Потенциал выхода электрона из металла
Как показывает опыт, свободные электроны при обычных температурах практически не, покидают металл. Следовательно, в поверхностном слое металла должно быть задерживающее электрическое поле, препятствующее выходу электронов из металла в окружающий вакуум. Работа, которую нужно затратить для удаления электрона из металла в вакуум, называется работой выхода.Укажем две вероятные причины появления работы выхода:
1. Если электрон по какой-то причине удаляется из металла, то в том месте, которое электрон покинул, возникает избыточный положительный заряд и электрон притягивается к индуцированному им самим положительному заряду.
2. Отдельные электроны, покидая металл, удаляются от него на расстояния порядка атомных и создают тем самым над поверхностью металла «электронное облако», плотность которого быстро убывает с расстоянием. Это облако вместе с наружным слоем положительных ионов решетки образует двойной электрический слой, поле которого подобно полю плоского конденсатора. Толщина этого слоя равна нескольким межатомным расстояниям (10 -10 — 10 -9 м). Он не создает электрического поля во внешнем пространстве, но препятствует выходу свободных электронов из металла.
Таким образом, электрон при вылете из металла должен преодолеть задерживающее его электрическое поле двойного слоя. Разность потенциалов Dj в этом слое, называемая поверхностным скачком потенциала,определяется работой выхода (А) электрона из металла:
где е — заряд электрона. Так как вне двойного слоя электрическое поле отсутствует, то потенциал среды равен нулю, а внутри металла потенциал положителен и равен Dj. Потенциальная энергия свободного электрона внутри металла равна — еDj и является относительно вакуума отрицательной. Исходи из этого можно считать, что весь объем металла для электронов проводимости представляет потенциальную яму с плоским дном, глубина которой равна работе выхода А.
Работа выхода выражается в электрон-вольтах(эВ): 1 эВ равен работе, совершаемой силами поля при перемещении элементарного электрического заряда (заряда, равного заряду электрона) при прохождении им разности потенциалов в 1 В. Так как заряд электрона равен 1,6•l0 -19 Кл, то 1 эВ = 1,6•10 -19 Дж.
Работа выхода зависит от химической природы металлов и от чистоты их поверхности и колеблется в пределах нескольких электрон-вольт (например, у калия Л=2,2 эВ, у платины A = б,3 эВ). Подобрав определенным образом покрытие поверхности, можно значительно уменьшить paботу выхода. Например, если нанести на поверхность вольфрама (А =4,5 эВ) слой оксида щелочно-земельного металла (Са, Sr, Ba), то работа выхода снижается до 2 эВ.
Самостоятельный газовый разряд и его типы
Разрядв газе, сохраняющийся после прекращения действия внешнего ионизатора, называется самостоятельным.
Рассмотрим условия возникновения самостоятельного разряда. Как уже указывалось в § 106, при больших напряжениях между электродами газового промежутка (см. рис. 156) ток сильно возрастает (участки CD и DE на рис. 157). При больших напряжениях возникающие под действием внешнего ионизатора электроны, сильно ускоренные электрическим полем, сталкиваясь с нейтральными молекулами газа, ионизируют их, в результате чего образуются вторичные электроны и положительные ионы (процесс 1 на рис. 158). Положительные ионы движутся к катоду, а электроны — к аноду. Вторичные электроны вновь ионизируют молекулы газа, и, следовательно, общее количество электронов и ионов будет возрастать по мере продвижения электронов к аноду лавинообразно. Это является причиной увеличения электрического тока на участке CD (см. рис. 157). Описанный процесс называется ударной ионизацией.
Однако ударная ионизация под действием электронов недостаточна для поддержания разряда при удалении внешнего ионизатора. Для этого необходимо, чтобы электронные лавины «воспроизводились», т. е. чтобы в газе под действием каких-то процессов возникали новые электроны. Такие процессы схематически показаны на рис. 158: 1) ускоренные полем положительные ионы, ударяясь о катод, выбивают из него электроны (процесс 2); 2) положительные ионы, сталкиваясь с молекулами газа, переводят их в возбужденное состояние; переход таких молекул в нормальное состояние сопровождается испусканием фотона (процесс 3); 3) фотон, поглощенный нейтральной молекулой, ионизирует ее, происходит так называемый процесс фотонной ионизации молекул (процесс 4); 4) выбивание электронов из катода под действием фотонов (процесс 5).
Наконец, при значительных напряжениях между электродами газового промежутка наступает момент, когда положительные ионы, обладающие меньшей длиной свободного пробега, чем электроны, приобретают энергию, достаточную для ионизации молекул газа (процесс 6), и к отрицательной пластине устремляются ионные лавины. Когда возникают кроме электронных лавин еще и ионные, сила тока растет уже практически без увеличения напряжения (участок DE на рис. 157).
В результате описанных процессов (1—6) число ионов и электронов в объеме газа лавинообразно возрастает и разряд становится самостоятельным, т. е. сохраняется после прекращения действия внешнего ионизатора. Напряжение, при котором возникает самостоятельный разряд, называется напряжением пробоя.
В зависимости от давления газа, конфигурации электродов, параметров внешней цепи можно говорить о четырех типах самостоятельного разряда: тлеющем, искровом, дуговом и коронном.
1. Тлеющий разрядвозникает при низких давлениях. Если к электродам, впаянным в стеклянную трубку длиной 30— 50 см, приложить постоянное напряжение в несколько сотен вольт, постепенно откачивая из трубки воздух, то при давлении ж 5,3—6,7 кПа возникает разряд в виде светящегося извилистого шнура красноватого цвета, идущего от катода к аноду. При дальнейшем понижении давления шнур утолщается, и при давлении ж 13 Па разряд имеет вид, схематически изображенный на рис. 159.
Непосредственно к катоду прилегает тонкий светящийся слой 1 — первое катодное свечение,или катодная пленка,затем следует темный слой 2 — катодное темное пространство,переходящее в дальнейшем в светящийся слой 3 — тлеющее свечение,имеющее резкую границу со стороны катода, постепенно исчезающую со стороны анода. Оно возникает из-за рекомбинации электронов с положительными ионами. С тлеющим свечением граничит темный промежуток 4 — фарадеево темное пространство,за которым следует столб ионизированного светящегося газа 5 — положительный столб.Положительный столб существенной роли в поддержании разряда не имеет. Например, при уменьшении расстояния между электродами трубки его длина сокращается, в то время как катодные части разряда по форме и величине остаются неизменными. В тлеющем разряде особое значение для его поддержания имеют только две его части: катодное темное пространство и тлеющее свечение. В катодном темном пространстве происходит сильное ускорение электронов и положительных ионов, выбивающих электроны с катода (вторичная эмиссия). В области тлеющего свечения же происходит ударная ионизация электронами молекул газа. Образующиеся при этом положительные ионы устремляются к катоду и выбивают из него новые электроны, которые, в свою очередь, опять ионизируют газ и т. д. Таким образом непрерывно поддерживается тлеющий разряд.
При дальнейшем откачивании трубки при давлении ж 1,3 Па свечение газа ослабевает и начинают светиться стенки трубки. Электроны, выбиваемые из катода положительными ионами, при таких разрежениях редко сталкиваются с молекулами газа и поэтому, ускоренные полем, ударяясь о стекло, вызывают его свечение, так называемую катодолюминесценцию.Поток этих электронов исторически получил название катодных лучей.Если в катоде просверлить малые отверстия, то положительные ионы, бомбардирующие катод, пройдя через отверстия, проникают в пространство за катодом и образуют резко ограниченный пучок, получивший название каналовых(или положительных) лучей,названных по знаку заряда, который они несут.
Тлеющий разряд широко используется в технике. Так как свечение положительного столба имеет характерный для каждого газа цвет, то его используют в газосветных трубках для светящихся надписей и реклам (например, неоновые газоразрядные трубки дают красное свечение, аргоновые — синевато-зеленое). В лампах дневного света, более экономичных, чем лампы накаливания, излучение тлеющего разряда, происходящее в парах ртути, поглощается нанесенным на внутреннюю поверхность трубки флуоресцирующим веществом (люминофором), начинающим под воздействием поглощенного излучения светиться. Спектр свечения при соответствующем подборе люминофоров близок к спектру солнечного излучения. Тлеющий разряд используется для катодного напыленияметаллов. Вещество катода в тлеющем разряде вследствие бомбардировки положительными ионами, сильно нагреваясь, переходит в парообразное состояние. Помещая вблизи катода различные предметы, их можно покрыть равномерным слоем металла.
2. Искровой разрядвозникает при больших напряженностях электрического поля (Ё=3•10 6 В/м) в газе, находящемся под давлением порядка атмосферного. Искра имеет вид ярко светящегося тонкого канала, сложным образом изогнутого и разветвленного.
Объяснение искрового разряда дается на основе стримерной теории,согласно которой возникновению ярко светящегося канала искры предшествует появление слабосветящихся скоплений ионизованного газа — стримеров.Стримеры возникают не только в результате образования электронных лавин посредством ударной ионизации, но и в результате фотонной ионизации газа. Лавины, догоняя друг друга, образуют проводящие мостики из стримеров, по которым в следующие моменты времени и устремляются мощные потоки электронов, образующие каналы искрового разряда. Из-за выделения при рассмотренных процессах большого количества энергии газ в искровом промежутке нагревается до очень высокой температуры (примерно 10 4 К), что приводит к его свечению. Быстрый нагрев газа ведет к повышению давления и возникновению ударных волн, объясняющих звуковые эффекты при искровом разряде — характерное потрескивание в слабых разрядах и мощные раскаты грома в случае молнии, являющейся примером мощного искрового разряда между грозовым облаком и Землей или между двумя грозовыми облаками.
Искровой разряд используется для воспламенения горючей смеси в двигателях внутреннего сгорания и предохранения электрических линий передачи от перенапряжений (искровые разрядники). При малой длине разрядного промежутка искровой разряд вызывает разрушение (эрозию) поверхности металла, поэтому он применяется для электроискровой точной обработки металлов (резание, сверление). Его используют в спектральном анализе для регистрации заряженных частиц (искровые счетчики).
3. Дуговой разряд.Если после зажигания искрового разряда от мощного источника постепенно уменьшать расстояние между электродами, то разряд становится непрерывным — возникает дуговой разряд. При этом сила тока резко возрастает, достигая сотен ампер, а напряжение на разрядном промежутке падает до
ряд можно получить от источника низкого напряжения минуя стадию искры. Для этого электроды (например, угольные) сближают до соприкосновения, они сильно раскаляются электрическим током, потом их разводят и получают электрическую дугу (именно так она была открыта В. В. Петровым). При атмосферном давлении температура катода приблизительно равна 3900 К. По мере горения дуги угольный катод заостряется, а на аноде образуется углубление — кратер, являющийся наиболее горячим местом дуги.
По современным представлениям, дуговой разряд поддерживается за счет высокой температуры катода из-за интенсивной термоэлектронной эмиссии, а также термической ионизации молекул, обусловленной высокой температурой газа.
Дуговой разряд находит широкое применение в народном хозяйстве для сварки и резки металлов, получения высококачественных сталей (дуговая печь) и освещения (прожекторы, проекционная аппаратура). Широко применяются также дуговые лампы с ртутными электродами в кварцевых баллонах, где дуговой разряд возникает в ртутном паре при откачанном воздухе. Дуга, возникающая в ртутном паре, является мощным источником ультрафиолетового излучения и используется в медицине (например, кварцевые лампы). Дуговой разряд при низких давлениях в парах ртути используется в ртутных выпрямителях для выпрямления переменного тока.
4. Коронный разряд— высоковольтный электрический разряд при высоком (например, атмосферном) давлении в резконеоднородном поле вблизи электродов с большой кривизной поверхности (например, острия). Когда напряженность поля вблизи острия достигает 30 кВ/см, то вокруг него возникает свечение, имеющее вид короны, чем и вызвано название этого вида разряда.
В зависимости от знака коронирующего электрода различают отрицательную или положительную корону. В случае отрицательной короны рождение электронов, вызывающих ударную ионизацию молекул катода под действием положительных ионов, в случае положительной — вследствие ионизации газа вблизи анода. В естественных условиях корона возникает под влиянием атмосферного электричества у вершин мачт (на этом основано действие молниеотводов), деревьев. Вредное действие короны вокруг проводов высоковольтных линий передачи проявляется в возникновении вредных токов утечки. Для их снижения провода высоковольтных линий делаются толстыми. Коронный разряд, являясь прерывистым, становится также источником радиопомех.
Используется коронный разряд в электрофильтрах, применяемых для очистки промышленных газов от примесей. Газ, подвергаемый очистке, движется снизу вверх в вертикальном цилиндре, по оси которого расположена коронирующая проволока. Ионы, имеющиеся в большом количестве во внешней части короны, оседают на частицах примеси и увлекаются полем к внешнему некоронирующему электроду и на нем оседают. Коронный разряд применяется также при нанесении порошковых и лакокрасочных покрытий.
Контактные явления, контактная разность потенциалов
В металлах, согласно электронной теории проводимости, свободные электроны находятся в состоянии постоянного хаотичного теплового движения. Однако при нормальных температурах они не покидают металл. У поверхности металла существует задерживающее электрическое поле. Чтобы вылететь из металла электрон должен совершить работу по преодолению задерживающих сил. Эта работа называется работой выхода.
Работа выхода - работа, которую должен совершить электрон, чтобы выйти из металла.
Формула для работы выхода:
где e - заряд электрона, U - разность потенциалов между точками в металле и за пределами задерживающего слоя.
Работа выхода измеряется в электронвольтах.
Электронвольт - внесистемная единица измерения, равная энергии, которую приобретает электрон при движении между двумя точками с разностью потенциалов в 1 Вольт.
Как у поверхности металла образуется задерживающее поле?
- Вследствие теплового движения электроны с поверхности металла могут отрываться и образуют над поверхностью электронное облако.
- На местах покинувших металл электронов образуются положительные ионы. По закону Кулона, они стремяться вернуть покинувшие металл электроны обратно.
В результате у поверхности металла образуется двойной электрический слой.
В вакууме за пределами задерживающего слоя поле отсутствует, поэтому формула для работы выхода запишется в виде:
где φ - потенциал выхода, равный потенциалу поля внутри металла.
Контактная разность потенциалов
Явление контактной разности потенциалов в 1797 году открыл Алессандро Вольта (1745 -1827).
Контактная разность потенциалов
Контактная разность потенциалов - разность потенциалов, которая возникает при контакте поверхностей двух разных металлов.
- Разность потенциалов, возникающая при контакте двух разных металлов, зависит от их химического состава и температуры.
- Если цепь составлена из нескольких разных проводников при одинаковой температуре, контактная разность потенциалов определяется только контактной разностью между крайними проводниками.
Причины возникновения контактной разности потенциалов:
- Разная работа выхода для разных металлов.
- Разная концентрация свободных электронов в разных металлах.
Схематически рассмотрим контакт двух металлов. Пусть у металла 1 работа выхода больше, чем у металла 2, и в металле 1 концентрация свободных электронов больше.
Между точками a и b , лежащими рядом с поверхностью, но не принадлежащими проводнику, возникает внешняя контактная разность потенциалов.
Электроны диффундируют из одного металла в другой, при этом из металла 1 в металл 2 уходит больше электронов, так как n 1 > n 2 . В результате металл 1 приобретает положительный, а металл 2 - отрицательный заряд. Возникшая разность потенциалов называется внутренней контактной разностью потенциалов.
Работа выхода электронов из металла. Контактные явления
Электроны проводимости в кристалле находятся в потенциальной яме. Выход из нее требует совершения работы по преодолению силы, действующей на электрон со стороны кристалла. Найдем эту силу. Обладая энергией теплового движения, электроны могут выскакивать из кристалла на расстояние в несколько периодов. Вышедший из кристалла и находящийся у его поверхности на расстоянии х электрон индуцирует в металле заряд е+ (рис.97). Этот наведенный заряд действует на вышедший электрон так, как если бы он был сосредоточен под поверхностью металла на глубине х в точке, симметричной той, в которой находится электрон (см. Эл-во §5). Индуцированный заряд е+ называется электрическим изображением заряда е-. Оба точечные заряда притягиваются друг к другу с силой Кулона . (14.1)
Но это и есть сила притяжения металлом вышедшего из него электрона. Под действием этой силы электрон втягивается обратно в металл. Чтобы удалить электрон из металла, надо совершить работу по преодолению этой силы, перемещая электроны на бесконечность из точки, расположенной на расстоянии х0 от поверхности металла. В качестве х0 можно взять межатомное расстояние.
На рис.98 показана зависимость потенциальной энергии электрона от расстояния х до атомной плоскости – стенки металла. Энергетическое расстояние еj от уровня Ферми до нулевого уровня называют термодинамической работой выхода электрона, величину j – потенциалом выхода. Уровень Ес обозначает дно зоны проводимости, где Е = 0. У металлов работа выхода еj заключена в пределах 1,8 ¸ 5,3 эВ. Меньше всего она у щелочных металлов, больше – у золота, серебра, платины (табл. 14.1).
Таблица 14.1 | |||
Металл | еj, эВ | Металл | еj, эВ |
Литий Li | 2,38 | Платина Pt | 5,32 |
Натрий Na | 2,35 | Ванадий V | 4,58 |
Калий К | 2,22 | Вольфрам W | 4,54 |
Рубидий Rb | 2,16 | Золото Au | 4,30 |
Цезий Cs | 1,18 | Серебро Ag | 4,30 |
Большое влияние на работу выхода оказывают мономолекулярные адсорбированные слои. Например, слой атомов цезия Cs на вольфраме W (рис.99). Цезий щелочной металл. Его внешний, валентный электрон связан с ядром значительно слабее, чем валентные электроны в вольфраме. Поэтому атомы цезия отдают вольфраму свои валентные электроны и превращаются в положительные ионы. Между этими ионами и их электрическими изображениями в вольфраме возникает сила притяжения, удерживающая ионы цезия на поверхности вольфрама. Поле этого двойного электрического слоя помогает выходу электронов из вольфрама. По этому в присутствии слоя цезия работа выхода электрона из вольфрама уменьшается с 4,54 эВ до 1,38 эВ. Подобно цезию действуют одноатомные слои бария Ba, церия Cе, тория Th и др.
2. Термоэлектронная эмиссия.
С повышением температуры металла поверхность Ферми разрыхляется, энергия электронов увеличивается, и они поднимаются на более высокие уровни (рис.100). Соответственно уменьшается работа выхода электронов. Поэтому концентрация вылетевших из кристалла электронов в пристеночном слое растет. Процесс испускания электронов нагретым металлом называется термоэлектронной эмиссией.
Формально термоэлектронная эмиссия есть всегда, когда Т > 0 К. Но заметной она становится при температурах Т > 800 К.
Облако термоэлектронов находится в динамическом равновесии. Число вылетевших из металла электронов в каждый промежуток времени примерно равно числу электронов, втянутых в металл. Поэтому суммарный ток эмиссии равен нулю.
На основе термоэлектронной эмиссии построен ламповый вакуумный диод (рис.101). Здесь К – катод, обычно нагреваемая вольфрамовая спираль, А – анод, холодная металлическая пластина обычно цилиндрической формы. По оси этого цилиндра натягивается спираль катода. Оба электрода помещаются в стеклянный сосуд с высоким вакуумом.
Если между катодом и анодом создавать электрическое поле с напряжением U, как показано на рис.101, то термоэлектроны под действием этого поля будут перемещаться от катода к аноду. Возникает электрический ток в вакууме. Вольтамперная характеристика вакуумного диода показана на рис.102. С повышением анодного напряжения U ток I через анод растет почти пропорционально U. Но при достижении некоторого значенья Iнас перестает увеличиваться. Это предельное значение Iнас называют ток насыщением. Он возникает тогда, когда все электроны, вылетевшие из нагретого катода, захватываются полем и переносятся к аноду.
С повышением температуры катода ток насыщения увеличивается. Разделив ток насыщения на поверхность S катода, получаем плотность тока насыщения jнас = iнасçS. В 1901г. Оуэн Ричардсон, исходя из классических представлений, теоретически нашел зависимость плотности тока насыщения от температуры поверхности катода. Уточненная Дешманом в 1923г. с учетом квантовых представлений, зависимость jнас(Т) имеет вид: . Формула Ричардсона-Дэшмана (14.2)
Здесь еj – работа выхода, А – константа, имеющая разное значение у разных металлов и колеблющаяся около теоретического значения А= 1,2·10 6 Аç(м 2 К 2 ).
3. Контактная разность потенциалов.
Рассмотрим процессы, происходящие при контакте двух разных металлов. Допустим, до электрического контакта металл 1 (на рис.103 слева) имеет работу выхода еj1, а работа выхода металла 2 больше, j2 > j1.
Приведем металлы в состояние электрического контакта, то есть сблизим их до такого расстояния, при котором возможен эффективный обмен электронами. Поскольку работа выхода электронов из металла 2 больше, то уровень Ферми в металле 2 ниже, чем в металле 1. В результате электроны проводимости с уровня Ферми металла 1 начинают переходить на уровень Ферми металла 2.
В результате такого перехода электронов металл 2 заряжается отрицательно, энергия электронов и, соответственно, уровень Ферми в нем повышаются. Металл 1 заряжается положительно, энергия электронов и уровень Ферми в нем понижаются. Между металлами возникает контактная разность потенциалов j12.
Суммарное перетекание зарядов прекратится, когда уровни Ферми сравняются, а разность потенциалов между проводниками будет равна разности потенциалов выхода, j12 = j2 - j1, и встречные потоки электронов сравняются n21=-n12 (рис.103 справа). Контактная разность потенциалов между проводниками создает для электронов, переходящих в проводник с большей работой выхода, потенциальный барьер высотой еj12.
Оценим количество электронов, перетекающих из одного металла в другой при возникновении контактной разности потенциалов j12. Будем считать, что между контактирующими металлами остается зазор шириной d, а заряды концентрируются на контактирующих поверхностях. Тогда заряд Q на каждой из поверхностей, необходимый для создания напряжения j12, найдется из формулы плоского конденсатора, . (14.3)
Как видно из таблицы 14.1, контактная разность потенциалов В. Расстояние d между металлами не может быть меньше параметра решетки а » 0,3 нм. Полагая j12 =1 В и d = 0,3 нм, получаем максимальную плотность заряда на контактирующих поверхностях.
Разделив на заряд электрона получаем, что на 1 м 2 поверхности приходится 2·10 17 электронов. Если диаметр атомов взять равным постоянной решетки а = 0,3 нм, то на 1 м 2 поверхности в одноатомном слое металла размещается атомов. Если атомы металла содержат по одному валентному электрону, то для создания контактной разности потенциалов 1 В потребовалось всего лишь (2×10 17 ç10 19 )´100% = 2% электронов проводимости одноатомного поверхностного слоя.
4. Закон Вольта.
Контактную разность потенциалов открыл в девяностых годах XVIII века итальянец Александр Вольта. В серии экспериментов 1792–1794 годов он установил, что в цепочке из ряда последовательно соединенных металлов контактная разность потенциалов зависит лишь от крайних металлов. Этот опытный факт называется законом Вольта. Действительно, пусть имеется цепочка из металлов 1,2,3,4 (рис.104). Работа выхода металлов еj1, еj2, еj3, еj4. На границе каждой пары возникает контактная разность:
Просуммировав левые и правые части, получаем: . (14.5)
Сумма всех контактных ЭДС (левой части равенства) равна контактной ЭДС крайних металлов в цепочке (правая часть равенства). Если концы цепи замкнуть, то независимо от количества звенев сумма контактных разностей потенциалов равна нулю. Тока в цепи нет.
5. Термо-ЭДС.
Сумма контактных разностей потенциалов в замкнутой цепи равна нулю лишь при условии, что температуры всех контактов одинаковы. В 1821 г. Томас Зеебек, сжимая концы висмутовой и медной пластинок теплыми пальцами обнаружил, что если цепь замкнута, то в ней протекает ток. Это явление возникновения ЭДС в цепи из разных металлов при перепаде температур между спаями называют эффектом Зеебека или термоэлектричеством. В рамках классической электронной теории можно дать простое толкование явлению Зеебека и получить зависимость термо-ЭДС от перепада температур.
Пусть имеется замкнутая цепь из двух металлов 1 и 2 со спаями A и B (рис.105). Полагаем, что электроны проводимости на верхних уровнях зоны проводимости распределяются в силовом поле решетки по закону Больцмана.
Здесь n01 и n02 – концентрация электронов проводимости на уровнях Ферми. В силу полной заполняемости этих уровней будем полагать n01 = n02; U1 и U2 – потенциальная энергия электронов в металлах 1 и 2. Она может изменяться от нуля на уровне Ферми до еj (работа выхода) на нулевом уровне. Разделим первое уравнение на второе.
Разделив разность U1 –U2 на заряд электрона е, получаем концентрационную разность потенциалов между металлами 1 и 2. . (14.9)
Если температуры спаев ТА и ТB одинаковы, то концентрационная ЭДС в замкнутой цепи, так же, как контактная разность потенциалов, равна нулю. Тока в цепи нет. Если же температуры спаев разные, ТА ¹ ТB, то в цепи возникает термо-ЭДС (рис.106). Концентрационные перепады потенциалов в контактах А и B разные.
Учитывая грубость классических приближений, обычно выделяют лишь температурную зависимость, которая хорошо подтверждается опытом при малых перепадах температур, . (14.12)
Термо-ЭДС, возникающая в цепи из разных металлов, широко применяется для измерения температур в диапазоне от 0 К до » 1000°С. Соответствующее устройство из двух разных металлов называется термопарой. Один спай термопары поддерживается при постоянной температуре, например при 0 о С в сосуде с тающим льдом, другой помещают в ту среду, температуру которой хотят измерить. О величине температуры можно судить как по величине термотока, измеряемого гальванометром, так и более точно по величине термо-ЭДС, измеряемой методом компенсации. С помощью термопар можно измерять температуру с точностью до сотых долей градуса.
6. Эффект Пельтье,1834 г.
Он обратен эффекту Зеебека и состоит в том, что при пропускании тока по цепи из разных металлов один контакт у металла нагревается, другой охлаждается.
Пусть в цепи из двух разных металлов действует источник тока – батарея Б. В результате в цепи идет постоянный ток I (рис.107). Проходя спай B, электроны, идущие по цепи на рисунке против часовой стрелки, дополнительно ускоряются полем контактного потенциала. Их скорость дрейфа увеличивается, поэтому при столкновении с узлами электроны передают им большую, по сравнению со средней, энергию. Спай В нагревается больше, чем рядом расположенные участки проводников.
В спае А электроны тормозятся контактным полем, их скорость дрейфа уменьшается, поэтому спай А нагревается меньше, чем рядом расположенные участки проводов. Кроме того, для установления равновесия этих электронов с электронным газом им необходимо приобрести еще энергию. Эту энергию они черпают из решетки. В результате спай А охлаждается больше, чем нагревается. В итоге теплота в спае А поглощается.
Выделяющаяся или поглощающаяся теплота Пельтье QП в контакте пропорциональна заряду It, прошедшему через контакт. . (14.13)
Здесь П – коэффициент Пельтье связан с дифференциальной термо-ЭДС соотношением: П = аDT.(14.14)
Где DТ – разность температур между контактами.
Эффект Пельтье позволяет создавать малогабаритные холодильные устройства. Их особенность в том, что изменяя направление тока в цепи, можно один и тот же контакт заставить как поглощать тепло (холодильник), так и выделять его (нагреватель).
7. Эффект Томсона.
В 1853 – 54 г.г. Рудольф Клаузиус и Уильям Томсон независимо друг от друга применили к явлениям термоэлектричества принципы термодинамики. В процессе построения термодинамической теории термоэлектричества Томсон установил, что неравномерно нагретый проводник должен вести себя как система находящихся в контакте физически разнородных участков. На этом основании Томсон пришёл к заключению и подтвердил его экспериментально, что в однородном неравномерно нагретом проводнике должно выделяться или поглощаться тепло Пельтье (тепло Томсона). Само явление назвали эффектом Томсона.
Принципиальная схема экспериментальной установки изображена на рис.108
Концы двух одинаковых проводящих стержней помещены в два термостата с разными температурами Т1 и Т2. Допустим, Т1 > Т2. Тогда градиент температуры в верхнем стержне направлен по току I, а в нижнем – против тока. В результате в одном стержне выделяется тепло Томсона (его температура выше), а в другом – поглощается.
Знак эффекта у разных проводников разный. В висмуте и цинке, например, тепло выделяется, если поток тепла и электрический ток совпадают по направлению (на рисунке нижний проводник). А в Fe, Pt, Sb при тех же условиях тепло поглощается. С изменением направления тока знак эффекта во всех проводниках меняется.
Тепло Томсона Q, выделяющееся в проводнике, пропорционально перепаду температур ΔТ, току I, протекающему по проводнику, и времени t Q = σΔTIt.
Здесь σ – коэффициент Томсона. Он зависит от материала провода и от его температуры. Коэффициент σ невелик. У металлов он порядка 10 –5 ВçК. За положительное направление тока принимают направление градиента температур, то есть направление от холодного конца проводника к горячему. Если тепло при этих условиях выделяется (проводник нагревается), эффект Томсона считается положительным.
Количественно эффект Томсона исследовал в 1867 г. Франсуа Леру. В установке, собранной по схеме рис. 108, к поверхности стержней он присоединял спаи термопар. Пока тока через стержни не было, термоЭДС в цепи термопар была равна нулю. При включении тока через стержни появлялась термоЭДС, величина и знак которой позволяли определить коэффициент Томсона σ.
8. Закон Джоуля – Ленца в замкнутой цепи всегда выполняется. Суммарный эффект Пельтье и Томсона в замкнутой цепи равен нулю, поскольку наряду с участками цепи, где тепло Пельтье и Томсона выделяется, всегда есть участки, где такое же тепло поглощается.
Работа выхода электрона из металла. Контактная разность потенциалов
При комнатной температуре практически все свободные электроны находятся внутри металла, так как их удерживает притяжение положительных ионов. Однако отдельные электроны с достаточно большой кинетической энергией могут выйти из металла в окружающее свободное пространство (например, в вакуум). При этом они совершают работу против сил притяжения со стороны избыточного положительного заряда, возникшего в металле после их вылета, и против сил отталкивания от электронов, вылетевших ранее. С ростом Т количество электронов, имеющих достаточную кинетическую энергию и покидающих металл, увеличивается.
Вблизи поверхности возникает «электронное облако», которое вместе с поверхностным слоем положительных ионов образует двойной электрический слой толщиной 10 -10 -10 -9 м. Поле этого слоя препятствует выходу следующих электронов. Разность потенциалов Dj слоя называется поверхностным скачком потенциала. Работу, которую должен совершить электрон при выходе из металла, называют работой выхода А: . Работу выхода принято измерять в электрон-вольтах (эВ). 1эВ - работа перемещения электрона в электрическом поле между точками с разностью потенциалов в 1В (1эВ=1.6×10 -19 Дж). Работа выхода электрона зависит от химической природы металла и чистоты его поверхности и не зависит от температуры. Для чистых металлов величина работы порядка нескольких эВ.
В 1797 г. итальянский физик Вольта обнаружил сходное явление и при контакте двух металлов, он установил, что при соприкосновении двух разнородных металлов между ними возникает разность потенциалов, зависящая от их химического состава и температуры (первый закон Вольты). Эта разность потенциалов называется контактной.
Рис.3.1.Контакт двух различных металлов. |
Для объяснения этого явления рассмотрим контакт двух различных металлов 1 и 2, имеющих работы выхода А1 и А2, причем А12. Очевидно, что свободным электронам второго металла труднее покинуть его пределы, чем электронам первого металла. Поэтому при хаотическом тепловом движении количество свободных электронов, переходящих из первого металла во второй в единицу времени будет больше, чем из второго в первый. В результате этого первый металл зарядится положительно, второй - отрицательно (рис.3.1). Возникающая разность потенциалов создает электрическое поле напряженностью Е, которое затрудняет дальнейший переход электронов из 1 в 2. Передвижение электронов прекратится, когда разность потенциалов поля станет такой величины, что работа по перемещению электрона внутри поля сравняется с разностью работ выхода: или , где е - абсолютная величина заряда электрона. Значение составляет обычно около 1В.
Второй причиной появления контактной разности потенциалов между металлами 1 и 2 является различная концентрация в них свободных электронов n01 и n02. Свободные электроны в металле принято рассматривать как электронный газ, который подобен идеальному газу и подчиняется тем же законам. Давление идеального газа равно: , где - концентрация молекул, k - постоянная Больцмана, Т - абсолютная температура. Пусть > , тогда р1>р2, т.е. давление электронного газа в первом металле больше, чем во втором. Под действием перепада давления электроны будут переходить из первого металла во второй больше, чем в обратном направлении. Процесс диффузионного перехода прекратится, когда возникающее электрическое поле двойного электрического слоя скомпенсирует своим противодействием перепад давления. В результате этого первый металл зарядится положительно, второй - отрицательно. Теоретический расчет возникающей разности потенциалов показал, что она зависит от концентрации свободных электронов и температуры Т и равна . При комнатной температуре значение имеет порядок 10 -1 В. Таким образом, при контакте двух различных металлов между ними возникает контактная разность потенциалов .
На основании опытных данных Вольтой был установлен второй закон: разность потенциалов на концах разомкнутой цепи, составленной из нескольких последовательно соединенных проводников, находящихся при одинаковой температуре, равна контактной разности потенциалов, создаваемой концевыми проводниками, и не зависит от промежуточных проводников.Пусть цепь состоит из четырех разнородных проводников, имеющих одинаковую температуру. Сумма контактных разностей потенциалов соприкасающихся пар будет равна , то есть не зависит от промежуточных проводников 2 и 3.
Контактная электризация тел, т.е. возникновение между телами контактной разности потенциалов, встречается довольно часто и не только у металлов. Например, ею обусловлена электризация тел в процессе трения. При контакте двух диэлектриков внешние электроны атомов, расположенных у поверхности соприкосновения, переходят преимущественно на диэлектрик с меньшей диэлектрической проницаемостью e, то есть на диэлектрик, у которого внешние электроны прочнее связаны со своими атомами. При последующем разделении тел, одно из них (с большим значением e) заряжается положительно, другое - отрицательно. Контактная электризация имеет место в коллоидных растворах: жидкость и взвешенные в ней твердые частицы имеют заряды разного знака. При воздействии на коллоидный раствор электрическим полем, взвешенные частицы начинают двигаться вдоль силовых линий поля. Это явление называется электрофорезом. Электрофорез широко используется для выделения эмульсий из нефти, очистки фруктовых соков, удаления пыли и дыма из воздуха, разделения сложных белковых систем на компоненты и т.п.
Контактной электризацией обусловлено и явление электроосмоса: перемещение жидкости в неподвижном пористом теле, помещенном в электрическое поле. Электроосмос применяется для сушки (холодная электросушка) волокнистых и пористых веществ, очистки воды, обезвоживания торфа и глины. Контактная разность потенциалов играет важную роль в работе электровакуумных приборов.
Потенциал выхода электрона из металла
Уже отмечалось, при переходе границы раздела между проводником и вакуумом скачком изменяются напряженность и индукция электрического поля. С этим связаны специфические явления. Электрон свободен только в границах металла. Как только он пытается перейти границу «металл – вакуум», возникает кулоновская сила притяжения между электроном и образовавшимся на поверхности избыточным положительным зарядом (рис. 6.1).
Вблизи от поверхности образуется электронное облако, и на границе раздела формируется двойной электрический слой с разностью потенциалов (). Скачки потенциала на границе металла показаны на рисунке 6.2.
В занятом металлом объеме образуется потенциальная энергетическая яма, так как в пределах металла электроны свободны, и их энергия взаимодействия с узлами решетки равна нулю. За пределами металла электрон приобретает энергию W0. Это энергия притяжения Для того, чтобы покинуть металл, электрон должен преодолеть потенциальный барьер и совершить работу
Эту работу называют работой выхода электрона из металла. Для ее совершения электрону необходимо сообщить достаточную энергию
Термоэлектронная эмиссия
Величина работы выхода зависит от химической природы вещества, от его термодинамического состояния и от состояния поверхности раздела. Если энергия, достаточная для совершения работы выхода, сообщается электронам путем нагревания, то процесс выхода электронов из металла называют термоэлектронной эмиссией.
В классической термодинамике металл представляют в виде ионной решетки, заключающей в себе электронный газ. Считают, что сообщество свободных электронов подчиняется законам идеального газа. Следовательно, в соответствии с распределением Максвелла при температуре, отличной от 0 К, в металле есть какое-то количество электронов, тепловая энергия которых больше работы выхода. Эти электроны и покидают металл. Если температуру увеличить, то увеличивается и число таких электронов.
Явление испускания электронов нагретыми телами (эмиттерами) в вакуум или другую средуназываетсятермоэлектронной эмиссией. Нагрев необходим для того, чтобы энергии теплового движения электрона было достаточно для преодоления сил кулоновского притяжения между отрицательно заряженным электроном и индуцируемым им на поверхности металла положительным зарядом при удалении с поверхности (рис.6.1). Кроме того, при достаточно высокой температуре над поверхностью металла создается отрицательно заряженное электронное облако, препятствующее выходу электрона с поверхности металла в вакуум. Этими двумя и, возможно, другими причинами определяется величина работы выхода электрона из металла.
Явление термоэлектронной эмиссии открыто в 1883 г. Эдисоном, знаменитым американским изобретателем. Это явление наблюдалось им в вакуумной лампе с двумя электродами – анодом, имеющим положительный потенциал, и катодом с отрицательным потенциалом. Катодом лампы может служить нить из тугоплавкого металла (вольфрам, молибден, тантал и др.), нагреваемая электрическим током (рис. 6.3). Такая лампа называется вакуумным диодом. Если катод холодный, то ток в цепи катод – анод практически отсутствует. При повышении температуры катода в цепи катод – анод появляется электрический ток, который тем больше, чем выше температура катода. При постоянной температуре катода ток в цепи катод – анод возрастает с повышением разности потенциалов U между катодом и анодом и выходит к некоторому стационарному значению, называемому током насыщения Iн. При этом все термоэлектроны, испускаемые катодом, достигают анода. Величина тока анода не пропорциональна U, и поэтому для вакуумного диода закон Ома не выполняется.
На рисунке 6.3 показаны схема вакуумного диода и вольт-амперные характеристики (ВАХ) Ia(Ua). Здесь Uз – задерживающее напряжение при котором I = 0.
Холодная и взрывная эмиссия
Электронную эмиссию, вызываемую действием сил электрического поля на свободные электроны в металле, называют холодной эмиссией или автоэлектронной. Для этого должна быть достаточной напряженность поля и должно выполняться условие
здесь d – толщина двойного электрического слоя на границе раздела сред. Обычно у чистых металлов и При получим На практике же холодная эмиссия наблюдается при значении напряженности порядка Такое несовпадение относят на счет несостоятельности классических представлений для описания процессов на микроуровне.
Автоэлектронную эмиссию можно наблюдать в хорошо откачанной вакуумной трубке, катодом которой служит острие, а анодом – обычный электрод с плоской или мало изогнутой поверхностью. Напряженность электрического поля на поверхности острия с радиусом кривизны r и потенциалом U относительно анода равна
При и , что приведет к появлению слабого тока, обусловленного автоэлектронной эмиссией с поверхности катода. Сила эмиссионного тока быстро нарастает с повышением разности потенциалов U. При этом катод специально не разогревается, поэтому эмиссия и называется холодной.
С помощью автоэлектронной эмиссии принципиально возможно получение плотности тока но для этого нужны эмиттеры в виде совокупности большого числа острий, идентичных по форме (рис. 6.4), что практически невозможно, и, кроме того, увеличение тока до 10 8 А/см 2 приводит к взрывообразному разрушению острий и всего эмиттера.
Плотность тока АЭЭ в условиях влияния объемного заряда равна (закон Чайльда-Ленгмюра)
где – коэффициент пропорциональности, определяемый геометрией и материалом катода.
Проще говоря, закон Чайльда-Ленгмюра показывает, что плотность тока пропорциональна (закон трех вторых).
Током автоэлектронной эмиссии при концентрации энергии в микрообъемах катода до 10 4 Дж×м –1 и более (при общей энергии 10 -8 Дж) может инициироваться качественно иной вид эмиссии, обусловленный взрывом микроострий на катоде (рис. 6.4).
При этом появляется ток электронов, который на порядки превосходит начальный ток – наблюдается взрывная электронная эмиссия (ВЭЭ). ВЭЭ была открыта и изучена в Томском политехническом институте в 1966 г. коллективом сотрудников под руководством Г.А. Месяца.
ВЭЭ – это единственный вид электронной эмиссии, позволяющий получить потоки электронов мощностью до 10 13 Вт с плотностью тока до 10 9 А/см 2 .
Рис. 6.4 | Рис. 6.5 |
Ток ВЭЭ необычен по структуре. Он состоит из отдельных порций электронов 10 11 ¸ 10 12 штук, имеющих характер электронных лавин, получивших название эктонов (начальные буквы «explosive centre») (рис. 6.5). Время образования лавин 10 -9 ¸ 10 -8 с.
Появление электронов в эктоне вызвано быстрым перегревом микроучастков катода и является, по существу, разновидностью термоэлектронной эмиссии. Существование эктона проявляется в образовании кратера на поверхности катода. Прекращение эмиссии электронов в эктоне обусловлено охлаждением зоны эмиссии за счет теплопроводности, уменьшения плотности тока, испарения атомов.
Взрывная эмиссия электронов и эктоны играют фундаментальную роль в вакуумных искрах и дугах, в разрядах низкого давления, в сжатых и высокопрочных газах, в микропромежутках, т.е. там, где в наличии есть электрическое поле высокой напряженности на поверхности катода.
Явление взрывной электронной эмиссии послужило основой для создания импульсных электрофизических установок, таких как сильноточные ускорители электронов, мощные импульсные и рентгеновские устройства, мощные релятивистские сверхвысокочастотные генераторы. Например, импульсные ускорители электронов имеют мощность 10 13 Вт и более при длительности импульсов 10 -10 ¸ 10 -6 с, токе электронов 10 6 А и энергии электронов 10 4 ¸ 10 7 эВ. Такие пучки широко используются для исследований в физике плазмы, радиационной физике и химии, для накачки газовых лазеров и пр.
Фотоэлектронная эмиссия
Фотоэлектронная эмиссия (фотоэффект) заключается в «выбивании» электронов из металла при действии на него электромагнитного излучения.
Схема установки для исследования фотоэффекта и ВАХ аналогичны изображенным на рисунке 6.3. Здесь, вместо разогрева катода, на него направляют поток фотонов или γ-квантов (рис. 6.6).
Закономерности фотоэффекта еще в большей степени не согласуются с классической теорией, чем в случае холодной эмиссии. По этой причине мы рассмотрим теорию фотоэффекта при обсуждении квантовых представлений в оптике.
В физических приборах, регистрирующих γ – излучение, используют фотоэлектронные умножители (ФЭУ). Схема прибора приведена на рисунке 6.7.
В нем используют два эмиссионных эффекта: фотоэффект и вторичную электронную эмиссию, которая заключается в выбивании электронов из металла при бомбардировке последнего другими электронами. Электроны выбиваются светом из фотокатода (ФК). Ускоряясь между ФК и первым эмиттером (КС1), они приобретают энергию, достаточную, чтобы выбить большее число электронов из следующего эмиттера. Таким образом, умножение электронов происходит за счет увеличения их числа при последовательном прохождении разности потенциалов между соседними эмиттерами. Последний электрод называют коллектором. Регистрируют ток между последним эмиттером и коллектором. Таким образом, ФЭУ служит усилителем тока, а последний пропорционален излучению, попадающему на фотокатод, что и используют для оценки радиоактивности.
Читайте также: