Понятие об усталости металлов
Усталость материала — процесс постепенного накопления повреждений в детали под действием переменных (часто циклических) напряжений, приводящий к изменению свойств материала, образованию трещин, их развитию и разрушению материала детали за указанное количество циклов нагружения. А разрушение как всегда может быть неожиданным для всех, если заранее трубопровод не был подвержен расчету на усталостную прочность.
Локальное перенапряжение компонента может вызвать небольшую трещину, которая медленно растет с последующими рабочими циклами, а компонент продолжает ослабевать. Когда трещина достигает критического размера, компонент резко выходит из строя без предупреждений. Такой отказ известен как усталостное разрушение металла.
Усталостное разрушение металла происходит в три стадии:
1. Появление трещины
2. Распространение трещины
3. Разрушение металла
Усталость металла напрямую связана с количеством циклов напряжения и величиной приложенного к ней напряжения. Если локальные напряжения поддерживаются ниже определенного значения, металл не будет иметь усталостного разрушения, и деталь будет работать удовлетворительно в течение бесконечного периода времени. Это предельное значение известно как предел выносливости материала.
На усталость металла в значительной степени так же влияет наличие концентраторов напряжения, таких как отверстия, зазубрины, сварные швы, коррозия и т.п. Качество поверхности детали также играет большую роль в усталостном разрушении металла. Гладкая поверхность увеличивает усталостную долговечность.
В зависимости от того, как происходит усталостное разрушение металлической детали, они могут быть сгруппированы по различным типам:
1. Разрушение из-за перепадов температур – температурной истории нагружений.
2. Усталостное разрушение из-за совместных циклов температуры и давления.
3. Усталостное разрушение из-за высококоррозионной среды, когда первоначальная трещина возникает в результате и в месте коррозии.
4. Разрушение из-за постоянной вибрации от механического оборудования. Этот тип усталости металла возникает из-за напряжений, возникающих с течением времени, и включает коррозию и усталостное разрушение из-за вибрации.
Очень важно определить грань, при которой материал, подвергаясь циклической нагрузке, будет работать. Для определения усталостной прочности материала в лабораториях образец для испытаний готовят в соответствии со стандартными инструкциями в результате чего, мы получаем кривые усталости, которые строятся при различных уровнях нагрузки и количестве циклов нагружения, до полного его отказа.
Пример диаграммы усталостного разрушения ниже.
При проектировании трубопровода необходимо учитывать различные факторы, чтобы увеличить его усталостную долговечность. Например, значительное увеличение прочности даёт химико-термическая обработка металлов, например, поверхностное азотирование или газотермическое напыление. Кроме этого, можно посоветовать следующие проектные решения:
1. Избегать острых углов: использование больших радиусов снизит уровни концентрации напряжений, что, в свою очередь, увеличит усталостную прочность металла.
2. Предотвращение резких изменений поперечного сечения: усталостную прочность металла можно увеличить за счет плавного перехода между поперечными сечениями.
3. Усталостная прочность материалов увеличивается с уменьшением шероховатости поверхности, поскольку отполированные поверхности устраняют концентраторы напряжения.
4. Сварка хорошего качества без включений, пористости или червоточин.
5. Выбор материалов с хорошими усталостными свойствами.
Как мы видим, усталостное разрушение более коварное, нежели чем обычное, поэтому так важно выполнить анализ усталости еще на этапе проектирования. Обычно на этой стадии, инженер уже знает материал, который будет использоваться в проекте, и рабочие параметры среды, поэтому ему остается только выбрать программное обеспечение, которое может выполнять анализ усталости различных компонентов.
Усталость металлов
УСТАЛОСТЬ МЕТАЛЛОВ, явление изменения механических свойств материала под влиянием переменных нагрузок и вибраций. Развитие авто- и авиастроения, а также тенденция современного машиностроения в сторону быстроходных моторов, электродвигателей, турбин и прочего требуют знания свойств металлов при переменном действии (до сотен миллионов циклов) нагрузки. Вследствие этого вопросами усталости металлов занимаются виднейшие металловеды современности. Еще Велер (Wohler) показал, что сталь, испытывающая переменные напряжения (динамические воздействия сил) в быстроходных машинах, разрушается при значительно меньшем напряжении, чем сталь, подвергаемая только статическому действию сил. Баушингер (Bauschinger) установил, что у стали существует т. н. предел усталости , т. е. такое напряжение, при котором сталь практически выдерживает не менее 10000000 изменений напряжений.
Как видно из логарифмической диаграммы зависимости разрушающего напряжения σb от числа изменений нагрузки образца или, как принято это называть, от числа циклов n (фиг. 1), кривая при приближении к миллиону изменений нагрузки (циклов) становится параллельной горизонтальной оси, что указывает на достижение предела усталости Кг.
Кроме того опыты показали, что величина этого предела усталости различна для разных сталей и что даже у двух сталей А и Б (фиг. 1) с одинаковым статическим временным сопротивлением предел усталости м. б. различным - сталь А несмотря на худшие механические свойства при меньшем числе изменений нагрузки обладает более высоким пределом усталости К'г, нежели сталь Б - К”r. Когда какая-нибудь деталь в службе ломается вследствие усталости металла, излом ее (фиг. 2) обычно состоит из двух характерных частей: 1) крупнокристаллической а в середине, получившейся в момент окончательного разрушения образца, и 2) мелкозернистой б, получившейся вследствие трения первоначальных трещин и надрывов при многочисленных изменениях напряжений. При этом никакой видимой остаточной деформации в виде изгиба или сужения поперечного сечения, как это бывает в случае разрушения при статической нагрузке, при усталости не наблюдается.
Причиной усталости металлов являются трещины, которые, по мнению Розенгейна, возникают благодаря сосредоточениям местных напряжений в точках исчерпания пластичности металла. Первая появившаяся, хотя бы микроскопическая, трещина является надрезом с острым входящим углом, в вершине которого происходит значительное увеличение местных напряжений, в результате чего трещина распространяется в ширину и глубину.
Переменные деформации оставшейся целой части сечения вызывают трение одной стенки трещины о другую, вследствие чего поверхность излома сглаживается и получает характер мелкозернистости; после того как сечение достаточно ослаблено трещинами, остальная уцелевшая часть сечения ломается сразу, давая характерный, ясно выраженный кристаллический излом. Если прервать испытание на усталость после нескольких миллионов изменений напряжений (циклов), то металл, несмотря на отсутствие остаточной деформации, является значительно упроченным и более твердым. Это явление подобно наклепу после холодной обработки или после перехода предела упругости при статических испытаниях. Если же образец стали подвергать нескольким тысячам циклов напряжений выше предела усталости, то он окончательно портится и в дальнейшем не выдерживает большого числа циклов даже при напряжениях более низких, чем его предел усталости. Кроме того часто бывает, что несмотря на низкие расчетные напряжения действительные напряжения вследствие резких переходов, острых углов, шпоночных канавок, нарезок и т. д. значительно превышают расчетные. Поэтому конструкции, подвергающиеся переменному действию напряжений, не должны иметь резких переходов, острых углов, а также и местных уменьшений сечений. Начало образования трещин обычно лежит в месте сосредоточения напряжений: гл. обр. во входящих острых углах, хотя бы весьма малой величины, например, в форме царапин или следов инструмента, оставшихся после обработки; поэтому создание гладких шлифованных поверхностей без мелких царапин и трещин повышает сопротивляемость усталости. Загрязненный и пузыристый металл и внутренние дефекты, подобные трещинам, также сильно понижают предел усталости. Применением чистого металла и введением специальных новых сплавов и сложных сталей удалось значительно повысить этот предел. Вообще однородные тонкие сорбитные структуры обладают очень высоким пределом усталости, тогда как у перлитно-ферритных агрегатов, особенно с грубым перлитом, этот предел низкий. Лер (Lher) испытал влияние поверхностных царапин на понижение предела усталости и нашел, что мягкие углеродистые стали мало чувствительны к поверхностным повреждениям, тогда как высокоуглеродистые очень к ним чувствительны. Большая вязкость и большое поглощение энергии мягкими сталями делают невозможным появление высоких местных напряжений и разрывов в поврежденных местах, и происходящие в них местные деформации выравнивают распределение напряжений. Резкие изменения сечения значительно понижают предел усталости. Например, при испытании образцов, вырезанных из сталей для коленчатых валов, образец с резким утолщением сечения в середине дал предел усталости всего 36 кг/мм 2 , тогда как у образца без этого утолщения предел усталости был 58 кг/мм 2 .
Временное сопротивление этой стали 126 кг/мм 2 . Если какая-нибудь деталь подвергается часто изменяющимся колебаниям нагрузки, весьма важно устранить у нее всякое разъедание поверхности, т. к. оно очень сильно понижает предел усталости. Мак-Адам (Mac-Adam) блестяще показал влияние коррозии при усталости, например, по его опытам предел усталости стали, лежавший около 80 кг/мм 2 , понизился после коррозии в десять раз, т. е. до 8 кг/мм 2 . Он ввел особый тип испытаний на усталость металлов при одновременной коррозии их. Кроме этого обезуглероживание поверхности, присутствие ржавчины, окалины или остатков внутренних напряжений после закалки, ковки, холодной обработки и пр. также весьма сильно снижают предел усталости.
Машины для испытания металлов на усталость . По основным видам напряжений машины для испытания на усталость можно разделить на следующие четыре типа: 1) при повторно-переменном изгибе; 2) при растяжении, сжатии; 3) при кручении и 4) при изгибе с перегибом. Помимо этого существуют машины для испытания металлов на усталость при повторной ударной нагрузке, а также для исследования длительного действия высоких температур на устойчивость нагруженного образца против деформации. На фиг. 3 изображена самая распространенная простая и недорогая машина профессора Мура (Moore) для определения предела усталости при изгибе вращающегося около своей оси образца, а на фиг. За дана ее схема.
Образец а нагружается с помощью груза Р через систему двух тяг б и двух шариковых подшипников в, так. обр. образец подвергается чистому изгибу постоянным моментом lP/2. Следовательно верхние волокна образца подвергаются сжатию, а нижние - растяжению; после поворота образца на 180° сжатые волокна попадут вниз и испытают растяжение, а растянутые, наоборот, попадут вверх и будут сжиматься. Т. о. при вращении от электромотора г периферические волокна образца подвергаются переменному растяжению-сжатию. Имея большое количество образцов одного какого-нибудь металла, их подвергают испытанию сначала при небольшом напряжении. Число оборотов берут по счетчику: для стали - около 10000000, а для некоторых сплавов дуралюмина, монеля и пр., не обладающих явным пределом усталости, гораздо больше, например 500000000. Постепенно увеличивая напряжение, доводят один из серии образцов до разрушения при числе оборотов, меньшем вышеуказанного. Тогда наибольшее из напряжений, не разрушившее образца, и будет пределом усталости. Конечно, эти испытания очень длительны. За последнее время в Германии изобретены способы и сконструированы машины для быстрого определения предела усталости по резкому изменению в момент достижения предела усталости температуры образца или мощности, поглощаемой им при деформации.
В некоторых машинах определение предела усталости очень наглядно улавливается по образованию петли гистерезиса, о которой ниже будет сказано подробно. Следует отметить, что зарождение внутренних трещин, т. е. начало усталости в некоторых материалах, появляется настолько медленно и незаметно, что в некоторых случаях методы быстрого определения предела усталости ненадежны. Обычный способ определения предела усталости длительными испытаниями образцов по своей надежности является незаменимым. Только в соединении с ним быстрые методы ускоряют результаты испытаний, нащупывая приблизительно предел усталости, который затем проверяется длительными испытаниями. Помимо этого, однако, не которые из быстрых методов имеют и самостоятельное значение. На фиг. 4 изображена диаграмма изменений прогиба f образца (кривая а), его температуры t (кривая б) и мощности N, поглощаемой им при вращении (кривая в), в зависимости от изменения величины σ переменных напряжений.
Стальной образец диаметром 7,5 мм при испытуемой длине 75 мм обнаружил резкое возрастание температуры и поглощаемой мощности при переменном напряжении σ = 47 кг/мм 2 . Предел усталости Кr этой стали, определенный обычным длительным испытанием, оказался также равным 47 кг/мм 2 . Лер произвел подробные испытания при переменном изгибе над 150 различными металлами, причем в 70% случаев предел усталости, определенный быстрым методом по поглощению образцом энергии и полученный длительным испытанием по классическому методу Велера (Vohler), совпал. Для остальных 30 % случаев предел усталости, определенный быстрым методом, был несколько ниже полученного длительным методом. На фиг. 5 изображена машина для испытания на усталость типа Мура со всеми приспособлениями для быстрого определения предела усталости: а - электромотор постоянного тока, вращающий образец; у мотора статор может поворачиваться относительно оси мотора, что и позволяет определить вращающий момент, а следовательно и мощность, затрачиваемую на деформацию образца; б - образец и опоры с индикаторами, показывающими прогиб; в - пирометр, измеряющий температуру образца; г - мотор-генератор, превращающий переменный ток в постоянный; д - распределительная доска с электроизмерительными приборами и регулировочными реостатами; е - маховичок, передвигающий груз по рычагу для изменения нагрузки образца.
Замечательный пример машины для испытания на усталость при растяжении-сжатии представляет машина Шенка, основанная на принципе использования резонанса между двумя колебательными системами: упругой механической и электрической. Такая машина позволяет осуществить 30000 перемен напряжений в мин. На фиг. 6 изображена схема этой машины.
Образец а укрепляется своим верхним концом в колоколе б весом 500 кг. Колокол опирается двумя пружинами в на станину машины весом 750 кг. Натягивая эти пружины, можно давать любое предварительное напряжение образцу. Нижний конец образца укрепляется в якоре г весом 50 кг, который периодически притягивается и отталкивается электромагнитом д и вызывает растяжение-сжатие образца. Образец малого размера: диаметр его 5 мм, а расчетная длина 50 мм. Якорь г соединен со станиной двумя входящими одна в другую толстостенными стальными трубами е, упругие деформации которых являются механической колебательной системой машины.
Электрическая часть машины состоит из частотного генератора, дающего переменный ток с 500 пер/сек., и генератора постоянного тока. Электромагнит д имеет 2 обмотки: первая, питаемая током высокой частоты, вызывает колебания якоря г, а вторая создает постоянное поле магнита и служит связью между электрическими и механическими колебательными системами. Обе системы имеют одинаковое число колебаний в секунду. Подобно машине для испытания на усталость при изгибе эта машина также имеет оборудование для изменения энергии, поглощаемой образцом, его температуры и деформации.
Машина Шенка для испытания на усталость при кручении позволяет получить во время опыта петли гистерезиса (фиг. 7), т. е. явления отставания деформации от изменения нагрузки. На этих кривых по вертикальной оси откладывается угол закручивания ϕ образца, а по горизонтальной - напряжение τ или крутящий момент. Образование петли гистерезиса служит признаком перехода предела усталости. До напряжения ±40 кг/мм 2 , пока предел усталости не перейден, кривая а представляет собой наклонную прямую, а по переходе его - при напряжении ±45, ±50 и ±53 кг/мм 2 (кривые б, е и г) - появляются характерные петли гистерезиса, площадь которых дает количество энергии, поглощаемой образцом за один цикл. Помимо этого при испытании определяется изменение температуры образца и количество перемен напряжений. На фиг. 8 изображена схема машины завода MAW для испытания на усталость при сгибе с повторным перегибом. Намагничивая и размагничивая электромагнит а, можно подвергать образец б повторному перегибу. Зная модуль упругости испытуемого образца и получающуюся при опыте деформацию, легко определить возникающие в нем напряжения. Эта машина имеет большое практическое значение, особенно при испытании на усталость пружинной проволоки и образцов мелких сечений.
В общем, обычные испытания на усталость сводятся к определению следующих величин: 1) определению предела усталости по длительному испытанию нескольких образцов; 2) построению кривой поглощения образцом энергии; 3) получению петли гистерезиса; 4) построению кривой деформации образца; 5) построению кривой изменения температуры образца. Для всестороннего исследования вопроса об усталости металлов важно определение всех этих величин. Лер указывает, что для деталей, работающих с высокими напряжениями (рессоры и пружины), особенно важно иметь высокий предел усталости. Для деталей же, подвергающихся свободным колебаниям(коленчатые валы с большим числом оборотов), требуется большая площадь петли гистерезиса или большое количество поглощаемой энергии до предела усталости.
Тогда рост колебаний будет задерживаться внутренним поглощением энергии материалом. При сравнении результатов испытаний на усталость при изгибе с числом перемен напряжений 3000 в минуту и при растяжении-сжатии с числом 30000 перемен в минуту оказалось, что в последнем случае (при высокой частоте) предел усталости выше; повышение для сталей иногда достигает 12%, а для латуни даже 35%. Предел усталости при кручении составляет не более 50% предела усталости при изгибе.
В некоторых случаях производятся испытания на усталость металлов при повторной ударной нагрузке ; на фиг. 9 изображен общий вид машины Лозенгаузена (Loosenhausen) для таких испытаний. Образец диаметром 15 мм, лежащий на двух опорах с расстоянием 100 мм, подвергается в середине ударам бабы весом в 5 кг, падающей с высоты 30 мм; между ударами образец поворачивается на 180°; число ударов учитывается счетчиком. Подъем бабы производится кулачковым валом, приводимым во вращение от электромотора. В случае разрушения образца баба, падая вниз, автоматически выключает кулачковый вал. Для ускорения и увеличения пропускной способности эти машины строят двойными. Машины для испытаний при повторной ударной нагрузке весьма практичны для исследования чугунов, так как при этом гораздо лучше, чем при статических испытаниях на изгиб, выявляется преимущество высокосортных перлитных чугунов перед обыкновенными.
Особое место занимают испытания на устойчивость металлов против деформации под влиянием постоянного напряжения при высоких температурах. При этих испытаниях образец нагревается и поддерживается при постоянной высокой температуре при посредстве электропечи; нагрузка производится при помощи рычага постоянным грузом; деформация измеряется точным экстензометром и для хорошего материала должна иметь величину, очень близкую к постоянной. На фиг. 10 изображена диаграмма удлинения ε в зависимости от времени t для напряжений σ1, σ2, σ3, σ4. Металл считают механически устойчивым при высоких температурах, если Δε/Δtне превосходит обусловленной техническими условиями величины при определенном числе часов испытания. Результаты испытаний низкоуглеродистой стали, аустенитной хромоникелевой нержавеющей стали КА2 и нихрома № 1100 приведены в таблице.
Результаты обычных испытаний на усталость . Мягкое технически чистое железо имеет предел усталости при изгибе-вращении около 60% от его временного сопротивления; у низкоуглеродистых отожженных или нормализованных сталей с 0,10—0,15% углерода он около 50%, а по мере увеличения содержания в стали углерода он понижается до 40 и даже 28%; абсолютная же его величина все время увеличивается. Холодная обработка также дает абсолютное увеличение предела усталости, но уменьшение его относительно временного сопротивления: мягкое технически чистое железо после холодной обработки имеет предел усталости всего 45% от временного сопротивления. Самого высокого предела усталости у стали можно добиться при получении у нее однородной сорбитной структуры без внутренних напряжений, т. е. после закалки и длительного отпуска. В такой стали, если она лишена значительных количеств неметаллических включений, внутренних трещин и т. д., предел усталости составляет 45—55% временного сопротивления, которое м. б. 150 кг/мм 2 . При временном сопротивлении выше 200 кг/мм 2 вследствие внутренних напряжений предел усталости не обнаруживает заметного абсолютного повышения. Аустенитные стали имеют предел усталости, равный ~ 50% от временного сопротивления, и подобно чисто ферритным агрегатам обнаруживают предел пропорциональности ниже предела усталости. Цементированные и нитрированные стали хорошо сопротивляются усталости металла, хотя всегда есть опасность образования трещин вследствие хрупкости их поверхности, что наблюдается часто у оцинкованных сталей. Цементированные стали имеют предел усталости около 40 кг/мм 2 , а нитрированные - около 60 кг/мм 2 . Хорошо отожженные стальные отливки имеют предел усталости около 40% от временного сопротивления, а серый чугун, по причине наличия графитных выделений, действующих подобно трещинам, обладает неопределенным и низким пределом усталости, зависящим от размеров и форм пластинок графита в нем. При наличии коррозии предел усталости всегда очень низок и редко превышает 15 кг/мм 2 , даже нержавеющие стали и те чувствительны к коррозии. Испытания на усталость цветных металлов обнаруживают весьма разнообразную картину, в общем же их предел усталости почти всегда ниже, чем у стали, и холодная обработка не всегда его повышает. Некоторые цветные металлы при временном сопротивлении в 60 кг/мм 2 дают предел усталости всего 10 кг/мм 2 . Мягкая медь имеет предел усталости около 7 кг/мм 2 , но холодной обработкой он м. б. повышен. Никель и в особенности монель-металл (сплав никеля с медью) не имеют ясно выраженного предела усталости: после 500000000 изменений напряжений они выдерживают 15—20 кг/мм 2 , благодаря стойкости в отношении коррозии они лучше обычной стали сопротивляются усталости при разъедании. Закаленный и состаренный дуралюмин также после 500000000 циклов дает предел усталости около 10 кг/мм 2 ; поковки для пропеллеров имеют этот предел около 7 кг/мм 2 . Дуралюмин боится коррозии соленой водой, но, покрытый тонким слоем чистого алюминия, может выдержать перемены напряжения до 7 кг/мм 2 в условиях сильного разъедания. В общем, испытания на усталость металлов в настоящее время являются делом исследовательских институтов и лабораторий. Они сложны, длительны и требуют самого тщательного выполнения, однородности образцов и т. д. С помощью их выявляются общие основы для оценки разных сплавов и их термообработки, служить же рядовыми испытаниями для повседневного контроля заводской продукции они пока еще не могут.
Усталость металла
Что это такое? Усталость металла – это постепенное повреждение его структуры с последующим разрушением. Опасность заключается в том, что процесс этот не одномоментный, проходит время, прежде чем материал окончательно придет в негодность.
От чего зависит? Усталость металла связана с условиями, в которых он эксплуатируется. Поэтому, чтобы не допустить деформации, прибегают к различным мерам, способным защитить материал от порчи.
Что такое усталость металлов
Понятие «усталость металла» скрывает за собой неравновесно-напряженное состояние, из-за которого в материале накапливаются отрицательные остаточные явления. Кроме того, металл оказывается неспособен сопротивляться разрушающей силе ниже его предела прочности.
Появление статической усталости объясняется непрерывным продолжительным воздействием на предмет статичной нагрузки, которая меньше предела прочности металла.
VT-metall предлагает услуги:
Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы
Динамическая нагрузка, например, удары, вибрация, является знакопеременной, то есть при ней сжатие постоянно сменяется растяжением. При подобных процессах усталость металла наступает в короткие сроки и может классифицироваться как одноцикловая, малоцикловая и многоцикловая.
- Одноцикловая усталость металла – простыми словами это его разрушение в результате перехода в неравновесно-нагруженное состояние. Нагрузка оказывается единожды и равна либо превышает предел прочности материала.
- Малоцикловая усталость металла возникает из-за неравновесно-нагруженного состояния, вызывающего разрушение металла под действием нагрузки, соответствующей или немного превышающей предельный уровень его прочности. Количество нагружаемых циклов не превосходит 10 000.
- Многоцикловая усталость металла также является неравновесно-нагруженным состоянием, результатом которого становится разрушение металла при соответствующей либо превышающей предел прочности нагрузке. Количество циклов превышает 10 000.
История термина
В процессе развития транспорта инженеры стремились увеличить скорость его движения, однако это привело к увеличению частоты крушений. Дело в том, что ломались вагонные и паровозные оси, коленчатые валы на пароходах.
Подобная картина складывалась и на предприятиях, ведь и там важно было добиться, чтобы оборудование функционировало быстрее. Станки ускоряли за счет увеличения количества оборотов двигателя, что вскоре вызывало поломку деталей.
Специалисты пытались обнаружить причины аварий, качество металла изучалось в лабораторных условиях, но ничего выяснить не удавалось. Проверки показывали, что размеры элементов рассчитаны верно, использовался качественный металл, а детали имели хороший запас прочности.
Со временем инженеры обратили внимание на тот факт, что обычно из строя выходят компоненты механизмов, испытывающие на себе повторную переменную нагрузку. Допустим, именно такому воздействию подвергается шток в паровой машине: он крепится к шатуну, а тот приводит в движение коленчатый вал. В паровозе принцип примерно тот же, только ведущее колесо вращается благодаря работе кривошипа.
Поршень перемещается в цилиндре, из-за чего шток меняет направление движения. Сначала он испытывает на себе осевое сжатие, а потом растяжение, сопровождающееся изменением нагрузки на данный элемент.
Никто не мог понять, по какой причине повторяющаяся переменная нагрузка разрушает деталь, ведь с постоянной нагрузкой аналогичной величины материал может долго справляться.
Чтобы описать данный процесс, решили использовать усталость металла на фоне переменной нагрузки. Проблема лишь в том, что такое объяснение не несет в себе никакой информации. Кроме того, оно далеко от сути явления, поскольку усталость мышцы, сопровождающаяся снижением ее способности к сокращению, имеет более сложную природу, далекую от поломки металлического элемента.
Понятие «усталость» сохранилось в технике до сих пор, хотя уже известно, почему металл быстро разрушается при переменной нагрузке. По аналогии было введено понятие «выносливость металлов»: чем дольше изделие не «устает», тем более «выносливым» считается металл.
Если материал подвержен усталости, важно сформировать новые пределы напряжений, отказаться от имеющихся справочных материалов, опыта, накопившегося за годы инженерной работы.
Необходимо было доказать связь между выносливостью и повторяющимися переменными нагрузками, причем проверить способность металла к физической усталости можно было только опытным путем.
Рекомендуем статьи
Всю вторую половину XIX века вопросы усталости и текучести металлов оставались одними из наиболее актуальных для технических обществ. Специалисты рассуждали о том, как колебания воздействуют на детали оборудования, корпусы морских судов.
Имена многих исследователей данной темы сейчас остаются неизвестным, поскольку мало у кого была возможность публиковать результаты своих опытов. До наших дней дошла информация только о ряде ученых, которые занимались определением сути усталости металлов.
Например, В. Альберт, горный инженер из Германии, стремился понять, почему обрывались подъемные цепи. В то время бадьи и клети опускались в шахту при помощи цепей, которые перебрасывали через шкив и накручивали на барабан специальной машины. На барабане звенья претерпевали изгибающую нагрузку, а при раскручивании цепи изгиб уступал место растяжению. Во время подъема груза процесс повторялся в обратном порядке.
Инженер понял, что причина обрыва кроется в частой перемене изгибания элементов цепи, пока она наматывается на барабан и огибает шкив. Чтобы доказать свое предположение, В. Альберт проводил опыты, до ста тысяч раз подвергая образцы изгибу. Далее он осматривал цепи, чтобы найти на звеньях трещины, сформировавшиеся из-за переменной нагрузки.
Аналогичные опыты с железными брусками в 1950-х годах проводили английские капитаны Г. Джеймс и Д. Гальтон. Они создали машину, чтобы быстро нагружать брус и снимать с него нагрузку.
Эти эксперименты вдохновили английского инженера В. Ферберна на изучение выносливости массивных железных балок, используемых при строительстве мостов. В 1960-х годах он работал с балками по 6-7 метров, при помощи рычагов оказывая и убирая нагрузку. Данный процесс сопровождался прогибом и выпрямлением изделия, а несколько сотен тысяч перемен нагрузки вызывали образование трещины.
Названные опыты носили бессистемный характер и не были представлены в широких технических кругах. На тот момент было сложно сказать, правда ли существует явление усталости металла либо трещины появлялись по случайному стечению обстоятельств.
Систематические исследования проводил механик из Германии А. Велер, несмотря на то, что он был выпускником коммерческого училища и работал чертежником на паровозном заводе, потом машинистом.
Требовалось понять причины аварий, поэтому создали специальную постоянную комиссию, куда А. Велер вошел в качестве эксперта, долгое время работавшего с паровозами. Он проводил испытания металлов в лаборатории, сам изобретал машины, позволявшие подвергать образцы переменным растяжению, изгибу, скручиванию. Интересно, что современные ученые испытывают материалы на изгиб на оборудовании, разработанном А. Велером.
Его машины для испытаний на усталость металла отличались небольшими скоростями, из-за чего исследования длились годами. Так, станок для имитации переменного изгиба совершал за минуту всего 72 оборота, а один из образцов выдержал более 132 миллионов перемен нагрузки.
Тем не менее А. Велер смог доказать, что образцы из стали и железа разрушаются при повторной переменной нагрузке, которая в иных ситуациях оказывается допустимой. Деталь сможет справляться с ней в течение неограниченного отрезка времени, если подобная нагрузка остается в определенных границах, то есть не выходит за предел выносливости. Данную величину необходимо учитывать при создании проектов быстроходных паровозов и скоростных машин.
Опыты А. Велера в корне изменили представления об уровне нагрузки, которой можно подвергать вагонные оси, шатуны, штоки цилиндров, пр. Благодаря ему расчеты компонентов скоростных машин начали выполнять в соответствии с пределом выносливости, который устанавливали опытным путем.
Основные виды усталости металла
- Пороговая усталость представляет собой состояние, при котором заметны первые признаки неравномерного напряжения, являющегося необратимым.
- Накопление усталости является необратимым относительным процессом накопления неравновесно-напряженного состояния, в результате которого металл разрушается.
Снова добиться прежней износостойкости, надежности конструкции, увеличить ее срок службы можно, если повысить уровень твердости. С этой целью прибегают к поверхностной или объемной закалке. Температуру металла повышают до +850 °C и выдерживают в течение 15–20 минут, затем резко охлаждают в воде или масле. В итоге обеспечивается высокая твердость детали.
Старение и усталость металлов и сплавов вызывают значительное снижение уровня прочности, сокращают срок службы изделия, провоцируя его разрушение из-за появления усталостных трещин. Все это негативно отражается на надежности, продолжительности работы и безотказности техники.
Причины возникновения усталости металла
Локальное перенапряжение приводит к появлению небольшой трещины на металлическом изделии, которая постепенно увеличивается в процессе его использования. В результате деталь ослабевает и резко выходит из строя при разрастании трещины до критических показателей. Это называется механической усталостью металлов.
Выделяют три этапа усталостного разрушения:
- Образование трещины.
- Распространение трещины.
- Разрушение материала.
Чтобы деталь использовалась в течение максимально долгого срока, не подвергаясь усталостному разрушению, а специалисты не задумывались, через сколько лет наступит усталость металла, важно не допускать превышение локальными напряжениями определенного значения, известного как предел выносливости.
Усталость металла определяется присутствием концентраторов напряжений, в качестве которых могут выступать отверстия, сварные соединения, зазубрины, очаги ржавчины. Не менее важно качество обработки поверхности изделия, так как гладкие плоскости менее подвержены усталостным процессам.
Усталостное разрушение деталей может быть разных типов в соответствии с причиной образования дефекта:
- перепады температуры – в этом случае говорят о термической усталости металла;
- совместные циклы давления и температуры;
- наличие очага коррозии;
- постоянная вибрация, исходящая от оборудования.
Как определить усталость металла
Экспериментальные методы исследования усталости металлов позволяют создавать надежные конструкций, которые служат долго и справляются с переменными нагрузками. Существуют испытания на усталость для хрупких, малопластичных и пластичных материалов, которые проводят в ускоренном или длительном режиме.
Нередко предел выносливости определяют в условиях симметричного цикла при помощи гладкого вращающегося образца либо имеющего надрез. Так как специалистам нужно определить усталость металла, прибегают к большому количеству циклов знакопеременных нагрузок. Испытание осуществляется при заданной нагрузке и завершается сразу после разрушения материала, далее фиксируют число выполненных циклов.
Меры повышения выносливости металла
Разрушение крепежных элементов является недопустимым. Избежать преждевременного проявления усталости металла можно таким образом:
- Прибегнуть к рационализации конструкции, то есть к увеличению радиуса скруглений, переходов между отдельными участками изделия, что позволяет избавиться от концентраторов напряжений.
- Выбирать материал, обладающий повышенным показателем прочности. Сюда относятся титан, легированная сталь, а также сталь с высоким содержанием углерода.
- Обеспечить более высокую прочность поверхности при помощи метода закалки с отпуском, азотирования, гальванической обработки металла для защиты от ржавчины.
- Постоянно затягивать резьбовой крепеж во время работы – практически полная защита от ослабления предварительной затяжки достигается при помощи стопорных клиновых шайб.
- Тщательно отслеживать качество затяжки соединений, если изготовитель указал величину момента затяжки.
- Защищать поверхности крепежа от воздействия извне, что позволяет избежать коррозионной усталости металла.
- Предельно серьезно отнестись к выбору типа крепежа, оценив несущую способность, которая требуется от подобных изделий в конкретной ситуации.
- Провести грамотный монтаж, благодаря чему удается исключить вибрации, слабину крепежа в рабочем состоянии – так, анкерный болт не должен болтаться при установке в пористый бетон, кирпич.
- Учесть класс пожаростойкости объекта, конструкции, ведь от этой характеристики зависит необходимость в изделиях с повышенным уровнем стойкости.
Разрушение металла в результате усталости происходит внезапно и связано с большим количеством нюансов, чем обычное. А значит, при проектировании объекта важно проанализировать показатели усталости. На данном этапе уже известен материал, который планируется использовать для проекта, и параметры среды – инженеру нужно выбрать ПО для оценки степени усталости всех элементов конструкций.
Почему следует обращаться именно к нам
Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.
Наши производственные мощности позволяют обрабатывать различные материалы:
- цветные металлы;
- чугун;
- нержавеющую сталь.
При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.
Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.
Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.
Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.
Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.
Механические свойства стали
Механические свойства стали во многом определяют то, в каких сферах она применяется. Именно поэтому мы можем отнести их к наиболее важным. Такие качества, как высокая прочность и способность значительно изменять форму, дают возможность применять металл практически везде: от изготовления хирургических инструментов до космической отрасли.
Для определения данных параметров применяются различные методы. Кроме того, они учитывают механические свойства не только сталей, но и их сплавов, благодаря чему данные металлы можно с уверенностью назвать универсальными и удобными в работе. О том, какие параметры данных материалов позволяют применять их в самых разнообразных сферах, поговорим далее.
Состав стали
Основными компонентами стали являются железо и углерод, на долю последнего приходится до 2,14 %. Все существующие на данный момент подобные сплавы классифицируют, исходя из их химического состава.
В производстве используются два вида стали:
- Углеродистая, в состав которой, помимо основных составляющих, входят фосфор, сера, марганец, кремний. Сырье может относиться к высоко-, средне- и низколегированным маркам в соответствии с долей углерода в материале. Такой металл подходит для любых нужд, в том числе для изготовления инструмента, эксплуатируемого в условиях высоких нагрузок под постоянным напряжением.
- Легированная содержит в себе железо, углерод в сочетании с легирующими элементами (такими как кремний, бор, азот, хром, цирконий, ниобий, вольфрам, титан). От состава легированной стали зависят ее механические и иные свойства, цена, качество продукции, сферы возможного применения. Сегодня можно найти жаропрочные, цементуемые, улучшаемые стали. По структуре специалисты выделяют сырье доэвтектоидного, ледебуритного, эвтектоидного и заэвтектоидного типа.
Определить химические и механические свойства стали, а также область ее использования позволяет марка.
В процессе производства в сталь вносят примеси. На основании их доли в составе сплава выделяются два типа продукции:
- Обыкновенного качества, что предполагает наличие до 0,6 % углерода и соответствие металла ГОСТ 14637 и ГОСТ 380-94. Для маркировки подобной продукции используются буквы «Ст» – данное сокращение говорит о том, что сталь имеет стандартное качество. Такое сырье входит в число наиболее доступных по цене.
- Качественная сталь, то есть легированная и углеродистая, которая производится по ГОСТ 1577. Маркировка обязательно содержит в себе особенности состава, количество углерода в сотых долях. Данный материал более дорогой, чем аналог обыкновенного качества, его ценят за высокую пластичность, способность противостоять механическому воздействию. Кроме того, подобный металл можно без труда варить.
Физические, химические и технологические свойства стали
Физические свойства:
- Плотность, которая определяется как масса металла на единицу объема. Высокий данный показатель стальных изделий, в том числе арматуры а500с, позволяет активно использовать их для строительных нужд.
- Теплопроводность, то есть способность стали обеспечивать распространение теплоты от более нагретых частей к менее нагретым.
- Электропроводность – способность материала пропускать электрический ток.
Химические свойства:
- Окисляемость, что предполагает возможность соединения металла кислородом. Данное свойство усиливается при нагревании стали. На сплавах, имеющих малую долю углерода, в процессе окисления под действием воды, влажного воздуха формируется ржавчина, то есть оксиды железа.
- Стойкость к коррозии – способность металла не вступать в химические реакции, не окисляться.
- Жаростойкость представляет собой отсутствие окислительных процессов на сплаве под воздействием высокой температуры, а также способность не образовывать окалину.
- Жаропрочность – сохранение сталью прочности в условиях высокой температуры.
Технологические свойства:
- Ковкость, то есть способность материала принимать заданную форму под действием внешних сил.
- Обрабатываемость резанием – важное свойство стали, которое упрощает производство металлопроката, так как данный металл хорошо поддается обработке режущим инструментом.
- Жидкотекучесть – способность расплава проникать в узкие зазоры, заполнять пространство.
- Свариваемость – позволяет осуществлять эффективные сварочные работы, формируя надежное неразъемное соединение, лишенное дефектов.
Механические свойства стали по ГОСТу
Прочность
От данной характеристики зависит, сможет ли металл не разрушиться под действием больших внешних нагрузок. Это механическое свойство стали измеряется количественно при помощи предела текучести и прочности:
- Пределом прочности называют максимальное механическое напряжение, при превышении которого происходит разрушение сплава.
- Предел текучести, то есть степень механического напряжения. Превышение данного показателя вызывает дальнейшее растяжение металла без дополнительной нагрузки.
Так, при небольших деформациях металлический стержень сохраняет упругость, возвращаясь к исходной длине после снятия приложенного напряжения. Если же напряжение оказывается выше предела текучести, наблюдается пластическая деформация изделия. Иными словами – происходит необратимое удлинение стержня, после которого он не способен вернуться к исходной длине.
Растяжение стержня до разрыва позволяет установить максимальное напряжение, то есть предел прочности материала на разрыв.
Пластичность
Данное механическое свойство стали позволяет ей под действием внешней нагрузки менять форму и потом сохранять ее. Для количественной оценки этого показателя измеряют удлинение при растяжении и угол изгиба. Если во время простого испытания на изгиб металл разрушается при большом пластическом прогибе, его признают пластичным. В противном случае речь идет о хрупком сплаве.
Хорошая пластичность проявляется при испытании растяжением в виде значительного удлинения заготовки либо ее сжатия. Под удлинением понимают увеличения длины в процентном выражении после разрушения до первоначальной длины. А сужение в процентах – это сокращение площади изделия в сравнении с исходным объемом.
Вязкость
Еще одно важное механическое свойство стали, которое подразумевает способность материала справляться с динамическими нагрузками. Его оценивают количественно как отношение работы, необходимой для разрушения образца, к площади его поперечного сечения. Чаще всего понятием «вязкость» обозначают уровень, при котором происходит нехрупкое разрушение металла.
Характер разрушения может быть хрупким или пластичным – разница между этими явлениями наиболее ярко прослеживается на примере ферритных стальных сплавов. Ферритные стали и все металлы, обладающие объемно-центрированной кубической атомной решеткой, имеют общую особенность: при низких температурах им свойственен хрупкий характер разрушения, а при высоких – пластичный. Температуру перехода из одного состояния в другое специалисты обозначают как температуру вязко-хрупкого перехода.
Маркировка сталей
В машиностроении высоко ценятся механические свойства конструкционной, то есть углеродистой и легированной стали, а также высоколегированных нержавеющих сталей. При обозначении марок конструкционной легированной стали (ГОСТ 4543) первые две цифры свидетельствуют о среднем содержании углерода, которое указывается в сотых долях процента.
Буквы в маркировке имеют такую расшифровку:
- Р – бор;
- Ю – алюминий;
- С – кремний;
- Т – титан;
- Ф – ванадий;
- Х – хром;
- Г – марганец;
- Н – никель;
- М – молибден;
- В – вольфрам.
После буквы идут цифры, которые обозначают примерное содержание легирующего элемента в целых единицах процента. Если цифр нет, то доля конкретного вещества в металле не превышает 1,5 %. Буква «А» в конце маркировки является признаком высококачественной стали. Показателем особенно высококачественной стали является буква «Ш» через три тире.
Механические свойства нержавеющих высоколегированных сталей (ГОСТ 5632) зависят от перечисленных далее компонентов. При маркировке они обозначаются таким образом:
- А – азот;
- В – вольфрам;
- Д – медь;
- М – молибден;
- Р – бор;
- Т – титан;
- Ю – алюминий;
- Х – хром;
- Б – ниобий;
- Г – марганец;
- Е – селен;
- Н – никель;
- С – кремний;
- Ф – ванадий;
- К – кобальт;
- Ц – цирконий.
После букв идут цифры, отражающие долю легирующего элемента в составе сплава в процентах.
Для фиксации основных механических свойств сталей применяют следующие обозначения:
- E – модуль упругости. Представляет собой коэффициент пропорциональности между нормальным напряжением и относительным удлинением.
- G – модуль сдвига, также известный как модуль касательной упругости. Это коэффициент пропорциональности между касательным напряжением и относительным сдвигом.
- μ – коэффициент Пуассона. Является абсолютным значением отношения поперечной к продольной деформации в упругой области.
- σт – условный предел текучести, то есть напряжение, при котором после снятия нагрузки остаточная деформация находится на уровне 0,2 %.
- σв – временное сопротивление, известное как предел прочности. Представляет собой такое механическое свойство металла, в том числе углеродистой стали, как прочность на разрыв.
- δ – относительное удлинение. Это отношение абсолютного остаточного удлинения образца после разрыва к начальной расчетной длине.
- HB, HRC, HV – твердость.
Таблица механических свойств сталей разных марок
Далее представлены механические свойства стали после термической обработки.
E = 200. 210 ГПа, G = 77. 81 ГПа, коэффициент Пуассона μ = 0,28. 0,31.
Наименование
Параметры термической обработки
Предел прочности σв, МПа
Предел текучести σт, МПа
Калибровка после отжига и отпуска
После отжига и отпуска
Пруток, закалка +860 °C, отпуск +500 °C в воде, масле
Пруток, закалка и отпуск
Пруток, закалка +1020…+1 100 °C на воздухе, в масле, воде
Влияние углерода на механические свойства стали
Механические свойства углеродистой стали определяются в первую очередь количеством углерода в составе сплава. При увеличении его доли возрастает объем цементита, сокращается величина феррита. Иными словами, повышаются прочность и твердость, снижается пластичность.
Стоит оговориться, что прочность становится выше при доле углерода в пределах 1 %, а при переходе этой отметки показатель уменьшается. Данная особенность объясняется тем, что по границам зерен в заэвтектоидных сталях образуется сетка вторичного цементита, которая негативно отражается на прочности материала.
Рост доли углерода приводит к увеличению количества цементита, а он является очень твердой и хрупкой фазой. Превосходит феррит по твердости примерно в 10 раз, имея показатель 800HB против 80HB. Вот почему увеличение содержания углерода позволяет повысить такие механические свойства стали, как прочность и твердость, и снизить пластичность, вязкость.
Когда количество углерода доходит до 0,8 %, возрастает доля перлита в сплаве от 0 % до 100 %, вызывая повышение твердости, прочности. Однако не стоит забывать, что последующий рост количества углерода вызывает образование вторичного цементита по границам перлитных зерен. Это явление мало влияет на твердость, но негативно сказывается на прочности, так как цементитная сетка очень хрупкая.
Повышение доли углерода отражается не только на механических, но и на физических свойствах стали. Снижается плотность, теплопроводность, магнитная проницаемость, тогда как удельное электросопротивление, коэрцитивная сила увеличиваются.
С ростом количества углерода происходит повышение порога хладноломкости, а именно: каждая десятая доля процента повышает t50 примерно на 20є. Поэтому сталь с долей углерода в 0,4 % при нулевой температуре становится хрупкой, из-за чего считается недостаточно надежной.
В железоуглеродистом сплаве содержится преимущественно связанный углерод в форме цементита. Тогда как в чугунах он присутствует в свободном состоянии в виде графита. Увеличение доли данного компонента приводит к изменению свойств металла: возрастает твердость, прочность, снижается пластичность.
Количество углерода влияет как на механические, так и на технологические свойства стали. Чем выше содержание данного вещества, тем тяжелее металл режется, сваривается и деформируется. Последняя характеристика наиболее ярко проявляется в холодном состоянии.
От механических и химических свойств стали зависит сфера применения материала – ее можно узнать по маркировке. Металл, обладающий высокой жаропрочностью, подходит для использования при постоянных высоких температурах. Это же правило распространяется на марки стали с хорошей свариваемостью и стойкостью к образованию ржавчины.
Читайте также: