Положение металлов в электрохимическом ряду напряжений

Обновлено: 22.01.2025

Первоначально Бекетов предполагал, что способность одних металлов вытеснять из растворов солей другие металлы связана с их плотностью: более лёгкие металлы способны вытеснять металлы более тяжелые. Но опыты говорили о ином. Непонятно было и то, как связан “вытеснительный ряд” с рядом напряжений Алессандро Вольта. Со временем накапливалось всё больше экспериментальных данных того, что некоторые правила вытеснения нарушаются при определенных условиях. Бекетов обнаружил, что водород под давлением 10 атмосфер вытесняет серебро из раствора нитрата серебра. Английский химик Уильям Одлинг (1829-1921) описал множество случаев подобных аномалий. Например, медь вытесняет олово из концентрированного подкисленного раствора хлорида олова (II) и свинец – из кислого раствора хлорида свинца (II). Медь, олово и свинец находятся в ряду правее кадмия, однако могут вытеснять его из кипящего слабо подкисленного раствора хлорид кадмия.

Теоретическую основу ряда активности (и ряда напряжений) заложил немецкий физикохимик Вальтер Нернст (1864-1941). Вместо качественной характеристики – “склонности” металла и его иона к тем или иным реакциям – появилась точная количественная величина. Такой величиной стал стандартный электродный потенциал металла, а соответствующий ряд, выстроенный в порядке изменения потенциалов, называется рядом стандартных электродных потенциалов.

Электрохимический ряд напряжений металлов (ряд Бекетова) это последовательность расположения металлов и их ионов в порядке возрастания стандартных электродных потенциалов в растворах электролитов. Электродом сравнения обычно служит стандартный водородный электрод, электродный потенциал которого условно принимается равным нулю.

Восстановленная форма Число отданных електронов Окисленная форма Стандартный электродный потенциал, В
Li 1e Li + -3,05
K 1e K + -2,925
Rb 1e Rb + -2,925
Cs 1e Cs + -2,923
Ba 2e Ba 2+ -2,91
Sr 2e Sr 2+ -2,89
Ca 2e Ca 2+ -2,87
Na 1e Na + -2,71
Mg 2e Mg 2+ -2,36
Al 3e Al 3+ -1,66
Mn 2e Mn 2+ -1,18
Zn 2e Zn 2+ -0,76
Cr 3e Cr 3+ -0,74
Fe 2e Fe 2+ -0,44
Cd 2e Cd 2+ -0,40
Co 2e Co 2+ -0,28
Ni 2e Ni 2+ -0,25
Sn 2e Sn 2+ -0,14
Pb 2e Pb 2+ -0,13
Fe 3e Fe 3+ -0,04
H2 2e 2H + 0,00
Cu 2e Cu 2+ 0,34
Cu 1e Cu + 0,52
2Hg 2e Hg2 2+ 0,79
Ag 1e Ag + 0,80
Hg 2e Hg 2+ 0,85
Pt 2e Pt 2+ 1,20
Au 3e Au 3+ 1,50

Место каждого элемента в ряду напряжений условно, т.к. величина электродного потенциала зависит от температуры и состава раствора, в который погружены электроды, в частности от концентрации ионов. Большое значение также имеет состояние поверхности электрода (гладкая, шероховатая). Стандартный электродный потенциал относится к водным растворам при температуре 25 °С, давлении газов 1 атмосфера и концентрации ионов 1 моль/л.

Из электрохимического ряда напряжений металлов вытекает ряд важных следствий:

  1. Каждый металл способен вытеснять (замещать) из растворов солей все другие металлы, стоящие правее данного металла;
  2. Все металлы, расположенные левее водорода, способны вытеснять его из кислот;
  3. Чем дальше расположены друг от друга два металла в ряду напряжений, тем большее напряжение может давать созданный из них гальванический элемент.

Восстановление водородом из оксидов

Металлы, которые водород не восстанавливает из их оксидов

ЭЛЕКТРОХИМИЧЕСКИЙ РЯД НАПРЯЖЕНИЙ

последовательность расположения электродов в порядке возрастания их стандартных электродных потенциалов (см. Стандартный потенциал). Металлич. электроды в водном р-ре электролита образуют след. Э. р. н.: Li, К, Rb, Ba, Sr, Ca, Na, Се, Mg, Be, Al, Ti, Mn, V, Zn, Cr, Ga, Fe, Cd, In, Tl, Co, Ni, Sn, Pb, H2, Bi, Cu, Hg, Ag, Pt, O2, Au. Ддя сравнения включены водородный электрод (Pt, H2[l атм] | Н + ), потенциал к-рого при давлении водорода 1,01 x 10 5 Па и термодинамич. активности аионов Н + в водном р-ре, равной 1, при всех т-рах принимается равным нулю (потенциалопределяющая р-ция Н + + е 2 Н 2, где е - электрон) и кислородный электрод (потенциалопределяющая р-ция О 2 + 2Н 2 О + 4е Э. р. н. позволяет судить о термодинамич. возможности протекания тех или иных электродных процессов. Металл с более отрицат. потенциалом может вытеснять металл с менее отрицат. потенциалом из р-ров его солей, растворяясь при этом. Металлы, имеющие отрицат. стандартный потенциал по сравнению с водородным электродом (т. наз. электроотрицат. металлы), в р-рах с не слишком большой термодинамич. активностью ионов металла имеют более отрицат. потенциал, чем водородный электрод в сильно кислых р-рах. Поэтому при замыкании такого электрода с водородным между ними протекает ток, металл растворяется, а на водородном электроде выделяется водород (см. Анодное растворение). Электроотрицат. металлы термодинамически неустойчивы в водных р-рах (их наз. неблагородными металлами) и осаждаются на катоде при более отрицат. потенциале, чем потенциал выделения Н 2 (см. Электроосаждение).
Металлы, потенциал к-рых менее положительный, чем у кислородного электрода, термодинамически неустойчивы в контакте с О 2 (или воздухом) и водой. Поэтому Э. р. н. служит для ориентировочных оценок скорости электрохим. коррозии в водных р-рах при обычных т-рах, а также для выбора безопасных контактных пар (гальванич. пар) разнородных металлов. Если металл электроотрицательнее, чем Н 2, то может идти активный коррозионный процесс (см. Коррозия металлов, Коррозионностойкие материалы, Электрохимическая защита). Практич. реализация электродных процессов определяется наряду с термодинамич. также и кинетич. факторами (см. Электрохимическая кинетика).
Положение в Э. р. н. металлов, образующих ионы разного заряда, зависит от природы соответствующих ионов. Аналогичные ряды напряжений можно построить для неметаллич. и редокс-электродов (окислит.-восстановительных).

Химическая энциклопедия. — М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Полезное

Смотреть что такое "ЭЛЕКТРОХИМИЧЕСКИЙ РЯД НАПРЯЖЕНИЙ" в других словарях:

электрохимический ряд напряжений — elektrocheminių įtampų eilė statusas T sritis Standartizacija ir metrologija apibrėžtis Cheminių elementų eilė, sudaryta pagal standartinio elektrocheminio potencialo vertes. atitikmenys: angl. electrochemical series; electromotive series;… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

электрохимический ряд напряжений — elektrocheminė įtampų eilė statusas T sritis chemija apibrėžtis Cheminių elementų eilė, sudaryta pagal standartinio elektrocheminio potencialo vertes. atitikmenys: angl. electrochemical series; electromotive series; galvanic series; redox series… … Chemijos terminų aiškinamasis žodynas

ЭЛЕКТРОХИМИЧЕСКИЙ РЯД НАПРЯЖЕНИЙ — то же, что ряд напряжений … Естествознание. Энциклопедический словарь

Электрохимический ряд активности металлов — Электрохимический ряд активности (ряд напряжений, ряд стандартных электродных потенциалов) металлов последовательность, в которой металлы расположены в порядке увеличения их стандартных электрохимических потенциалов φ0, отвечающих… … Википедия

РЯД НАПРЯЖЕНИЙ — см. Электрохимический ряд напряжений … Химическая энциклопедия

Ряд напряжений — Электрохимический ряд активности (напряжения) металлов (ряд активности металлов) показывает их сравнительную активность в реакциях окисления восстановления (сверху вниз восстановительная активность уменьшается): Металл Ион металла Реакционная… … Википедия

Электрохимический ряд напряжения металлов — Электрохимический ряд активности (напряжения) металлов (ряд активности металлов) показывает их сравнительную активность в реакциях окисления восстановления (сверху вниз восстановительная активность уменьшается): Металл Ион металла Реакционная… … Википедия

РЯД НАПРЯЖЕНИЙ — (электрохимический ряд), перечень, в который включены металлы и один газ водород, указывающий на относительную способность этих веществ к окислению (т.е. к потере электронов при химических реакциях см. ОКИСЛЕНИЕ ВОССТАНОВЛЕНИЕ). Ряд начинается с… … Научно-технический энциклопедический словарь

ЭЛЕКТРОХИМИЧЕСКИЙ РЯД АКТИВНОСТИ — (напряжения) МЕТАЛЛОВ см … Большая политехническая энциклопедия

Ряд активности металлов — Электрохимический ряд активности (напряжения) металлов (ряд активности металлов) показывает их сравнительную активность в реакциях окисления восстановления (сверху вниз восстановительная активность уменьшается): Металл Ион металла Реакционная… … Википедия

Электрохимический ряд активности металлов

Электрохимический ряд активности (ряд напряжений, ряд стандартных электродных потенциалов) металлов — последовательность, в которой металлы расположены в порядке увеличения их стандартных электрохимических потенциалов φ 0 , отвечающих полуреакции восстановления катиона металла Me n+ : Me n+ + nē → Me

Ряд напряжений характеризует сравнительную активность металлов в окислительно-восстановительные реакциях в водных растворах.

Содержание

История

Последовательность расположения металлов в порядке изменения их химической активности в общих чертах была известна уже алхимикам [1] . Процессы взаимного вытеснения металлов из растворов и их поверхностное осаждение (например, вытеснение серебра и меди из растворов их солей железом) рассматривались как проявление трансмутации элементов.

Поздние алхимики вплотную подошли к пониманию химической стороны взаимного осаждения металлов из их растворов. Так, Ангелус Сала в работе «Anatomia Vitrioli» (1613) пришёл к выводу, что продукты химических реакций состоят из тех же «компонентов», которые содержались в исходных веществах. Впоследствии Роберт Бойль предложил гипотезу о причинах, по которым один металл вытесняет другой из раствора на основе корпускулярных представлений [2] .

В 1793 году Алессандро Вольта, конструируя гальванический элемент («Вольтов столб»), установил относительную активность известных тогда металлов: Zn, Pb, Sn, Fe, Cu, Ag, Au. «Сила» гальванического элемента оказывалась тем больше, чем дальше стояли друг от друга металлы в этом ряду («ряд напряжений»). Однако Вольта не связал этот ряд с химическими свойствами металлов.

В 1798 году Иоганн Вильгельм Риттер указал, что ряд Вольта эквивалентен ряду окисления металлов (т. е. последовательности уменьшения их сродства с кислородом). Таким образом, Риттер высказал гипотезу о возникновении электрического тока вследствие протекания химической реакции [3] .

В эпоху становления классической химии способность элементов вытеснять друг друга из соединений стала важным аспектом понимания реакционной способности. Й. Берцелиус на основе электрохимической теории сродства построил классификацию элементов, разделив их на «металлоиды» (сейчас применяется термин «неметаллы») и «металлы» и поставив между ними водород.

Не отрицая значительных заслуг Бекетова в становлении современных представлений об ряде активности металлов, следует считать ошибочным бытующее в отечественной популярной и учебной литературе представление о нём как единственном создателе этого ряда. [5] [6] .

Многочисленные экспериментальные данные, полученные в конце XIX века, опровергали гипотезу Бекетова. Так, Уильям Одлинг описал множество случаев «обращения активности». Например, медь вытесняет олово из концентрированного подкисленного раствора SnCl2 и свинец — из кислого раствора PbCl2; она же способна к растворению в концентрированной соляной кислоте с выделением водорода. Медь, олово и свинец находятся в ряду правее кадмия, однако могут вытеснять его из кипящего слабо подкисленного раствора CdCl2.

Бурное развитие теоретической и экспериментальной физической химии указывало на иную причину различий химической активности металлов. С развитием современных представлений электрохимии (главным образом в работах Вальтера Нернста) стало ясно, что эта последовательность соответствует «ряду напряжений» – расположению металлов по значению стандартных электродных потенциалов. Таким образом, вместо качественной характеристики — «склонности» металла и его иона к тем или иным реакциям — Нерст ввёл точную количественную величину, характеризующую способность каждого металла переходить в раствор в виде ионов, а также восстанавливаться из ионов до металла на электроде, а соответствующий ряд получил название ряда стандартных электродных потенциалов.

Теоретические основы

Значения электрохимических потенциалов являются функцией многих переменных и поэтому обнаруживают сложную зависимость от положения металлов в периодической системе. Так, окислительный потенциал катионов растёт с увеличением энергии атомизации металла, с увеличением суммарного потенциала ионизации его атомов и с уменьшением энергии гидратации его катионов.

В самом общем виде ясно, что металлы, находящиеся в начале периодов характеризуются низкими значениями электрохимических потенциалов и занимают места в левой части ряда напряжений. При этом чередование (щелочных и щёлочноземельных металлов отражает явление диагонального сходства. Металлы, расположенные ближе к серединам периодов, характеризуются большими значениями потенциалов и занимают места в правой половине ряда. Последовательное увеличение электрохимического потенциала (от −3,395 В у пары Eu 2+ /Eu [источник не указан 228 дней] до +1,691 В у пары Au + /Au) отражает уменьшение восстановительной активности металлов (свойство отдавать электроны) и усиление окислительной способности их катионов (свойство присоединять электроны). Таким образом, самым сильным восстановителем является металлический европий, а самым сильным окислителем — катионы золота Au + .

В ряд напряжений традиционно включается водород, поскольку практическое измерение электрохимических потенциалов металлов производится с использованием стандартного водородного электрода.

Практическое использование ряда напряжений

Ряд напряжений используется на практике для сравнительной оценки химической активности металлов в реакциях с водными растворами солей и кислот и для оценки катодных и анодных процессов при электролизе:

Урок №48. Химические свойства металлов. Ряд активности (электрохимический ряд) металлов

Химические свойства металлов определяются их активностью. Простые вещества – металлы в химических реакциях всегда являются восстановителями . Положение металла в ряду активности характеризует то, насколько активно данный металл способен вступать в химические реакции (т. е. то, насколько сильно у него проявляются восстановительные свойства).

Среди металлов традиционно выделяют несколько групп.

благородные металлы (серебро, золото, платина, иридий);

щелочные металлы – I(A) группа ;

щелочноземельные металлы – II(A) группа , кроме Be, Mg.

Металлы встпают в реакции с простыми веществами – неметаллами (кислород, галогены, сера, азот, фосфор и др.) и сложными веществами (вода, кислоты, растворы солей)

Взаимодействие с простыми веществами-неметаллами

1. Металлы взаимодействуют с кислородом, образуя оксиды:

4Li + O 2 = обыч. усл . = 2Li 2 O

2Mg + O 2 = t, °C = 2MgO

Серебро, золото и платина с кислородом не реагируют

2. Металлы взаимодействуют с галогенами (фтором, хлором, бромом и йодом), образуя галогениды – Ме +n Г -1 n

2Na + Cl 2 = 2NaCl

3. Металлы взаимодействуют с серой, образуя сульфиды.

4. Активные металлы при нагревании реагируют с азотом, фосфором и некоторыми другими неметаллами.

3Na + P = t, °C = Na 3 P

Взаимодействие со сложными веществами

I. Взаимодействие воды с металлами

1). Взаимодействие с самыми активными металлами, находящимися в периодической системе в I(А) и II(А) группах (щелочные и щелочноземельные металлы) и алюминий . В результате образуются основание и газ водород .

Me + H 2 O = Me(OH) n + H 2 (р. замещения)

Внимание! Алюминий и магний ведут себя также:

Магний (в горячей воде):

2) Взаимодействие воды с менее активными металлами, которые расположены в ряду активности от алюминия до водорода.

Металлы средней активности, стоящие в ряду активности до (Н 2 ) – Be, Fe, Pb, Cr, Ni, Mn, Zn – реагируют с образованием оксида металла и водорода

Me + Н 2 О = Ме х О у + Н 2 (р. замещения)

Бериллий с водой образует амфотерный оксид:

Be + H 2 O = t°C = BeO + H 2

Раскалённое железо реагирует с водяным паром, образуя смешанный оксид — железную окалину Fe 3 O 4 и водород:

3) Металлы, стоящие в ряду активности после водорода, не реагируют с водой.

Cu + H 2 O ≠ нет реакции

II. Взаимодействие растворов кислот с металлами

Металлы, стоящие в ряду активности металлов левее водорода, взаимодействуют с растворами кислот ( раствор азотной кислоты – исключение ), образуя соль и водород.

Кислота (раствор) + Me до (Н2) = Соль + H 2

III. Взаимодействие кислот-окислителей с металлами

Металлы особо реагируют с серной концентрированной и азотной кислотами:

H 2 SO 4 (конц.) + Me = Сульфат + H 2 O + Х

HNO 3 + Me = Нитрат + H 2 O + Х

4Zn + 10HNO 3 (раствор горячий) = t˚C = 4Zn(NO 3 ) 2 + N 2 O + 5H 2 O

4Zn + 10HNO 3 (оч. разб. горячий) = t˚C = 4Zn(NO 3 ) 2 + NH 4 NO 3 + 3H 2 O

IV. С растворами солей менее активных металлов

Ме + Соль = Новый металл + Новая соль

Активность металла в реакциях с кислотами, водными растворами солей и др. можно определить, используя электрохимический ряд, предложенный в 1865 г русским учёным Н. Н. Бекетовым: от калия к золоту восстановительная способность (способность отдавать электроны) уменьшается, все металлы, стоящие в ряду левее водорода, могут вытеснять его из растворов кислот; медь, серебро, ртуть, платина, золото, расположенные правее, не вытесняют водород.

Ряд активности металлов

Ряд активности металлов

Химия

Что же из себя представляет ряд активности металлов давайте разбираться. Металлы — группа химических элементов, обладающих сходными свойствами. Среди них — электропроводность, пластичность, температурная зависимость сопротивления. По виду металлы можно отличить по характерному блеску, который так и назвали — металлический. Но химические свойства элементов отличаются в зависимости от строения их молекул и кристаллической решетки. Особенно ярко отличия проявляются по отношению взаимодействия с кислотами и щелочами. Всего на данный момент насчитывается 96 металлов. Общие свойства металлов показаны в таблице:

ряд реактивности металлов

Все металлы в той или иной степени являются восстановителями, то есть, отдают электроны при течении окислительно-восстановительных реакций. Таблица электроотрицательности металлов показывает, какой металл является наиболее активным восстановителем. Если цифра напротив элемента больше 2, то это окислитель с характерными свойствами и выходит из ряда металлов, проявляя типичные свойства неметалла.

Таблица электроотрицательности металлов

Электрохимический ряд активности металлов показывает, какие из металлов более активные, какие менее. Расположение элементов в горизонтальном ряду слева направо показывает направление снижения восстановительной способности и возрастание окислительной.

Восстановительная способность — свойство отдавать электроны в химических реакциях с водными растворами солей и щелочей.

Окислительная способность — свойство присоединять электроны в реакциях с теми же веществами.

электрохимический ряд напряжений металлов

Металлы в правой стороне более слабые восстановители, они вытесняются при реакциях с солевыми растворами металлами, расположенными левее. Пример реакции — Zn + Cu 2+ → Zn 2+ + Cu, которая протекает только в одном направлении. Цинк вытесняет медь, реагируя с водным раствором любой соли меди. Цинковая пластинка, при этом, растворяется, а медная восстанавливается.

Такую последовательность элементов еще называют ряд напряженности металлов, или ряд Бекетова. На всех вариантах записи ряда можно заметить, что последовательность металлов разделена знаком водорода (гидрогена), который металлом никак не является. Это своеобразный маркер, показывающий, что стоящие левее металлы вытесняют водород из водных растворов кислот, не обладающих окислительными свойствами. Некоторые металлы, например, литий, кальций, барий и остальные, стоящи до алюминия, вытесняют водород и при реакции с водой.

2Al +3H2SO4 = Al2(SO4)3 + 3H2

Fe + 2HCl = FeCl2 + H2

Стоящие правее знака водорода металлы с кислотами-неокислителями не взаимодействуют при нормальных условиях.

Шкала активности металлов широко используется для практических целей, например, в гальванике. Если электроды сделаны из разных металлов, то разрушаться будет тот, который стоит левее. Чем больше промежуток между металлами в ряду, тем активнее проходит процесс коррозии.

Например, метод оцинковки позволяет защитить железо именно потому, что цинк находится левее железа в ряду активности. Пока он не разрушится, то ржавчина на железе не появится. При электролизе, расположенные за водородом металлы осаживаются на катоде, а самые активные, занимающее места до алюминия, выделить из солевых растворов в не получится при нормальных температуре и давлении.

Малоактивные металлы, так называемые переходные элементы с электроотрицательностью в пределах 1,5 – 2. Это:

  • Ртуть;
  • Олово;
  • Серебро;
  • Никель;
  • Рений;
  • Медь;
  • Марганец и еще несколько элементов.

К металлам средней активности относятся элементы с числом электроотрицательности от 1 до 1,5. В эту группу входят такие известные элементы, как магний, плутоний, неодим, кальций. Остальные элементы обладают высокой химической активностью. Лидирует в этом списке Франций, который практически не встречается в чистом виде. Из более известных можно назвать калий и натрий, которые приходится хранить в керосине, чтобы они не взаимодействовали с водой и воздухом. Если извлечь их из керосина, то металлы практически мгновенно сгорают.

Реакции кальция и натрия с водой при комнатной температуре выглядят так:

2Na + 2H2O = 2NaOH + H2

Сa + 2H2O = Сa(OH)2 + H2↑Стоящие в ряду электронапряжения металлов правее элементы тоже взаимодействуют с водой, но реакция протекает при более высокой температуре с образованием оксида и водорода.

3Fe + 4H2O = Fe3O4 + 4H2

Если вступает в реакцию металл и неметалл, то электрический ряд напряжений металлов тоже дает возможность заранее узнать, в каком направлении будет протекать реакция. Скорость реакции зависит как от восстановительной активности металла, так и от окислительных свойств неметалла. Стоящие до водорода металлы реагируют с кислородом уже при комнатной температуре, некоторые — достаточно бурно, например, литий и кальций.

4Li + O2 = 2Li2O

2Ca + O2 = 2CaO.

При таком взаимодействии образуются оксиды. Менее активные металлы, например железо, реагируют с кислородом спокойнее, а некоторые, например, золото и серебро, платина не окисляются вовсе, благодаря чему получили определение благородных.

С хлором реагируют практически все активные металлы с выделением теплоты.

2Fe + 3Cl2 = 2FeCl3

Также выделяется теплота при реакции активных металлов с серой, но начинается она при нагревании. После начала реакции нагрев не нужен — образовавшегося тепла достаточно для поддержания реакции.

2Al + 3S = Al2S3

Внимательно изучив ряд металлов, несложно определить тип реакции при контакте с другими элементами в зависимости от места в последовательности. Также легко назвать основные характеристики металла, как химического элемента, и возможность его использования на практике.

Читайте также: