотоэффекта для вещества фотокатода кр = 290 нм. При облучении катода светом с длиной волны фототок прекращается при напряжении между анодом и катодом U = 1,5 В.
Определите длину волны .
Решение задачи № 3
215 нм
Задачи с развернутым ответом
Задача №1
В вакууме находятся два кальциевых электрода, к которым подключён конденсатор. При длительном освещении катода светом с частотой 10 15 Гц фототок между электродами, возникший вначале, прекращается, а на конденсаторе появляется заряд 5,5 ∙10 -9 Кл. ’’ Красная граница’’ фотоэффекта для кальция λ 0 =450 нм. Определите электроёмкость конденсатора. Ёмкостью системы электродов пренебречь.
11 класс. Профильный уровень. Самостоятельная работа по теме "Фотон. Фотоэффект
m e =9,1∙10 -31 кг , q e =1,6·10 −19 Кл, h = 6,6·10 −34 Дж·с.
Металлическую пластинку облучают светом с длиной волны λ. Как изменятся максимальная скорость электронов, вылетающих с поверхности этой пластинки, и длина волны, соответствующая «красной границе» фотоэффекта, если уменьшить длину волны падающего излучения?
Максимальная скорость электронов
Красная граница фотоэффекта
Пластина, изготовленная из материала, для которого работа выхода равна 2 эВ, освещается монохроматическим светом. Какова энергия фотонов падающего света в эВ, если максимальная кинетическая энергия фотоэлектронов равна 1,5 эВ?
Поток фотонов выбивает из металла с работой выхода 5 эВ фотоэлектроны. Энергия фотонов в 1,5 раза больше максимальной кинетической энергии фотоэлектронов. Какова максимальная кинетическая энергия фотоэлектронов в эВ
Фотоэффект наблюдают, освещая поверхность металла светом с частотой ν. При этом задерживающая разность потенциалов равна U. После изменения частоты света задерживающая разность потенциалов увеличилась на ∆ U =0,6 B . Каково изменение частоты падающего света?
На графике приведена зависимость фототока от приложенного обратного напряжения при освещении металлической пластины (фотокатода) электромагнитным излучением с энергией фотонов 4 эВ. Чему равна работа выхода из этого металла в эВ
Какую максимальную скорость получат электроны, вырванные из натрия излучением с длиной волны 600 нм, если работа выхода составляет 2·10 -19 Дж?
Квант света выбивает электрон из металла. Как изменятся при увеличении энергии фотона в этом опыте следующие три величины: работа выхода электрона из металла, максимальная возможная скорость фотоэлектрона, его максимальная кинетическая энергия?
Максимальная скорость фотоэлектронов
Максимальная кинетическая энергия
В вакууме распространяются два параллельных пучка света. Свет первого пучка характеризуется длиной волны 300 нм, а свет второго пучка частотой 0,5∙10 15 Гц. Во сколько раз отличается масса фотона из первого пучка от массы фотона из второго пучка?
Красная граница фотоэффекта для вещества фотокатода 290нм. Фотокатод облучают светом с длиной волны 220 нм. При каком напряжении между анодом и катодом фототок прекращается?
В вакууме находятся два покрытых кальцием электрода, к которым подключен конденсатор емкостью С. При длительном освещении катода светом с длиной волны λ = 300 нм фототок, возникший вначале, прекращается, а на конденсаторе появляется заряд q = 11·10 -9 Кл. Работа выхода электронов из кальция
А = 4,42·10 -19 Дж. Определите емкость конденсатора
Просмотр содержимого документа
«Вариант №2»
Самостоятельные работы по физике 11 класс профиль
САМОСТОЯТЕЛЬНАЯ РАБОТА №18
ФОТОН. ФОТОЭФФЕКТ
m e =9,1∙10 -31 кг, q e =1,6·10 −19 Кл, h = 6,6·10 −34 Дж·с.
Металлическую пластинку облучают светом с длиной волны λ. Как изменятся запирающее напряжение и энергия падающего излучения, если увеличить длину волны падающего излучения?
Модуль запирающего напряжения
Энергия падающего излучения
На неподвижную пластину из никеля падает электромагнитное излучение, энергия фотонов которого равна 8 эВ. При этом в результате фотоэффекта из пластины вылетают электроны с максимальной кинетической энергией 5 эВ. Какова работа выхода электронов из никеля в эВ
Поток фотонов выбивает из металла фотоэлектроны, максимальная кинетическая энергия которых 10 эВ. Энергия фотонов в 3 раза больше работы выхода. Какова работа выхода в эВ
Фотоэффект наблюдают, освещая поверхность металла светом с частотой ν. При этом задерживающая разность потенциалов равна U. Частота света увеличилась на ∆ν=2,5∙10 14 Гц. Каково изменение задерживающей разности потенциалов.
C освещаемого фотокатода с работой выхода 2,5 эВ, вылетают фотоэлектроны. На рисунке представлен график зависимости силы фототока от напряжения задерживающего поля. Определите энергию фотонов, налетающих на катод в эВ
Красная граница фотоэффекта для вещества фотокатода λкр = 290 нм. При облучении катода светом с длиной волны λ фототок прекращается при напряжении между анодом и катодом U =1,9 В. Определите длину волны λ.
При исследовании зависимости кинетической энергии фотоэлектронов от частоты падающего света фотоэлемент освещался через светофильтры. В первой серии опытов использовался красный светофильтр, а во второй — жёлтый. В каждом опыте измеряли запирающее напряжение.
Как изменяются длина световой волны, напряжение запирания и кинетическая энергия фотоэлектронов?
Для каждой физической величины определите соответствующий характер изменения.
3) не изменилась
Кинетическая энергия фотоэлектронов
Длина волны рентгеновского излучения равна 10 -10 м. Во сколько раз энергия одного фотона этого излучения превосходит энергию фотона видимого света длиной волны 400нм
В двух опытах по фотоэффекту металлическая пластинка облучалась светом с длинами волн соответственно 350 нм и 540 нм. В этих опытах максимальные скорости фотоэлектронов отличались υ1/υ2 в 2 раза. Какова работа выхода с поверхности металла?
Электрон, выбиваемый из металлической пластинки с работой выхода 2 эВ излучением с длиной волны 300 нм, попадает в однородное магнитное поле с индукцией 10 -3 Тл. Вектор его скорости направлен перпендикулярно линиям индукции. С каким максимальным ускорением будет двигаться электрон в магнитном поле?
Просмотр содержимого документа
«Вариант №3»
Монохроматический свет с энергией фотонов Eф падает на поверхность металла, вызывая фотоэффект. Как изменятся модуль запирающего напряжения и длина волны, соответствующая «красной границе» фотоэффекта, если энергия падающих фотонов увеличится?
Металлическую пластину освещают светом с энергией фотонов 6,5 эВ. Работа выхода для металла пластины равна 2,5 эВ. Какова максимальная кинетическая энергия образовавшихся фотоэлектронов в эВ
Поток фотонов выбивает из металла фотоэлектроны, максимальная кинетическая энергия которых 10 эВ. Энергия фотонов в 3 раза больше работы выхода фотоэлектронов. Какова энергия фотонов в эВ
Фотоэффект наблюдают, освещая поверхность металла светом с частотой ν. При этом задерживающая разность потенциалов равна U. После изменения частоты света задерживающая разность потенциалов увеличилась на ∆ U =1,5В. Каково изменение частоты падающего света?
Работа выхода для некоторого металла равна 3 эВ. На пластинку из этого металла падает свет. На рисунке показана зависимость силы фототока от приложенного обратного напряжения. Какова энергия фотона светового излучения, падающего на эту пластинку в эВ
Красная граница фотоэффекта для вещества фотокатода λкр = 450 нм. При облучении катода светом с длиной волны λ фототок прекращается при напряжении между анодом и катодом U = 1,4 В. Определите длину волны λ.
Металлическую пластину освещали монохроматическим светом с длиной волны 500 нм. Что произойдет с частотой падающего света, импульсом фотонов и кинетической энергией вылетающих электронов при освещении этой пластины монохроматическим светом с длиной волны 700 нм одинаковой интенсивности? Фотоэффект наблюдается в обоих случаях.
А) Частота падающего света
Б) Импульс фотонов
В) Кинетическая энергия вылетающих электронов
Один лазер излучает монохроматический свет с длиной волны 350нм, другой с длиной волны 700нм. Каково отношение импульсов фотонов р1/р2, излучаемых лазерами?
Какова максимальная скорость электронов, выбиваемых из металлической пластины светом с длиной волны λ = 3 ·10 -7 м, если красная граница фотоэффекта 540 нм?
В вакууме находятся два покрытых кальцием электрода, к которым подключен конденсатор емкостью 8 нФ. При длительном освещении катода светом с частотой 10 15 Гц фототок между электродами, возникший вначале, прекращается. Работа выхода электронов из кальция 4,42·10 -19 Дж. Какой заряд при этом оказывается на обкладке конденсатора, подключенной к освещаемому электроду
Читайте также: