Потери металла при резке металла
Источники образования металлолома можно условно разделить на три категории:
- изделия, пришедшие в негодность;
- конструкции, детали или механизмы, отработавшие предельный ресурс эксплуатации;
- отходы, образующиеся при обработке металлических заготовок, продуктов.
Последняя группа характеризуется таким видом лома, как стружка, шлак, окалина, обрезь и прочее. Отличительные особенности, характеризующие отходы обработки металлов при производстве готовых металлических изделий – высокий процент лома и его качественный состав. Второй фактор связан со спецификой внешнего слоя металлической заготовки, обладающего лучшими прочностными характеристиками, чем сердцевина. Точная доля отходов, получаемых при обработке металла, зависит от вида конкретного процесса.
Отходы обработки металлов давлением (волочением, прессованием, ковкой, штамповкой)
Обработка металлов давлением
Это наиболее экономичный – малоотходный, способ получения металлических изделий, где доля лома не превышает 25%. Для сравнения, при механической обработке (резке, например), уровень металлолома составляет до половины массы готовой продукции. Среди имеющихся способов обработки давлением, наибольшей эффективность отличается холодная штамповка, характеризующаяся уровнем отходов до 10%.
Наиболее распространенные типы отходов при обработке металлов под давлением – это шлак, образующийся в процессе сжигания кокса, и окалина. Последний вариант присутствует в следующих методиках:
- прессование – состав лома содержит до 15% нефтепродуктов, отдельно отходы содержатся в приямках после демонтажа оборудования;
- ковка черного металла;
- штамповка поковок – в этих отходах вхождение нефтепродуктов превышает 15%;
- механическая очистка деталей, изготовленных горячей штамповкой.
Отдельно следует оказать образование цветной окалины в металлургии, сопровождающее производство медной проволоки по технологии волочения с одновременным отжигом.
Отходы при механической обработке металлов
Это наиболее распространенная форма металлолома в виде стружки, металлической пыли и прочего, знакомая мужской части населения по урокам труда, еще со школы. В данную категорию вошел металлолом, образующийся посредством процесса:
- резания (точение, фрезерование, сверления; долбление и прочих видов);
- шлифования или галтовки;
- зачистке узлов оборудования.
При резании, встречаются следующие виды металлических отходов:
- Стружка – основной вид лома, классифицируется на незагрязненную и содержащую нефтепродукты по ФККО. К первому виду относят стружку, сортированную по типу материала: чугунная, стальная, медная и прочие; а также несортированную – отдельно по черным, цветным металлам. К загрязненной стружке приписывают отходы, загрязненные нефтепродуктами (менее и более 15% раздельно) или смазочно-охлаждающей жидкостью.
- Опилки. Классифицируются аналогично стружке по типу обрабатываемого материала: чугун, сталь, медь, алюминий, титан, сплавы и прочие, а также смесь черных или цветных металлов.
- Абразивно-металлический шлам. Разделяется на две группы, по степени загрязненности нефтепродуктами: до и свыше 15%.
- Отходы зачистки устройств по электроэрозионной обработке стали, с содержанием масла менее 15%.
Скопившаяся на предприятии стружка
Отдельно рассматривается лом, образующийся в процессе шлифования металлов. Их можно распределить на три категории:
- абразивная пыль или порошок;
- шлифовальный шлам;
- отходы, содержащие оксиды металлов.
Абразивная пыль образуется при ручной шлифовке черных и цветных металлов, а также отдельно при работе на галтовочной установке. Абразивный порошок разделяют на 4 вида. Первая разновидность содержит пыль, сортированную по типу цветного металла, с его содержанием более 50%. Несортированный порошок – это смесь отдельно черного и цветного, а также обоих видов металла одновременно. Для пыли чермета выполняется дополнительная классификация по содержанию металлических частиц: до 50% и более.
При механическом шлифовании образуется шлам, состав которого включает:
- металлические частицы;
- нефтепродукты (см. утилизация нефтешламов );
- масла (см. утилизация отработанного масла );
- смазочно-охлаждающие жидкости (см. утилизация СОЖ ).
Следует добавить, что при галтовке, наряду с пылью, присутствуют неметаллические отходы – древесные опилки, например.
Отходы при термической обработке металлов
Термическая обработка металлов
Данная категория включает три разновидности вторичного продукта:
- отработанные расплавы хлоридов, бария, магния, натрия, калия, а также других производных этих элементов, включая сульфаты, нитраты и гидроксид;
- окалина;
- отходы аспирации.
Вторичные расплавы образуются при обработке металлов в закалочных ваннах, тогда как окалина – следствие термического воздействия в печах или нагрева титана перед деформацией. Отходы аспирации – результат химико-термической обработки металлов. С другой стороны, та же окалина образуется при очистке закалочных ванн.
Альтернативный способ обработки металла, сочетает два вида воздействия: механическое и тепловое. Образующийся вторичный продукт, в этом случае – отходы при термической резке металлов. Они состоят из пастообразного осадка ванн для плазменной резки и разнообразных типов окалины. Она – следствие кузничной обработки, а также газовой, лазерной или плазменной резки.
Еще одна разновидность термообработки металла – сварка. На практике применяется несколько разновидностей этого процесса:
- механическая;
- химическая;
- электрическая;
- лучевая.
Отходы при обработке металлов сваркой – это отработанные электроды (стальные или углеродные огарки), остатки разложения карбида кальция и соответствующий шлак.
Отличительная особенность рассмотренных разновидностей вторичного продукта – его промышленное происхождение в процессе производства металлических изделий. Таким образом, данные отходы накапливаются преимущественно на металлургических предприятиях и могут использоваться в последующем производстве металла напрямую, с минимумом посредников.
Отходы при резке металла на заготовки
Отходы , образующиеся при резке (раскрое) металла на заготовки , называются заготовительными (раскройными).
К ним относятся торцовые обрезки, прорезка, некратности и опорные концы.
Торцовые обрезки . Длина торцового обрезка зависит от размеров сечения металла и при резке на ножницах обычно составляет
где а - высота сечения (сторона квадрата, диаметр круга). Недостаточная длина торцового обрезка может вызывать раскалывание торца. В целях экономии металла за счет уменьшения потерь от торцовых обрезков на ряде предприятий при резке проката диаметром более 50 мм дефектные концы (с заусенцами) не удаляют, а отрезают полномерные заготовки и затем в необходимых случаях, предусмотренных технологическим процессом, торец зачищают на наждачном станке. Иногда для снятия металлургического заусенца с заготовок применяют специальные станки, на которых заготовка зажимается пневматическим зажимом и суппортом подается к вращающейся резцовой головке, снимающей заусенец.
Прорезка . Расходы на прорезку определяются толщиной пильного диска или шириной резца.
Некратность . Для немерного проката рассчитать некратность заранее (до поступления металла) невозможно, так как неизвестна фактическая длина. При расчете раскроя немерного проката исходят из того, что наименьшая возможная длина некратности в пределе стремится к нулю, а наибольшая - к длине заготовки. Средневероятная (расчетная) длина некратности поэтому определяется по формуле
Исходная длина проката интервальных (торговых) размеров колеблется в пределах, регламентируемых стандартами. (По заказу нормальной (торговой) длины поставляется прокат, длина которого колеблется в некотором интервале, ограничиваемом ГОСТом, и поэтому такую форму заказа в дальнейшем называем интервальной .)
В каждой партии поставляемого проката, кроме предельных длин - наибольшей L n.б и наименьшей L n. м , допускается согласно ГОСТу часть укороченных (маломерных) штанг длиной меньше L n. м , но не короче L ук . Суммарный вес укороченных штанг может доходить до определенного процента П веса всей партии металла ( табл. 46 ). Расчетную длину интервального проката определяют по формуле
где К - коэффициент, учитывающий влияние укороченных штанг, допускаемых в каждой партии:
Значение L p вполне допустимо для практических расчетов округлять. Значения К и L p , а также округленные (унифицированные) длины, обозначенные через L p.у , приведены в табл. 46.
Изменение средневероятных отходов по некратности Н ср в зависимости от величины отношения L p /l характеризуется кривой, изображенной на рис. 24 . Отходы начинают резко возрастать при L p /l >10.
Рис. 24. Изменение средневероятных потерь по некратности в зависимости от величины L p /l
Опорные (зажимные) концы . Возможность и условия отделения последней заготовки от остатка материала при резке на ножницах определяют длиной заготовки l, длиной остатка l 0 и опорной базой ножниц с ( рис. 25 ). Для возможности осуществления прижима необходимо, чтобы остаток прутка был больше опорной базы с на некоторую величину /.
Практически возможны следующие соотношения между l, l 0 и с :
l>с; l 0 >с;
l>с; l 0 0
В первом случае ( рис. 25, а ) последняя заготовка отделяется от остатка обычным способом - установкой на требуемую длину l по упору; остаток l 0 является некратностью и дополнительной потери металла на опорный конец не будет.
При l>с и l 0 рис. 25, б ). В данном случае пруток поворачивают другим концом, а длину отрезаемой заготовки фиксируют при помощи шаблона. Следует заметить, что резка последней заготовки с поворотом для крупных профилей в крупносерийном и массовом производстве исключается, так как операция сопряжена с дополнительной затратой времени, вызывающей снижение производительности. Целесообразнее применять многоступенчатые упоры, которые позволяют производить резку заготовок различной длины.
Рис. 25. Схема характерных случаев расположения остатка при резке на ножницах
Если же l 0 ( рис. 25, в ), отделение последней заготовки на ножницах не производят. В этом случае остаток складывается из длины заготовки l и остатка l 0 . Очевидно, что при l рис. 26 )
Рис. 26. Возможные остатки при l
Возможная наименьшая длина остатка для этого случая выражается величиной ( рис. 26 )
Средняя вероятная длина остатка 1 ср для третьего случая определится из равенства
Как указано выше, величина l/2 представляет собой расчетную длину некратности. Величина i 0 — минимальная длина опорного (зажимного конца). Таким образом, в первых двух случаях раскройный отход состоит из некратности, а в третьем из некратности и длины опорного конца.
Величина ƒ должна быть достаточной для создания надежного контакта при уравновешивании опрокидывающего момента (обычно не менее 10-20 мм). Для ножниц с нормальной опорной базой величина с составляет 70-110 мм. Этими величинами характеризуются отходы от опорных концов. Для уменьшения опорных баз применяют консольные прижимы и другие уравновешивающие устройства.
Потери металла в результате положительных отклонений горячекатаного сортового металла от номинальных размеров складывается из потерь по сечению и длине. В технологических расчетах их учитывают лишь в тех случаях, когда исходный прокат имеет исключительно, односторонний положительный допуск. Средневероятные потери по сечению, принятые равными половине максимальных, составят приближенно
где g - предельное положительное отклонение по сечению в мм; а н - сторона квадрата или диаметр круга (номинальный размер) в мм. Средневероятные потери по длине заготовок п ср/дл в этом случае определяют по формуле
где д - предельное положительное отклонение по длине заготовки в мм; l - номинальная длина заготовки в мм. Выбор рациональных допусков на операцию раскроя (см. выше) и корректирование длины заготовки по фактическому сечению проката (применение весовых допусков вместо линейных), например для случаев штамповки в закрытых штампах) позволяет значительно уменьшить потери по положительным отклонениям.
Таблица 46 . Расчетные длины для некоторых видов интервального металлопроката, применяемого в кузнечных цехах
Засоренность или технологические потери металлолома
Сдаваемый металлолом непригоден для промышленного использования без предварительной обработки. Чтобы подготовить отходы металла к переплавке, необходим отдельный технологический процесс приводящий лом в состояние пригодное к применению в металлургии, литейном производстве. На каждом этапе подготовительном и промышленном, неизбежными являются технологические потери металлолома.
Подготовка металлических отходов
Предварительная переработка металлолома зависит от типа металла: цветной или черный, а также определяется видом: трубы, радиаторы; и состоянием: кусковые отходы, цельные, легковесные конструкции.
Еще одним фактором технологических потерь металлолома выступает засор – степень присутствия в отходах неметаллических элементов, а также металлического лома других категорий. Допустимая величина засоренности лома черных металлов указывается отдельно для каждой категории металлолома на пунктах приема. Помимо естественного, существует технологический засор, как следствие переработки металла, резки. Средняя его величина составляет 5%.
Засоренность металлолома
Что такое засоренность? Засоренность, фактически, и есть те самые технологические потери, заложенные при переработки металлолома. То есть, какой-то процент металлолома в любом случае будет потерян при разделки, сортировки, переплавки в печи.
Металлолом в такой партии будет с засором не более 7%
Также процент засоренности металлолома в несколько процентов ставит и сам пункт приема металлолома, который закладывается на грязь, неметаллические материалы и т.д. В данном случае засор устанавливается опытным путем и для каждой партии может быть разным, например:
- если сдается автомобиль на металлолом (полностью в сборе, с колесами, салоном, стеклом и т.д.), то процент засоренности может доходить до 30%;
- если сдаются трубы из земли, в гудроне и грязью внутри, то засор может быть 30-40%;
- принимая холодильники, стиральные машины – засор ставят также не менее 30%;
- зимой может ставиться большой процент засора из-за наличия снега и льда в металле;
- и т.д.
Как же считается засоренность лома? Если говорить честно, то процент засора ставит мастер-приемщик исходя из опыта плюс 1-2 процента для страховки. Минимальный процент засора, который будет установлен абсолютно в любом пункте приема металлолома – это 5%. И на такие категории лома, как чугун, 3А, 5А, 12А – т.е. самые распространенные, засор будет 5-7%, в зависимости от пункта приема лома и состояния металла. На такой вид лома, как железнодорожный металлолом засор ставится не больше 3%.
Вся информация о засоре изложена в ГОСТ 2787-75 лом черных металлов -показатели качества вторичных металлов по их составу, степени чистоты, габаритам и массе должны соответствовать требованиям, указанным в таблице ГОСТа.
Никакой формулы для расчета засора нет, вот часть информации из ГОСТа:
Определение засора цветного лома также осуществляется с помощью ГОСТа в данном случае на помощь придут документы ГОСТ 1639-2009 и ГОСТ Р 54564-2011.
Далее
Подготовка к переплавке происходит с учетом происхождения металлолома. Также она зависит от конкретного состояния отходов, производясь одним из следующих способов:
- пакетирование;
- резка;
- дробление;
- переплав;
- термическое измельчение.
При необходимости отдельно выполняется процедура пиротехнического контроля, распространенная для контроля степени безопасности отходов цветных металлов.
Частные случаи переработки
Предварительная переработка позволяет снизить уровень технологических потерь металлолома во время его переплавки. Например, пакетирование понижает расходы на угар. Данный вид обработки металлических отходов является одним из наиболее распространенных. Он используется при обработке:
- проволоки, стружки;
- бытового лома;
- прочих металлоконструкций.
Используемые специализированные прессы сжимают отходы металлов одновременно в трех плоскостях, производя прочные компактные пакеты.
Дробление используется для переработки стружки, а также списанных автомобилей. В последнем случае эффективность дробления вызвана тем, что позволяет сепарировать отходы цветных и черных металлов, что также снижает процент технологических потерь.
Резка металлолома газом
Огневая и механическая резка используются при разделке крупногабаритного лома. Второй вариант, с применением гидравлических ножниц обладает наибольшей эффективностью. Его производительность на порядок превосходит огневую резку, тогда как процент расходов минимален. Огневое разрезание металлов выполняется электродуговым способом или с помощью горелок: газовых или керосиновых. Электродуговая резка более производительная, однако характеризуется высоким уровнем потерь – до 20%, тогда как данная величина при использовании горелок не превышает 3%.
Переплавка отходов
Основными видами технологических потерь металлолома при его нагреве выступают угар и окалина.
Наблюдаемое снижение массы металла в результате угара может достигать 5% от исходной величины и зависит от продолжительности нагрева. Для понижения эффекта от угара используется интенсификация нагрева металла, сокращающая время переплавки. Оптимальный температурный режим определяется конструкцией оборудования, а также формой заготовок.
индукционная плавка стали
Окалина – следствие окислительных процессов на поверхности металла. Потери в этом случае достигают 3% исходной массы и существенно возрастают вследствие неравномерного нагрева.
Чтобы компенсировать угар и окалину при переплавке используют такие методики, как нагрев в нейтральной среде. Также эффективными способами снижения потерь является индуктивный и контактный нагрев, позволяющие минимизировать их до уровня 0,5%.
Резка металла газом
Резка металла газом – метод металлообработки, применяемый не только на крупном производстве, но также в быту, сельском хозяйстве, мелкосерийном выпуске. Это по-настоящему универсальный, простой и быстрый способ разрезать толстую металлическую заготовку без длительной настройки оборудования и больших затрат.
Для того чтобы резка металла газом выполнялась правильно, необходимо соблюдать правила, подобрать оборудование и расходные материалы, выполнить остальные условия. О том, как это сделать лучше, читайте в нашем материале.
Что собой представляет процесс резки металла газом
Газовая резка металлов в настоящее время – это достаточно простая технология, при которой работа идет без применения сложной аппаратуры и дополнительных источников энергии. Данный метод используют специалисты для проведения работ в сельском хозяйстве, строительстве и различных видах ремонта. Оборудование для газовой резки металла мобильно, быстро перевозится для использования на другом объекте.
Рассмотрим основной принцип резки с помощью кислорода. Вначале происходит разогрев материала нагревателем в среднем до температуры +1 100 °С. После чего кислород начинает подаваться в зону реза, соприкасается с раскаленной поверхностью и загорается. Стабильная подача кислорода дает мощную струю горящего газа, которая с легкостью режет лист металла.
Для успешной резки газом необходимо, чтобы материал имел температуру горения меньшую, чем плавления. Иначе расплавленный металл будет тяжело убрать из зоны реза, в отличие от сгоревшего.
Следовательно, можно сделать вывод о том, что резка металла газом происходит вследствие его выгорания в зоне действия газовой струи. Основной частью оборудования для резки газом является резак. В нем происходит создание смеси воздуха с газом за счет дозирования и последующее смешивание кислорода с парами жидкого топлива или газами. После чего резак воспламеняет получаемую смесь и дополнительно обеспечивает подачу кислорода в зону реза.
Газовая резка является одним из температурных методов обработки материалов. Ее достоинством стала большая производительность и возможность обрабатывать заготовки практически любой толщины. Один сварщик за смену в состоянии произвести резку нескольких тонн материала. Работники указывают на одно из главных преимуществ – возможность работать вне зависимости от источников энергии. Это особенно важно, когда работа ведется в полевых условиях, где отсутствует какой-либо источник питания.
Рекомендуем статьи по металлообработке
В списке металлов, в работе с которыми используется газокислородная резка, есть исключения: алюминий, нержавейка, медь и латунь.
Преимущества и недостатки технологии резки металла газом
VT-metall предлагает услуги:
Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы
Резка кислородом имеет большое количество преимуществ перед иными видами. Они делают ее эффективнее экономически. Но существует ряд ситуаций, когда она просто незаменима.
Достоинствами газокислородной резки являются:
- Возможность обрабатывать заготовки большой толщины.
- Высокая сложность выполняемых резов, например, таких как многоступенчатый.
- Удобство выполнения фасонной обработки материалов, т. е. на заданную глубину, а не только сквозного реза.
- Хорошее качество реза при невысокой себестоимости обработки.
- Высокая производительность.
- Автономность и мобильность оборудования позволяет применять ее в труднодоступных местах, в том числе при сборке/разборке корпусов судов, а также сложных производственных конструкций.
Описываемая технология резки газом, помимо достоинств, имеет и недостатки, к примеру:
- Для ее осуществления сварщику требуется достаточный опыт. Специалистам с низкой квалификацией доступны только простые виды реза, например, прямая обработка тонкого листа металла.
- Опасность возникновения пожара или взрыва. Технология требует тщательных подготовительных мероприятий и последующего соблюдения правил техники безопасности при проведении работ.
- Точность реза не слишком высокая, в особенности при ручной обработке. После его выполнения заготовку, как правило, необходимо дополнительно механически доводить до соответствия ее формы и размеров чертежу.
- Термическое воздействие на заготовку иногда приводит к разным формам деформации, таким как кручение, коробление и пр. Это особенно рискованно при раскрое материала и в меньшей степени при демонтаже конструкций.
Эти недостатки способен решить иной метод – плазменная резка с помощью автоматизированных стационарных аппаратов. Однако они не мобильны и не дают возможности выполнять операции в труднодоступных местах.
Какие газы используются для резки металла
Существует несколько методов классификации газовой резки. Она происходит в зависимости от применяемых газов и прочих особенностей. Из них можно выбрать оптимальный для выполнения той или иной операции или задачи. К примеру, электродуговая резка с кислородом возможна в случае подключения аппаратуры к электрической сети. А обрабатывать низкоуглеродистые стали удобнее газовоздушной смесью с пропаном.
Среди профессионалов наиболее востребованными методами являются:
- Резка пропаном. Резка металла газом, например, пропаном, а также кислородом – пожалуй, самый популярный, но имеющий свои ограничения. Он применяется для низколегированных и низкоуглеродистых сталей, титановых сплавов. В случае наличия в составе материала легирующего компонента или углерода в количестве более 1 %, требуется применение иного метода. Резка возможна и с другими газами: ацетиленом, метаном и пр.
- Воздушно-дуговая резка. Довольно эффективным методом резки является кислородно-электрическая дуговая резка. Плавка происходит при помощи электрической дуги. Остатки же расплава убираются воздушной струей. При выполнении операции таким образом подача кислорода происходит вдоль электрода. К недостаткам этого метода можно отнести неглубокие резы. Впрочем, они компенсируются практически любой шириной заготовки.
- Кислородно-флюсовая резка. Ее особенностью является подача в зону реза дополнительного компонента – порошкообразного флюса. Он дает возможность обрабатываемому металлу стать более податливым в процессе флюсовой кислородной резки. Данный метод применяется для металлов, которые образуют твердоплавкие окислы. В процессе его применения создается добавочный тепловой эффект, при котором струя газа эффективно режет металл. Применяется кислородно-флюсовая металлическая резка для обработки меди и медных сплавов, легированных сталей, железобетона и зашлакованных металлов.
- Копьевая резка. Данный метод применяется для работы с промышленными технологическими отходами, большими массивами стали и аварийными скрапами. Особенностью является увеличивающаяся скорость выполнения работ. Технология включает применение высокоэнергетичной струи газа, что приводит к значительной экономии стальных копьев. Скорость же работы увеличивается быстрым, полным сгоранием обрабатываемого материала.
Расход газов при резке металла можно увидеть в таблице:
На показатель зависимости расхода газа от объемов работ сильное влияние оказывает выбранный метод резки. Нормы резки металла газом при использовании кислородно-флюсового метода содержат информацию о несравнимо меньшем использовании газа, чем при воздушно-дуговом.
Помимо способа обработки, расход газа и кислорода при резке металла зависит от ряда параметров, таких как:
- квалификация сварщика – неопытному специалисту потребуется большее количество газа на один метр заготовки, чем мастеру;
- параметры оборудования и его целостность;
- толщина и марка металла, из которого сделана заготовка;
- характеристики реза – ширина и глубина.
В нижеследующей таблице представлена информация, необходимая для специалиста при выполнении реза пропаном:
Основные правила резки толстого металла газом
Газокислородная резка применяется для раскроя сплавов стали толщиной от 0,5 до 6 см. Вследствие реакции окисления выделяется тепло, которое нагревает и расплавляет металл. А продукты, образующиеся из-за сгорания материала, убираются из зоны реза потоками газа.
Существует ряд требований, которые надо соблюдать в процессе подготовки и выполнения газокислородной резки материалов:
- Перед началом работ необходимо аккуратно очистить поверхность вдоль будущей линии реза на расстояние до 10–15 см. Удалению подлежат остатки старой краски, смазок, масложировых пленок. Если их оставить, то во время резки газом может произойти возгорание, а иногда и взрыв. Помимо них, необходимо избавиться от ржавчины, поскольку ее присутствие замедляет работу по причине теплоизоляционных свойств последней.
- В нижней части заготовки должно быть свободное пространство для выхода струи газа. Размер его невелик – 5–10 см. Однако его отсутствие может привести к турбулентности потока газа из-за его отражения, что крайне нежелательно, к тому же отрицательно влияет на скорость выполнения работы, а также вызывает температурную деформацию изделия.
- Угол отклонения резака от вертикали не должен превышать 5°. В противном случае форма факела искажается, точность падает, качество поверхности реза ухудшается.
- Для выполнения работ сварщику необходимы высокая квалификация и достаточный опыт. Выполнение данного требования будет гарантировать высокую производительность и точность реза.
Газ в зону реза подается с помощью запорных вентилей: одним общим и двумя запорными. Использование двух разных запорных вентилей помогает быстро управлять составом смеси и перенастраивать оборудование для резки металла газом.
На рукоятке резака находятся три патрубка с разъемами. Именно с их помощью в зону реза попадают газ для сварки и резки металла: ацетилен или пропан, кислород, а также жидкость для охлаждения. Давление газов при резке металла устанавливается на редукторе баллона. Оно должно быть ≤ 12 атм.
Подача кислорода в факел резака начинается после поджога последнего. Пропан, сгорая, выделяет тепло, которое нагревает изделие, и начинается его окисление. Процесс происходит достаточно быстро. Заготовка режется (прожигается) струей раскаленного газа (кислорода), одновременно этот же поток выметает частицы расплава в образовывающийся рез.
Условия резки металла газом и кислородом
Рассмотрим обязательные условия успешной обработки материалов методом газокислородной резки:
- Температура горения металла в среде кислорода, которая также обозначается как Твоспл, должна быть ниже Тплав (температуры плавления). Разница температур не должна быть ниже 50 °С. В противном случае возможно вытекание расплава, а также увеличение ширины реза. Например, конструкционные сплавы имеют Твоспл, равную +1 150 °С, в то время как Тплав равна +1 540 °С. Температура плавления снижается с возрастанием количества углерода, что затрудняет обработку высокоуглеродистых сплавов, а также чугуна простым резаком.
- Температура плавления заготовки должна быть выше температуры плавления поверхностных оксидных пленок. Такая пленка является тугоплавкой и не дает кислороду достигнуть поверхности металла, в результате чего его горение не может начаться. Например, температура плавления оксида хрома равна +2 270 °С, а конструкционной стали – +1 540 °С. Специалисты рекомендуют в таком случае использовать порошок флюса. Между ним и поверхностной пленкой начинается реакция, превращающая последнюю в продукт с пониженной температурой плавления.
- Появляющиеся в ходе резки газом оксиды должны иметь высокий показатель жидкотекучести. Иначе расплав будет облеплять края реза, мешая работе и не давая основному материалу гореть. Повысить текучесть оксидов можно с помощью специально подобранных флюсов. Однако такое вмешательство делает резку газом существенно дороже.
- Обрабатываемая заготовка должна иметь невысокую теплопроводность – иначе не будет происходить возгорания материала в зоне реза из-за отведения из него тепла. Работу либо вообще нельзя будет вести, либо она будет постоянно прерываться, из-за чего норма расхода газов при резке металла повысится, а следом снизится качество реза и его точность.
Перед тем как начнется резка металла природным газом, необходимо подготовить следующую аппаратуру:
- Емкости, содержащие газ.
- Шланги для подключения газа.
- Резак.
- Определенного размера мундштук.
- Редукторы, контролирующие объем и регулировку.
Перечисленная аппаратура не зависит от ее производителя и имеет стандартную маркировку вентилей.
До работы допускаются только сварщики, прошедшие инструктаж, о чем произведена запись в специальном журнале, и успешно сдавшие зачеты о знании теории и практики резки.
Почему следует обращаться именно к нам
Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.
Наши производственные мощности позволяют обрабатывать различные материалы:
- цветные металлы;
- чугун;
- нержавеющую сталь.
При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.
Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.
Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.
Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.
Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.
Норма раскроя металла
Технологическая операция раскроя металлических листов – одна из самых важных в процессе изготовления конструкций из металла. Чтобы продукция была оптимальной по стоимости и качеству, очень важно соблюдать все режимы этой операции. Конструкторы постоянно предлагают все новые технологии для раскроя профилей и листов из металла. О том, какая должна быть норма раскроя металла, вы узнаете из нашей статьи.
Технология раскроя металла
Создание металлоконструкций начинается с заготовительных этапов, одним из которых является раскрой листового и профильного металла. Именно эта стадия определяет всю дальнейшую работу. Производственные комплексы и машиностроительные предприятия имеют в своем составе цеха, где заготавливают детали будущих конструкций. Эти специализированные подразделения оснащаются разными станками и комплектами оборудования, предназначенного для раскроя.
Под раскроем листового металла следует понимать способ распределения деталей на металлических листах.
По форме заготовки могут быть прямоугольными или с другими очертаниями. Основной задачей конструкторов и технологов является уменьшение количества отходов производства. Существуют возвратные и невозвратные отходы, причем их объемы зависят от применяемых методов раскроя.
Наиболее распространенные способы раскроя металла
1. Метод гильотины.
Сегодня на рынке представлено разнообразное оборудование, позволяющее резать металл толщиной 0,45–2,5 мм с помощью простого металлического устройства, для резки листов до 20 мм применяются электрические или пневматические гильотинные ножницы. Подобное оборудование позволяет получать заготовки с чистым ровным резом, но необходимо подбирать гильотинные ножницы определенного класса под разную толщину металла.
Например, недорогая механическая гильотина применяется при раскрое листов металла в строительной отрасли. Ее используют в компаниях, занимающихся производством кровли из оцинкованных листов или металлочерепицы, откосов, сливов, различных доборных элементов.
Различные виды гидравлических, пневматических и электромеханических гильотин находят применение в технологических циклах изготовления листового проката, для отрезания одинаковых листов профиля и при раскрое рулонов из металла. Только нужно учитывать, что гильотина может отрезать исключительно по прямой линии.
2. Резка с помощью ленточных и дисковых пил.
3. Обработка на просечном прессе.
Просечные прессы, имеющие разную мощность, устанавливают в цехах металлообработки промышленных предприятий. Их применяют для выпуска деталей из алюминия для монтажа металлоконструкций или на завершающем этапе производства просечно-вытяжных листов.
4. Газокислородное оборудование для резки.
Высокая производительность этого оборудования делает его одним из самых популярных видов, используемых при раскрое металлических листов. Оно находит применение в большинстве промышленных отраслей, однако режет лист с излишне широким резом, оставляя окалину и неровные края. Также его нельзя применять для резки тонкого листового проката.
Вышеперечисленные методы обладают общим свойством – они одинаково обрабатывают черный и цветной металлы, а также нержавейку. Исключением можно считать обработку алюминиевых листов газокислородным оборудованием.
5. Использование плазмореза при раскрое металлопроката.
При раскрое с помощью плазмореза происходит интенсивное нагревание листа электродугой по линии реза и удаление расплавленных частиц потоком плазмы. Высокотемпературная резка металла осуществляется режущим потоком ионизированного газа (в пределах +15 000…+30 000 °С) и поэтому имеет высокую скорость обработки. Этот метод раскроя металла является самым эффективным.
Высокая точность – это не единственное достоинство работы плазмореза, перечислим еще несколько:
- с его помощью можно проводить раскрой сложных деталей, включая шаблонную резку;
- при обработке лист металла не деформируется;
- точность контуров у изделий одного типа, допустимое отклонение линии реза – 0,5 мм;
- метод относится к экологичным и безопасным;
- плазморезом можно обрабатывать черный и цветной металл, нержавейку разной толщины.
Плазменную резку применяют при обработке таких материалов, как:
- алюминиевый прокат, имеющий толщину до 120 мм;
- медь и сплавы (бронза) с толщиной до 80 мм;
- легированная сталь, не превышающая 50 мм в толщину.
6. Лазерное оборудование для раскроя листового металла.
Лазерное излучение с точной фокусировкой и высокой плотностью тепловой энергии обеспечивает высокоточный раскрой металла, при этом остается минимальное количество отходов. Технология полностью автоматизирована и роботизирована. Перед работой специалисты подготавливают электронный чертеж с точной разметкой, и далее лазер выполняет раскрой металла согласно заложенной программе.
Лазерная резка имеет нижеперечисленные преимущества:
- возможность изготовления деталей с любым криволинейным контуром;
- соблюдение норм раскроя и экономный расход металла, так как между деталями на листе остаются минимальные зазоры;
- во время резки детали не подвергаются деформации, так как отсутствуют механическое и длительное термическое воздействия, нет цветов побежалости;
- шероховатость минимальная, кромка четко перпендикулярна.
Что значит норма раскроя металла
Что такое норма расхода? Четкая и точная формулировка звучит так: «Это такое количество материала (нас интересует прежде всего металл), которое необходимо для создания единицы продукции».
Итак, чтобы производитель выпустил любую деталь, он должен рассчитать норму расхода или количество металла для ее изготовления.
Иногда можно встретиться с одним очень распространенным заблуждением. Часто заказчики рассчитывают на точную норму расхода, чего в принципе не может быть. Количество реально израсходованного металла всегда будет отличаться в большую сторону.
Здесь нет никакого обмана. В любом случае надо понимать, что на расчет нормы раскроя металла влияет множество факторов, и эти цифры всегда будут среднеарифметическими. Расчетная величина не будет соответствовать фактическому количеству материала по той причине, что в разное время его расход отличается. Это легче объяснить на примере раскроя из листов металла. Даже если вы никогда не сталкивались с производством, нетрудно догадаться, что существует множество вариантов разметки, и на одном и том же стандартном листе детали можно разместить по-разному.
В этой задаче не так просто разобраться. Очень часто бывает, что на листе могут быть разложены детали самой разной формы, и как тут высчитать, какое количество металла пошло на изготовление конкретного изделия. Мы не берем сейчас тот вариант, когда заготовки имеют простую форму прямоугольника и занимают почти весь лист. Можно много рассуждать на эту тему, главное, вы должны понять, что на величину нормы расхода на одну деталь оказывают влияние следующие факторы:
- количество заготовок, разложенных на листе, и насколько оптимально они разложены;
- будет ли использоваться оставшаяся часть листа для раскроя других деталей.
В разных ситуациях значения могут сильно различаться, даже в несколько раз, особенно если требуется раскрой деталей сложной формы, с выемками и отверстиями.
Расчет нормы при раскрое деталей из профильного металла, например, различные уголков, швеллеров, труб и других изделий, происходит по такому же принципу. Только отличие в значениях не так велико. Ведь при линейном раскрое технология проще, чем при двухмерном. Но и здесь раскладка может меняться, и обрезков бывает достаточно много.
Некоторым особо дотошным любителям точности можно еще указать на нормы ГОСТов, в которых можно увидеть, что существуют определенные допуски и отклонения в размерах и весе деталей каждого наименования. А фактически, если начать перемерять все детали одного типа даже с одного производства, то разницу все равно увидим и в размерах, и в весе. Также не следует забывать о точности измерительных приспособлений. Это касается в первую очередь весов для измерения металла.
Исходя из этого, можно быть совершенно уверенным в том, что, выполняя в соответствии с чертежом раскрой одной и той же детали в разное время, цифры фактического количества металла будут отличаться друг от друга. Дальше уже надо смотреть, как сильно расходятся значения. Нестрашно, если речь идет о допустимых погрешностях измерения. Но нужно учитывать, что влияние оказывают разные факторы, например, тип производства.
О норме расхода можно сказать, что это не характеристика какого-то конкретно произведенного изделия или заготовки, оно относится к общим понятиям. Норматив можно установить еще до момента запуска производства любой детали. Поэтому и нельзя говорить о какой-то абсолютной точности расхода при раскрое металла. Эта величина всегда будет отражением средних значений расходования металла на одну изготовленную деталь.
Коэффициент раскроя металла: норма и другие нюансы
Для учета расходования материалов на производстве используют коэффициент раскроя. Для его расчета нужно разделить общую площадь или длину изготовленных деталей на общую площадь или длину всего использованного металла.
Для расчета норм расхода листовых материалов высчитывают чистую площадь деталей. Вместе с коэффициентом раскроя при Н. р. м. применяют следующие частные показатели: коэффициент использования детали, показатель использования штамповки и др.
На коэффициент Кн влияет выбранная форма заказа металла и использованная технология раскроя.
Расчет различных показателей и норм расхода металла и других расходных материалов необходим для оценки эффективности производства. Всегда определяют и сравнивают цифры по плану и по факту. Основными характеристиками являются значения коэффициентов раскроя и использования, расходного коэффициента выхода продукции или заготовки, коэффициента, определяющего извлечение детали из исходного металла.
При вычислении коэффициента использования берут две цифры − полезный расход металла и норму расхода для производства данной детали − и определяют их соотношение.
К примеру, деталь весит 16 кг, установленная норма раскроя 16 кг, высчитываем значение коэффициента использования – 12 делим на 16, получится 0,75. Из этого становится понятно, что четвертая часть металла или 25 % стали отходами. Также необходимо высчитывать значение расходного коэффициента, для этого берут норму расхода металла или другого материала, принятую для изготовления одной детали, и полезный расход. Этот коэффициент является обратным предыдущему.
Чтобы вычислить значение коэффициента раскроя, нужно определить массу (объем, площадь и длину) всех изготовленных из данного металла деталей и поделить на объем (площадь и т. д.) израсходованного сырья. Например, взято 5 м 2 металла, из него произвели 4 м 2 заготовок, значение коэффициента 0,8 получим из отношения 4 к 5. Также можно сказать, что уровень расходования составил 80 %.
Чтобы рассчитать значение коэффициента раскроя листов металла qf, нужно найти, как соотносятся между собой общий вес (площадь) деталей BЗ и вес (площадь) исходного листа Вл, формула выглядит так
Для расчета коэффициента раскроя определяют отношение двух величин: первая − полезная площадь используемого сырья, вторая – норма площади для этого количества заготовок.
Задание на изготовление выдается в виде подетальных карт с разметкой всех деталей. Материалы могут быть различные: листы из металла, профиль, пруток, трубы, поковки и отливки, а также пиломатериалы и пластмассы. В отдельном порядке на особых картах определяют разметку для изготовления изделий групповым раскроем.
Карта раскроя представляет собой план-заказ с указанием:
- размеров листовых материалов, наиболее подходящих для вырубки данных деталей;
- габаритов всех будущих деталей, при этом учитываются припуски на обработку;
- количества и веса изделий, веса и характера отходов, а также нормы расхода материалов и коэффициента использования.
Исходя из данных, представленных в подетальных картах, в дальнейшем рассчитывается месячная потребность участков и цехов в материале, составляются цеховые поузловые материальные карты и цеховые карты применяемости материала.
Читайте также: