Основные виды коррозии металлов

Обновлено: 08.01.2025

Сегодня мы с вами разберемся, узнаем многое про типы и виды коррозии металла. Изучим тему, узнав, откуда и из-за чего берётся коррозия на металле.

Коррозия появляется из-за воздействия на него окружающей среды. Учёные выяснили, что это саморазрушение металлов и сплавов в ходе химических и физико-химических и электрохимических процессов. Так же есть практически аналогичный процесс, это разрушение металла методом физического воздействия, не надо его путать с коррозией, этот процесс называют: «эрозия» или же «износ».

Также стоит сказать, что на появление ржавчины сильнее всего содействует влажная среда. На появление ржавчины, как и на все химические процессы, влияет температура окружающей среды, даже если температура воздуха будет различаться всего на 5-10 градусов, то разница в скорости уже будет видна. Таким образом, появляется ржавчина, она бывает разных видов и ниже мы расскажем именно про это.

Коррозию в основном различают на четыре основных типа, а именно: электрохимическая, химическая, водородная и кислородная.

Электрохимической коррозией называют разрушение металла, вследствие взаимодействия с коррозионной средой гальванических элементов. Для появления электрохимической коррозии обязательна наличие электролита, с которыми будут соприкасаться электроды и другие элементы. Если процесс проходит в воде и в нем растворены соли, то процесс идет намного быстрее.

Когда случается Восстановление ионов Н3О+ или же молекулы воды Н2О, это называют коррозией с водородной деполяризацией или же проще водородной коррозией. Такую коррозию чаще всего называют ржавчиной. Коррозия такого типа возникает во влажных местах либо же в водопроводных трубах (при скоплении конденсата). Каждый из нас видел коррозии такого типа, если не дома, то на улице уж точно.

Также коррозия может возникать, не только при прикосновении нескольких разных металлов. Элементы коррозии могут возникать и в случаи, если металл один. Если структура металла неоднородна, то она возникает также, так случается чаще ведь сейчас практически всегда в любом металле есть примеси в виде других металлов, это делается для экономии.

Химической коррозией считается ржавчина возникшая из-за касания и взаимодействия металла с средой которая полна активной коррозией, в отличии от электрохимической, процесс не идет совместно с электрохимическими реакциями и стоит на границе фаз. В отличии от остальных в этом виде есть и другие типы. Например жидкостная коррозия, газовая коррозия, атмосферная коррозия и так далее.

  • Газовая коррозия (при воздействии пара) – Это коррозия, которая возникает из-за взаимодействия с активными газами, которые находятся в среде, где находится, металл. Для хода газовой коррозии обязательна высокая температура среды. Такими газами могут быть: Кислород, пары воды, пары серы и другие.
  • Жидкостная коррозия – Ржавчина этого типа может появится из-за соприкосновения с активными жидкостями, например нефть, керосин, бензин или почти со всеми маслами.

Вы, наверное, задаетесь вопросом: «Если есть такое множество видов коррозии и если ржавчина может возникнуть практически везде, то мы не придумали как защитить металлы?» И это логичный вопрос, ведь люди постоянно придумывают, как облегчить свою жизнь. Наш ответ да, люди всё таки придумали, как защищать металлы от коррозии, и этих методов великое множество, ниже мы расскажем про нескольких из них.

Это самый простой метод защиты, металл, покрывают защитным слоем, другого уже заведомо обработанного металлом, уж простите за тавтологию. Таким тонким слоем можно защитить металл от возникновения ржавчины, таких покрытии есть великое множество, например анодное покрытие и катодное покрытие. К сожалению, покрытие такого типа не защищает от коррозии, которая возникает водородным методом, то есть от пара, от воды и так далее.

Так же есть неметаллические покрытия для защиты металлов от ржавчины, химическое покрытие один из этих методов защиты, вот несколько из этих покрытий:

  • Оксидирование;
  • Фосфатирование;
  • Азотирование;
  • Воронение стали;
  • Цементация.

В этом случае защита создаётся при помощи постоянного обеспечения током. Так же есть и другой метод электрохимической защиты, его называют Протекторной, при этой схеме К поверхности прицепляются другие куски металла уже обеспеченным защитой и это называют протектором.

Наши специалисты проконсультируют Вас и помогут в правильном подборе оборудования в паровые и пароконденсатные системы, во избежание появления коррозий.

Если у Вас остались вопросы, мы будем рады Вам помочь. С нами можно связаться любым удобным способом:

Подписывайтесь на наш Телеграм канал, там всегда много полезного и интересного.

Виды коррозии металлов

Виды коррозии металлов

Существуют различные виды коррозии металлов. Классифицируются они как по типу воздействия агрессивной среды: атмосферная, подземная, током; так и по характеру разрушений: сплошная, избирательная, локальная. Каждый металл и сплав по-разному сопротивляется процессу коррозирования.

Если говорить о естественной защите, то это оксидная пленка. Также применяются различные технологии по профилактике и недопущению коррозии. Самый простой и широко распространенный – окрашивание. О том, какие бывают виды коррозии металлов и способы защиты, вы узнаете из нашего материала.

3 признака коррозии металла

Материалы, изготовленные из металлов и их сплавов, вступают в химическую или физико-химическую реакцию с внешней средой, которая в большинстве случаев приводит к разрушению материала, или «коррозии». Металлы, вступившие в процесс разрушения, быстрее теряют свои свойства, а изделия из них недолговечны.

В зависимости от вида металла, разнятся и его характеристики, позволяющие противостоять внешним условиям и разрушению. Именно поэтому при производстве того или иного изделия тщательно выбирается вид сплава или металла и учитывается его коррозийная стойкость, то, как он может задерживать скорость разрушительного воздействия. Виды коррозии металлов и способы борьбы мы рассмотрим чуть ниже в статье.

VT-metall предлагает услуги:

Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы

Большинство процессов в нашей жизни подвержены ОВР – окислительно-восстановительным реакциям. Металлы – не исключение. Окисляясь, они больше не могут сохранять свои первоначальные характеристики, приходя в полную непригодность.

Выделим три отличительные черты коррозии:

  1. Разрушение металла – процесс химический, вызванный окислительно-восстановительными реакциями.
  2. Металлы обладают термодинамической неустойчивостью, поэтому процесс разрушения происходит непроизвольно.
  3. Чаще всего изменениям подвергается поверхность металлического изделия, реже разрушения распространяются вглубь.

Какой бы ни была коррозия металлов и ее виды, причины возникновения связаны с тем, насколько долго металл находился под прямым воздействием и как сильна была мощность реакции. Результат коррозийного процесса определяется тем, какой раздражитель воздействовал на материал (горячие температуры, влажность, микроорганизмы), и называться может по-разному – ржавчина, окалина, окисная пленка и так далее. Эти явления не только выглядят различно, но и отличаются по степени сцепления с поверхностью металлического объекта.

Приведем примеры. Когда окисляется алюминий, на его поверхности образуется прочная пленка, которая препятствует проникновению разрушений дальше. При окислении железа поверхность становится рассыпчатой и пористой – появляется ржавчина. В итоге изменениям подвергается весь металл целиком. Ржавчина буквально «ест» железо.

Для составления классификации специалисты обращают внимание на следующие признаки коррозии. Важно учитывать:

  • какой металл подвергается воздействию;
  • как протекает процесс разрушения: его механизм и условия;
  • какие окружающие условия влияют на металл;
  • есть ли дополнительные факторы, оказывающие влияние.

Виды коррозии металлов – химическая и электрохимическая – различаются по механизму процессов.

Первый вид реакции, коррозия химическая. Возникает при взаимодействии с агрессивной средой. При этом отмечается параллельный процесс окисления металла и восстановления его среды.

Второй вид реакции, коррозия электрохимическая. Осуществляется при наличии контакта электролита и другого металла. Процесс при этом протекает не одновременно и скорость его зависит от разности электрических потенциалов между электролитом и электродом во время контакта.

Основные виды коррозии металлов в зависимости от типа агрессивной среды

Среда, вызывающая скорый износ материалов и конструкций, называется агрессивной. В зависимости от ее типа рассмотрим, какие бывают виды коррозии металлов.

Атмосферная коррозия

  • Разрушение металла под воздействием воздуха или газа при условии высокой влажности называется атмосферной коррозией.
  • Если влаги нет, но реакция происходит при участии газов, этот вид коррозии называется газовый. Важно понимать, что отсутствие влаги не единственная характеристика этого типа. Она может происходить и под воздействием повышенной температуры. Такой вид разрушения обычно наблюдается на заводах химической промышленности или при обработке продуктов нефтехимии.
  • Под влиянием радиоактивных лучей рассматривают радиационные виды коррозии металлов с примерами. Металл может очень быстро разрушиться под действием интенсивной радиации.
  • Конструкции и металлы, находящиеся глубоко в земле, чаще всего подвержены следующему виду коррозии – подземному.
  • Еще один вид разрушения – контактная коррозия – наступает при взаимодействии разных металлов, различных по характеристикам стандартного потенциала.
  • Биологическая коррозия – вид повреждений, вызванный реакцией на продукты жизнедеятельности бактерий, микроорганизмов, и других крупных живых организмов.
  • Виды химической коррозии металлов и сплавов, находящиеся под влиянием тока от внешних источников или токов, возникающих в токопроводящей среде почвы, называются электрокоррозией. Ее также разделяют на два подвида: коррозию внешнего тока и коррозию блуждающего тока.
  • Комбинированный тип влияния на металлы называется кавитационным изнашиванием. Здесь параллельно на объект воздействует коррозия внешней среды и ударная.
  • Следующая смешанная характеристика воздействия на металлы и конструкции с помощью стандартного коррозионного влияния и переменных механических напряжений получила название – коррозия под напряжением, или коррозийное растрескивание. Она наступает в агрессивной окружающей среде под высокой нагрузкой или из-за чувствительности сплавов.
  • Классификация видов коррозии металлов одновременно по коррозийному и вибрационному воздействию называется фреттинг-коррозия. Подвижность конструкций вызывает трение и вибрацию, поэтому, чтобы снизить негативные проявления, нужно особо тщательно выбирать материал изделий либо использовать специальные покрытия.

Виды коррозии металлов по характеру разрушений

Несколько типов коррозии выделяют по характеру коррозионных поражений. Перечислим их:

  • Сплошная – распределяется по всей плоскости металла. Она бывает равномерная, если скорость воздействия на всю поверхность одинакова. Если же скорость разрушения разная, такой вид будут называть неравномерной коррозией.
  • Бывает так, что портится только одна конкретная составляющая сплава или определенный его компонент. Тогда говорим об избирательной коррозии.
  • Небольшие точки, раковины, пятнышки, разной толщины углубления – все эти характеристики подтверждают, что в дело вступил следующий тип коррозии – местный.

Местная коррозия

  • Частичная коррозия, которая начинается сначала на поверхности, а затем в некоторых местах проникает вглубь, называется подповерхностной. Эти виды химической коррозии металлов и сплавов приводят к расслоению.
  • Один из самых опасных видов коррозии происходит по границам зерен. По сути, транскристаллитную или межкристаллитную коррозию трудно определить на глаз. Страдают от него больше всего сталь (хромистая и хромоникелевая), алюминиевые и никелевые сплавы. Продукция под воздействием коррозии становится очень хрупкая, значительно изменяются индикаторы прочности и пластичности.
  • Щелевые коррозии – это виды коррозии металлов локального типа, которые появляются в промежутках между деталями, зазорах, в крепежных соединениях.

Защитные свойства оксидных пленок металлов

Чтобы спасти металлы от разрушения, используют защитную пленку. Притом нужно принимать во внимание факт того, может ли материал заполнять всю поверхность без пустот и дефектов. Такой показатель называется сплошность.

Она рассчитывается по формуле с учетом фактора Пиллинга-Бэдвордса (α = Vок/VМе) как отношение объема выделившегося оксида к объему использованного металла:

α = Vок/VМе = Мок·ρМе/(n·AMe·ρок), где

Vок – объем оксида, образовавшегося в процессе реакции;

VМе – использованный на образование оксида объем металла;

Мок – молярная масса образованного оксида;

ρМе – плотность Me;

n – число атомов Ме;

AMe – атомная масса Ме;

ρок – плотность образовавшегося оксидного соединения.

Защитные свойства оксидных пленок

При показателях α> 2,5 также можно говорить о невозможности защиты, так как необходимые условия не соблюдены.

Значения сплошности α для некоторых соединений кислорода и металла показаны в таблице:

5 способов защиты от коррозии металлов

Мы рассмотрели виды коррозии металлов. Их способы защиты также можно разделить на несколько типов. К ним относятся – создание защитных покрытий с помощью других металлов, органических и неорганических смесей и химических соединений.

Антикоррозийная металлическая защита

Для спасения от разрушения одного металла наносится слой другого металла, как правило, устойчивого к разрушению. При условии, что покрывающий материал имеет отрицательный потенциал, а значит, он более активный, такую защиту называют анодной. В случае, если потенциал покрывающего металла положительный, а значит, менее активный, такое защитное покрытие именуют катодным.

Антикоррозийная металлическая защита

Рассмотрим этот вид покрытия на примере железа и цинка. Последний реагирует на повреждения покрытия как более активный металл, а значит, быстро разрушается. В данном соединении он выступает как анод и будет защищать железо до той поры, пока полностью не будет потрачен.

Менее активны по отношению к железу – никель или медь. Они выступают как катоды, а значит, в момент ухудшения целостности покрытия портится не верхний металл-защита, а нижний.

Неметаллические защиты

Здесь защитой могут выступать неорганические смеси, такие как: раствор из цемента или стекловидная масса. Либо органические: лакокрасочные средства, смолоподобные продукты, высокомолекулярные соединения.

Защита при помощи химии

Учитывая виды электрохимической и химической коррозии металлов, для их защиты иногда выбирают химический способ обработки. Это может быть:

  • создание специальной окисной пленки с помощью ОВР;
  • покрытие металла слоем фосфатов;
  • термическая обработка азотом (чаще используется для обработки стали);
  • нанесение на сталь слоя оксидов, придающего ей определенный цвет;
  • насыщение материала углеродом.

Рекомендуем статьи

Внесение коррекций в состав технического металла или среды, в которой происходит коррозия

Такой способ уменьшает агрессивное воздействие условий природы на металлоконструкции. Для этой защиты потребуется введение в коррозионную среду определенных составов – ингибиторов.

Учитывая все виды коррозии металлов и способы борьбы с ними, на повышение сопротивляемости к негативным изменениям также воздействуют методы изменения металла с помощью ввода определенных соединений либо удаления вредных примесей.

Электрохимическая защита

Для такого вида защиты потребуется подсоединить защищаемый материал к источнику постоянного тока, находящемуся извне, чтобы запустить смещение зарядов материала в отрицательную область. Такая защита будет носить имя катодной. Другой ее вид – анодная, когда для сохранения металла потребуется использовать второй металл, например, металлический лом.

Одним из видов катодной защиты является протекторная.

Протекторная защита

Протектор – это металл с высокой степенью активности и отрицательным потенциалом. Он будет играть роль анода, а конструкция, нуждающаяся в защите, выступит как катод. Защитная пластина соединяется со «спасаемым» металлом. Со временем защитный металл разрушается быстрее, сокращая скорость износа второго.

Важность проведения защитных мероприятий обусловлена тем, что виды коррозии металлов – химическая и электрохимическая – и потери, с ними связанные, приводят к огромным убыткам. Причем повреждения связаны не только с утратой большого объема металла после всех повреждений, но и ухудшением качества изделий и конструкций. Агрессивная среда приносит такой вред, как снижение прочности, пластичности, тепло- и электропроводности, герметичности и других свойств. Именно поэтому вопросам защиты металла от коррозии в промышленности и в быту уделяется особое внимание.

Почему следует обращаться именно к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

Скорость коррозии металла

Скорость коррозии металла

О чем речь? Скорость коррозии материала является сложным показателем, на который влияют несколько факторов. Один из них – окружающая агрессивная среда. Другие важные факторы – структура и качества самого металла.

Как узнать? Нет единого метода определения скорости коррозии. Несмотря на то, что этот показатель крайне важен, так как позволяет высчитать сопротивление металла разрушению при эксплуатации, рассчитать предположительное время разрушения можно по некоторым формулам.

Понятие и виды коррозии металла

Коррозией принято называть химическое разрушение металлов при взаимодействии с различными факторами окружающей среды. Этот процесс не следует путать с эрозией, которая происходит вследствие только физических причин.

Среды, под действием которых разрушается материал, принято называть коррозионными. В ходе самопроизвольного разрушения металла образуются продукты коррозии. Коррозионная стойкость, соответственно, определяется способностью противостоять воздействию разрушающих факторов окружающей среды.

Существует ряд разновидностей этого процесса, которые отличаются механизмом и характером. Механизм, по которому протекает разъедание материала, зависит от особенностей коррозионной среды и ряда других немаловажных факторов. Коррозия может быть химической или электрохимической.

В сухой газовой или жидкой среде, не проводящей электричество (спирт, метилбензол, бензин), коррозия происходит по механизму, для которого характерна гетерогенная химическая реакция с параллельным окислением металла и восстановлением окисленных компонентов среды или деполяризаторов. Такой вид взаимодействия материала с коррозионной средой называют химической коррозией.

Условия, в которых протекают процессы, легли в основу их разделения на:

  • газовую коррозию, при которой металл окисляется в газовой среде, где высокая температура не дает влаге возможности конденсироваться на его поверхности;
  • коррозию в жидких средах, которые не проводят электричество.

Электрохимический механизм коррозионного разрушения материалов имеет место в средах с ионной проводимостью. Такой вид коррозии отличается параллельным течением двух реакций, когда отдельные участки поверхности деталей становятся местом окисления металла и восстановления окисленных компонентов коррозионной среды (деполяризаторов).

Электрохимическая коррозия – это процесс, в ходе которого при растворении материала появляется электрический ток, приходят в движение ионы из электролитного раствора и электроны в структуре металла.

Средой для электрохимической коррозии служат водные растворы активного вещества (кислота, щелочь или соли). Чаще всего по этому механизму металлы корродируют в таких средах, как морская вода, земля или газ с небольшим количеством жидкости.

Среда для электрохимической коррозии

В зависимости от вида среды выделяют:

  1. Газовую коррозию, когда разрушение металла протекает химическим путем в газе.
  2. Атмосферную, протекающую в атмосфере влажных газов или на воздухе. Для такого разрушения типичен равномерный поверхностный характер.
  3. Коррозию в электролитных растворах.
  4. Почвенную или подземную коррозию металлоконструкций.
  5. Биологическую коррозию, вызванную воздействием, оказываемым на поверхность металлического изделия продуктами жизнедеятельности микробов.

Электрохимическая коррозия металла может быть двух видов:

  • Подземная электрокоррозия, происходящая из-за блуждающих токов от внешних источников.
  • Контактная коррозия металлов, когда металл разрушается при взаимодействии с другим металлическим предметом с более высоким положительным электродным потенциалом.

Расчет скорости коррозии металла

Для определения скорости равномерного корродирования материала пользуются формулой:

V = Δm / S × t, где

V – скорость процесса, измеряемая в граммах на метр квадратный в час или миллиграммах на сантиметр квадратный в сутки;

m – изменение массы;

Расчет скорости коррозии металла

Расчет интенсивности по весовому показателю может быть нецелесообразным при необходимости сравнительного анализа коррозии двух металлов различной плотности. Для подобных случаев следует определять среднюю глубину, на которую проникли изменения.

Помимо скорости коррозии металла, нередко пользуются другими показателями:

  • изменение массы, соотнесенное с показателем площади;
  • глубина проникновения;
  • соотношение чистой поверхности с той, что уже затронута процессом;
  • число очагов коррозионного разрушения на единицу площади;
  • количество выделяемого водорода или поглощаемого кислорода в пересчете на площадь;
  • время, потребовавшееся на формирование первого очага изменений;
  • период, потребовавшийся на коррозионное растрескивание или полное разрушение изделия;
  • сила коррозионного тока.

Расчет интенсивности по весовому показателю

Скорость коррозии металла в год можно рассчитать по формуле:

8,76 – коэффициент для перерасчета весового показателя на глубинный за 1 год (24 ч × 360 = 8 760 ч);

v – скорость коррозии, г/м2 ч;

ρ – плотность, г/см3;

Если разрушение происходит неравномерно, то нецелесообразно определение его скорости при помощи весового коэффициента и показателя глубинности процесса. Скорость коррозионного изъязвления определяется по максимальной глубине. Межкристаллитное разъедание и появление трещин требуют количественной оценки по косвенным показателям, таким как потеря прочности:

Kσ = (σ0 – σ1 / σ0) × 100 %, где

σ0 – предел прочности до коррозии;

σ1 – предел прочности после коррозии, отнесенный к первоначальному поперечному сечению детали.

Факторы, влияющие на скорость коррозии металла

Интенсивность разъедания материала деталей при их эксплуатации может зависеть от разных факторов:

  • внутренних, на которые влияют как физика и химия объекта, так и его внутреннее строение, качество механической обработки поверхности, внутренние напряжения и т. д.;
  • внешних, то есть окружающих условий, интенсивности движения окружающего вещества, химических особенностей, нагрева, присутствия субстанций, угнетающих или стимулирующих реакции и многих других;
  • механических, заключающихся в появлении трещин, циклических нагрузках, разрушающих материал, кавитационной и появляющейся при разрушении оксидной пленки от трения коррозии и пр.;
  • конструктива металлических изделий.

Факторы, влияющие на скорость коррозии металла

Среди наиболее важных показателей, оказывающих влияние на темпы коррозионного разрушения материала, следует назвать:

  1. Термодинамическую устойчивость, которая в водном растворе определяется по справочным диаграммам Пурбе. Для этого нужно отложить по оси абсцисс pH коррозионной среды, а по оси ординат значение окислительно-восстановительного потенциала, сдвиг которого в сторону увеличения говорит о большей устойчивости металла. В среднем, она может быть определена как нормальный равновесный потенциал.
  2. Атомный номер, уменьшение которого связано с возрастанием скорости процесса. Наименьшая коррозионная стойкость свойственна щелочным и щелочноземельным металлам.
  3. Кристаллическую структуру, которая сказывается на коррозионной стойкости по-разному. От равномерности распределения фаз в целом зависит равномерность коррозионного разрушения металлов. Так, при неоднородном распределении коррозия образует очаги. В агрессивных средах на переходах от одной фазы к другой образуется разность потенциалов. Крупное зерно в структуре металла не способствует его более быстрому разрушению, но является фактором, благоприятствующим избирательной коррозии.
  4. Различную энергию атомов в структуре металла. Расположенные по углам граней микроскопических неровностей частицы с более высоким энергетическим потенциалом активно участвуют в химическом разрушении, становясь его центрами. С учетом сказанного, особое внимание следует уделять механической обработке изделий, их шлифовке, доводке и полировке. Повышенная коррозионная устойчивость при этом объясняется, в том числе и тем, что на гладкой поверхности формируется более равномерная и плотная оксидная пленка.

При химическом коррозионном разрушении металла многое зависит от концентрации электрически заряженных атомов водорода, которые сказываются на:

  • растворимости продуктов коррозии;
  • формировании защитной пленки из окислов;
  • скорости коррозии.

В кислых растворах с рН в диапазоне от 4 до 10 на скорость коррозии металла в значительной степени влияет то, насколько интенсивно атомарный кислород достигает его верхних слоев. По мере увеличения щелочности среды на первых порах происходит пассивация поверхности материала, снижающая темпы разрушения. Далее при значениях pH от 13 и более скорость коррозии нарастает за счет разъедания защитного слоя из оксидов.

Различные металлы и сплавы по-разному меняют свою коррозионную стойкость при изменении pH-среды. Наибольшую устойчивость к разрушению в кислых растворах проявляют платина, золото и серебро. Цинк и алюминий интенсивно корродируют как в кислой, так и в щелочной среде, а никель и кадмий быстро разрушаются в кислотных растворах, но проявляют стойкость к действию щелочных.

Если среда нейтральна, на скорость разрушения главным образом влияют химические свойства солей и их процентное содержание:

  • гидролиз соли в коррозионной среде сопровождается образованием ионов, активирующих или замедляющих процесс коррозии;
  • скорость разрушения можно увеличить, внося в раствор добавки, повышающие кислотность типа кальцинированной соды, или уменьшить, повышая щелочность добавлением, например, хлористого аммония;
  • хлориды и сульфаты, вносимые в раствор, активируют процесс коррозии до определенного процентного содержания, по достижении которого начинают ингибировать его, снижая растворимость кислорода.

Соли вроде фосфорнокислого железа способствуют формированию труднорастворимой пленки, защищающей материал от коррозии. Этим свойством пользуются при производстве нейтрализаторов ржавчины.

Способы защиты от коррозии металла

В зависимости от преобладающих механизмов разрушения, устойчивость окрашенных поверхностей к коррозии может быть различна. Активное химическое воздействие среды заметно меняет разность потенциалов между сердцевиной металлической детали и ее поверхностью. Возникающие из-за этого коррозионные токи стимулируют повреждение. Так разрушаются, к примеру, стальные трубы в проложенных под землей магистралях. Защитить такие изделия с помощью краски невозможно.

Покрытие металлами

Иначе обстоят дела при нанесении металлического покрытия с отрицательным электролитическим потенциалом в отношении окислительно-восстановительных реакций. Если преобладает окисление, стальные детали хорошо защищает покрытие на основе алюминия и цинка, так как эти элементы обладают меньшей кислородной активностью.

Способы защиты от коррозии металла

Цинкованием и алитированием часто защищают стальные изделия, работающие в кислых средах. С помощью окрашивания здесь решают в основном эстетические задачи.

Восстановительная среда требует защиты с помощью покрытий из металлов, располагающихся «справа» от водорода, тут идут в дело покрытия из меди или благородных металлов. Высокая стоимость меднения не позволяет применять его широко, речь обычно идет о защите малых площадей. В таких случаях на помощь приходят лакокрасочные покрытия.

Окрашивание

Защита, которую обеспечивают краски, осуществляется за счет наличия в их составе ингибиторов коррозии. Формула таких покрытий разрабатывается с учетом свойств среды и замедляет образование ржавых пятен. Благодаря эластичности современные краски также эффективно справляются и с провоцирующими коррозию поверхностными натяжениями.

Для увеличения антикоррозионных свойств в состав краски вводят полимеры на основе кремнийорганических соединений, повышающие устойчивость металла к температурным колебаниям, воздействию влаги и другим атмосферным факторам. К недостаткам подобных покрытий следует отнести:

  • токсичность;
  • низкую эффективность в отношении электролитического разрушения.

Сказанное выше подчеркивает особую важность правильного подбора красящих защитных составов и индивидуального подхода к защите металлических деталей и узлов от воздействия факторов окружающей среды.

Коррозия металлов и её виды

Химические и физико-химические реакции, возникающие в момент взаимодействия окружающей среды с металлами и сплавами, в большинстве случаев приводят к их самопроизвольному разрушению. Процесс саморазрушения имеет собственный термин – «коррозия». Результатом коррозии является существенное ухудшение свойств металла, вследствие чего изделия из него быстро выходят из строя. Каждый металл обладает свойствами, позволяющими ему сопротивляться разрушению. Коррозийная стойкость или, как ее еще называют, химическое сопротивление материала, является одним из главных критериев, по которым осуществляется отбор металлов и сплавов для изготовления тех или иных изделий.

Коррозия металлов. Химическая коррозия


В зависимости от интенсивности и длительности коррозийного процесса металл может быть подвергнут как частичному, так и полному разрушению. Взаимодействие коррозийной среды и металла приводят к образованию на поверхности металла таких явлений, как окалина, оксидная пленка и ржавчина. Данные явления отличаются друг от друга не только внешним видом, но еще и степенью адгезии с поверхностью металлов. Так, например, в процессе окисления такого металла, как алюминий, его поверхность покрывает пленка оксидов, отличающаяся высокой прочностью. Благодаря этой пленке разрушительные процессы купируются и не проникают вовнутрь. Если говорить о ржавчине, то результатом ее воздействия является образование рыхлого слоя. Процесс коррозии в данном случае очень быстро проникает во внутреннюю структуру металла, что способствует его скорейшему разрушению.


Показатели, по которым осуществляется классификация коррозийных процессов:

  • вид коррозийной среды;
  • условия и механизм протекания;
  • характер коррозийных разрушений;
  • вид дополнительных воздействий на металл.


По механизму коррозийного процесса различают как химическую, так и электрохимическую коррозию металлов и сплавов.

Химическая коррозия – это взаимодействие металлов с коррозийной средой, в процессе которого наблюдается единовременное осуществление окисления металла и восстановление окислительного компонента среды. Взаимодействующие между собой продукты не разделены пространственно.


Электрохимическая коррозия – это взаимодействие металлов с коррозийно-активной средой, представляющей собой раствор электролита. Процесс ионизации атомов металла, а также процесс восстановления окислительного компонента данной коррозийной среды протекают в разных актах. Электродный потенциал раствора электролита оказывает существенное влияние на скорость этих процессов.


В зависимости от типа агрессивной среды существует несколько видов коррозии

Коррозия металлов и отдельный её вид атмосферная коррозия


Атмосферная коррозия представляет собой саморазрушение металлов в воздушной атмосфере, либо в газовой атмосфере, отличающейся повышенной влажностью.


Газовая коррозия – это коррозия металлов, происходящая в газовой среде, содержание влаги в которой минимально. Отсутствие влаги в газовой среде не единственное условие, способствующее саморазрушению металла. Также коррозия возможна и при высоких температурах. Наиболее часто встречается данный вид коррозии в нефтехимической и химической промышленности.


Радиационная коррозия представляет собой саморазрушение металла под воздействием на него радиоактивного излучения разной степени интенсивности.


Подземная коррозия – это коррозия, происходящая в почвах и различных грунтах.


Контактная коррозия представляет вид коррозии, образованию которого способствует контакт нескольких металлов, отличающихся друг от друга стационарными потенциалами в конкретном электролите.


Биокоррозия – это коррозия металлов, происходящая под воздействием различных микроорганизмов и их жизнедеятельности.


Коррозия током (внешним и блуждающим) – еще один вид коррозии металлов. Если на металл воздействует ток от внешнего источника, то это коррозия внешним током. Если же воздействие осуществляется посредством блуждающего тока, то это коррозия блуждающего тока.


Коррозийная кавитация представляет собой процесс саморазрушения металлов, возникновению которого способствует как ударное, так и коррозионное воздействие внешней среды.


Коррозия под напряжением представляет собой коррозию металла, причиной появления которой является взаимодействие коррозийно-активной среды и напряжений механического типа. Данный вид коррозии представляет существенную опасность для конструкций из металла, которые подвергаются сильнейшим механическим нагрузкам.


Фреттинг-коррозия — вид коррозии металлов, к которой приводит совокупность вибрации и воздействие коррозийной среды. Чтобы минимизировать вероятность возникновения коррозии при трении и вибрации, необходимо внимательно подходить к выбору конструкционного материала. Также необходимо применять специальные покрытия и по возможности снизить коэффициент трения.


По характеру разрушений коррозия разделяется на сплошную и избирательную


Сплошная коррозия полностью покрывает поверхность металла. Если скорость разрушений на всей поверхности одинакова, то это равномерная коррозия. Если разрушение металла на различных его участках происходит с разной скоростью, то коррозия называется неравномерной.


Избирательная коррозия подразумевает разрушение одного из компонентов сплава или же одной структурной составляющей.


Местная коррозия, проявляющаяся в виде отдельно разбросанных по поверхности металла пятен, представляет собой углубления разной толщины. Разрушения могут представлять собой раковины или точки.


Подповерхностная коррозия образуется непосредственно на поверхности металла, после чего активно проникает вглубь. Данный вид коррозии сопровождается расслоением изделий из металла.


Межкристаллитная коррозия проявляется в разрушении металла по границам зерен. По внешнему виду металла ее достаточно сложно определить. Однако очень быстро меняются показатели прочности и пластичности металла. Изделия из него становятся хрупкими. Наиболее опасен этот вид коррозии для хромистых и хромоникелевых видов стали, а также для алюминиевых и никелевых сплавов.


Щелевая коррозия образуется на тех участках металлов и сплавов, которые находятся в резьбовых креплениях, различных зазорах и под всевозможными прокладками.

Читайте также: