Основные сведения о строении металлов

Обновлено: 07.01.2025

Металлы – один из классов конструкционных материалов, характеризующийся определенным набором свойств:

К физическим свойствам металлов относят плотность, температуру плавления, цвет, блеск, непрозрачность, теплопроводность, электропроводность, тепловое расширение. По плотности металлы разделяют на легкие (до 3000 кг/м 3 ) и тяжелые (от 6000 кг/м 3 и выше); по температуре плавления — на легкоплавкие (до 973 К) и тугоплавкие (свыше 1173 К). Каждый металл или сплав обладает определенным, присущим ему цветом.

Прочностьспособность металла в определенных условиях и пределах не разрушаясь воспринимать те или иные воздействия, нагрузки. Это свойство учитывается при изготовлении и проектировании изделий, выборе того или иного металла, сплава. Наибольшее напряжение, которое может выдержать металл, не разрушаясь, называют пределом прочности, или временным сопротивлением разрыву. Образцы для измерения прочности подвергают испытанию на специальной разрывной машине, которая постепенно, с возрастающей силой растягивает образец до полного разрыва.

Упругость — свойство металла восстанавливать свою форму после прекращения действия внешних сил, вызвавших деформацию. Наибольшее напряжение, после которого металл возвращается к своей первоначальной форме, называют пределом упругости. Если при дальнейшем повышении нагрузки напряжение превышает предел упругости и удлинение сохраняется после разгрузки образца, такое состояние называют остаточным удлинением. Далее наступает предел текучести, т.е. образец продолжает удлиняться без увеличения нагрузки.

Пластичность — свойство металла под действием внешних сил изменять, не разрушаясь, свою форму и размеры и сохранять остаточные (пластические) деформации после устранения этих сил . Данное свойство также определяется и измеряется на разрывной машине. Высокой пластичностью обладают золото, серебро, платина и их сплавы. Менее пластичны медь, алюминий, свинец. Это свойство металлов имеет большое значение в давильном и штамповочном производстве, волочении, прокатке.

Твердость — свойство металлов сопротивляться проникновению в них другого тела под действием внешней нагрузки, что необходимо учитывать при выборе инструментов для обработки металлов резанием. Например, важно знать твердость обрабатываемого металла, чтобы подобрать соответствующую фрезу или сверло. Испытания металлов на твердость проводят на специальных приборах — твердометрах.

Выносливость — свойство металлов сопротивляться действию повторных нагрузок . Температурные условия значительно влияют на механические свойства металлов: при нагревании их прочность понижается, а пластичность увеличивается; при охлаждений некоторые металлы становятся хрупкими, например, сталь некоторых марок, цинк и его сплавы. Нехладноломкими являются алюминий и медь.

Хрупкость — некоторые металлы обладают хрупкостью и при нормальных условиях, примером является серый чугун. В производстве изделий учитывается способность металлов поддаваться обработке, т.е. такие их технологические свойства, как ковкость, жидкотекучесть, литейная усадка, свариваемость, спекаемость, обрабатываемость резанием и некоторые другие.

Ковкостьспособность металлов подвергаться ковке и другим видам обработки давлением (прокатке, прессованию, волочению, штамповке). Металлы могут коваться в холодном состоянии (золото, серебро, медь), а также в горячем (сталь).

Износостойкостьспособность материала сопротивляться поверхностному разрушению под действием внешнего трения.

Коррозионная стойкостьспособность материала сопротивляться действию агрессивных кислотных, щелочных сред.

Жаростойкостьэто способность материала сопротивляться окислению в газовой среде при высокой температуре.

Жаропрочностьэто способность материала сохранять свои свойства при высоких температурах.

Хладостойкость – способность материала сохранять пластические свойства при отрицательных температурах.

Антифрикционность – способность материала прирабатываться к другому материалу.

Жидкотекучесть — свойство расплавленного металла заполнять литейную форму. Высокой жидкотекучестью обладают цинк и его сплавы, чугун, бронза, олово, силумин (сплав алюминия с кремнием), латунь, некоторые магниевые сплавы. Низкой жидкотекучестью обладают сталь, красная медь, чистое серебро.

Литейная усадка —уменьшение объема металла при переходе из жидкого состояния в твердое. Это необходимо учитывать при изготовлении формы для отливки. Отливка получается всегда меньше модели, по которой сделана форма. Металлы с большой усадкой для литья почти не используют.

Свариваемость — способность металла прочно соединяться путем местного нагрева и расплавления свариваемых кромок изделия. Сплавы свариваются труднее, чистые металлы — легче. Легко свариваются изделия из малоуглеродистой стали. Плохо поддаются сварке чугун и высокоуглеродистые легированные стали.

Из химических свойств металлов и их сплавов наиболее важными в производстве художественных изделий являются растворение (взаимодействие с кислотами и щелочами) и окисление (антикоррозийная стойкость, т.е.стойкость к воздействию окружающей среды — газов, воды и т.д.).

Растворение (разъедание) — способность металлов растворяться в сильных кислотах и едких щелочах. Это свойство широко используется в различных областях производства художественных изделий. Растворение бывает частичное и полное. Частичное применяется для создания чистой поверхности изделия.

Окисление — способность металлов соединяться с кислородом и образовывать окислы металлов.

Данные свойства обусловлены особенностями строения металлов.

Все металлы, затвердевающие в нормальных условиях, представляют собой кристаллические вещества, то есть укладка атомов в них характеризуется определённым порядком – периодичностью, как по различным направлениям, так и по различным плоскостям. Этот порядок определяется понятием кристаллическая решётка.

Другими словами, кристаллическая решетка это воображаемая пространственная решетка, в узлах которой располагаются частицы, образующие твердое тело.

Элементарная ячейка – элемент объёма из минимального числа атомов, многократным переносом которого в пространстве можно построить весь кристалл.

Элементарная ячейка характеризует особенности строения кристалла. Основными параметрами кристалла являются:

· размеры ребер элементарной ячейки. a, b, c – периоды решетки – расстояния между центрами ближайших атомов. В одном направлении выдерживаются строго определенными.

· углы между осями ().

· координационное число (К) указывает на число атомов, расположенных на ближайшем одинаковом расстоянии от любого атома в решетке.

· базис решетки количество атомов, приходящихся на одну элементарную ячейку решетки.

Рис. Схема кристаллической решетки

Классификация возможных видов кристаллических решеток была проведена французским ученым О. Браве, соответственно они получили название «решетки Браве». Всего для кристаллических тел существует четырнадцать видов решеток, разбитых на четыре типа;

· примитивный – узлы решетки совпадают с вершинами элементарных ячеек;

· базоцентрированный – атомы занимают вершины ячеек и два места в противоположных гранях;

· объемно-центрированный – атомы занимают вершины ячеек и ее центр;

· гранецентрированный – атомы занимают вершины ячейки и центры всех шести граней

В металлических материалах, как правило, формируются три типа кристаллических решеток: объемноцентрированная кубическая (ОЦК), гранецентрированная кубическая (ГЦК) и гексагональная плотноупакованная (ГП). Элементарные ячейки ОЦК, ГЦК и ГП решеток показаны на рис. 9.

http://refdb.ru/images/944/1886968/863f04d8.png

Рис. Типы кристаллических решеток металлов.

а) Г.Ц.К, б) О.Ц.К., в) Г.П.У.

Основными типами кристаллических реш¨ток являются:

  1. Объемно - центрированная кубическая (ОЦК), атомы располагаются в вершинах куба и в его центре
  2. Гранецентрированная кубическая (ГЦК), атомы располагаются в вершинах куба и по центру каждой из 6 граней
  3. Гексагональная, в основании которой лежит шестиугольник:
    • простая – атомы располагаются в вершинах ячейки и по центру 2 оснований (углерод в виде графита);
    • плотноупакованная (ГПУ) – имеется 3 дополнительных атома в средней плоскости (цинк).

ОЦК решетку имеют такие металлы, как вольфрам, молибден, ниобий, низкотемпературные модификации железа, титана, щелочные металлы и ряд других металлов. Серебро, медь, алюминий, никель, высокотемпературная модификация железа и ряд других металлов имеют ГЦК решетку. ГП решетка у магния, цинка, кадмия, высокотемпературной модификации титана.

2. Физическая природа деформации металлов

Деформацией называется изменение формы и размеров тела под действием напряжений.

Напряжение – сила, действующая на единицу площади сечения детали.

Напряжения и вызываемые ими деформации могут возникать при действии на тело внешних сил растяжения, сжатия и т.д.,

Деформация металла под действием напряжений может быть упругой и пластической.

Упругой называется деформация, полностью исчезающая после снятия вызывающих ее напряжений.

При упругом деформировании изменяются расстояния между атомами металла в кристаллической решетке. Снятие нагрузки устраняет причину, вызвавшую изменение межатомного расстояния, атомы становятся на прежние места, и деформация исчезает.

Упругая деформация на диаграмме деформации характеризуется линией ОА (рис.).

Рис. Диаграмма зависимости деформации металла от действующих напряжений

Зависимость между упругой деформацией и напряжением выражается законом Гука

где: Е - модуль упругости.

Пластической или остаточной называется деформация после прекращения действия вызвавших ее напряжений.

В результате развития пластической деформации может произойти вязкое разрушение путем сдвига.

Механические свойства определяют поведение материала при деформации и разрушении от действия внешних нагрузок.

В зависимости от условий нагружения механические свойства могут определяться при:

статическом нагружении – нагрузка на образец возрастает медленно и плавно.

динамическом нагружении – нагрузка возрастает с большой скоростью, имеет ударный характер.

Прочность – способность материала сопротивляться деформациям и разрушению.

Испытания проводятся на специальных машинах, которые записывают диаграмму растяжения, выражающую зависимость удлинения образца (мм) от действующей нагрузки Р, т.е. .

Но для получения данных по механическим свойствам перестраивают: зависимость относительного удлинения от напряжения

Твердость – это сопротивление материала проникновению в его поверхность стандартного тела (индентора), не деформирующегося при испытании.

3. Методы определения твердости

О твердости судят либо по глубине проникновения индентора (метод Роквелла), либо по величине отпечатка от вдавливания (методы Бринелля, Виккерса, микротвердости).

Наибольшее распространение получили методы Бринелля, Роквелла, Виккерса. Схемы испытаний представлены на рис. 7.1.

Рис. Схемы определения твердости: а – по Бринеллю; б – по Роквеллу; в – по Виккерсу

3.1. Твердость по Бринеллю ( ГОСТ 9012)

Испытание проводят на твердомере Бринелля (рис.7.1 а)

В качестве индентора используется стальной закаленный шарик диаметром D 2,5; 5; 10 мм, в зависимости от толщины изделия.

Нагрузка Р, в зависимости от диаметра шарика и измеряемой твердости: для термически обработанной стали и чугуна – , литой бронзы и латуни – , алюминия и других очень мягких металлов – .

Продолжительность выдержки: для стали и чугуна – 10 с, для латуни и бронзы – 30 с.

Полученный отпечаток измеряется в двух направлениях при помощи лупы Бринелля.

Твердость определяется как отношение приложенной нагрузки Р к сферической поверхности отпечатка F:

Стандартными условиями являются D = 10 мм; Р = 3000 кгс; = 10 с. В этом случае твердость по Бринеллю обозначается НВ 250, в других случаях указываются условия: НВ D / P / , НВ 5/ 250 /30 – 80.

3.2. Метод Роквелла ГОСТ 9013

Основан на вдавливании в поверхность наконечника под определенной нагрузкой (рис. 7.1 б)

Индентор для мягких материалов (до НВ 230) – стальной шарик диаметром 1/16” (1,6 мм), для более твердых материалов – конус алмазный.

Нагружение осуществляется в два этапа. Сначала прикладывается предварительная нагрузка (10 ктс) для плотного соприкосновения наконечника с образцом. Затем прикладывается основная нагрузка Р1, втечение некоторого времени действует общая рабочая нагрузка Р. После снятия основной нагрузки определяют значение твердости по глубине остаточного вдавливания наконечника h под нагрузкой.

В зависимости от природы материала используют три шкалы твердости (табл. 7.1)

Шкалы для определения твердости по Роквеллу

3.3. Метод Виккерса

Твердость определяется по величине отпечатка (рис.7.1 в).

В качестве индентора используется алмазная четырехгранная пирамида.с углом при вершине 136 o .

Твердость рассчитывается как отношение приложенной нагрузки P к площади поверхности отпечатка F:

Нагрузка Р составляет 5…100 кгс. Диагональ отпечатка d измеряется при помощи микроскопа, установленного на приборе.

Преимущество данного способа в том, что можно измерять твердость любых материалов, тонкие изделия, поверхностные слои. Высокая точность и чувствительность метода.

Способ микротвердости – для определения твердости отдельных структурных составляющих и фаз сплава, очень тонких поверхностных слоев (сотые доли миллиметра).

Аналогичен способу Виккерса. Индентор – пирамида меньших размеров, нагрузки при вдавливании Р составляют 5…500 гс

3.4. Метод царапания.

Алмазным конусом, пирамидой или шариком наносится царапина, которая является мерой. При нанесении царапин на другие материалы и сравнении их с мерой судят о твердости материала.

Можно нанести царапину шириной 10 мм под действием определенной нагрузки. Наблюдают за величиной нагрузки, которая дает эту ширину.

3.5. Динамический метод (по Шору)

Шарик бросают на поверхность с заданной высоты, он отскакивает на определенную величину. Чем больше величина отскока, тем тверже материал.

Общие сведения о строении металлов

Металлы и их сплавы в твердом состоянии имеют кристаллическое строение. Их атомы (ионы, молекулы) располагаются в пространстве в строго определенном порядке и образуют пространственную кристаллическую решетку.

Пространственные кристаллические решетки образуются при переходе металла из жидкого состояния в твердое. Этот процесс называется кристаллизацией.

Кристаллизация состоит из двух стадий. В жидком состоянии металла его атомы находятся в непрерывном движении. При понижении температуры движение атомов замедляется, они сближаются и группируются в кристаллы. Образуются так называемые центры кристаллизации (первая стадия). Затем идет роет кристаллов вокруг этих центров (вторая стадия). Вначале кристаллы растут свободно. При дальнейшем росте кристаллы отталкиваются, рост одних кристаллов мешает росту соседних, в результате чего образуются неправильной формы группы кристаллов, которые называют зернами.

Размер зерен существенно влияет на эксплуатационные и технологические, свойства металлов.

Классификация металлов и сплавов

В технике все металлы и сплавы принято делить на черные и цветные. К черным металлам относятся железо и сплавы на его основе. Этими сплавами являются чугуны и стали. К цветным — все остальные металлы и сплавы. Ко второй группе относят цветные металлы и их сплавы. Они получили такое название потому, что имеют различную окраску. Например, медь светло-красная, никель, олово, серебро - белые, свинец - голубовато-белый, золото - желтое. Это деление на черные и цветные металлы условно.

Наряду с черными и цветными металлами выделяют еще группу благородных металлов: серебро, золото, платину, рутений и некоторые другие. Они названы так потому, что практически не окисляются на воздухе даже при повышенной температуре и не разрушаются при действии на них растворов кислот и щелочей.

1. Чугун - сплав железа с углеродом (более 2%) и другими добавками.

2. Сталь - сплав железа с углеродом (менее 2%) и другими добавками.

3. Латунь - сплав меди с цинком (10 - 50%)

4. Бронза - сплав меди с оловом (до 20%)

5. Константан - сплав меди (60%), никеля (38%), марганца (1-2%)

6. Мельхиор - сплав меди (80%) и никеля (20%)

7. Нихром - сплав никеля (60%), железа (14-18%), хрома (18%)

8. Баббиты - сплав свинца (65%), олова (15-17%) сурьмы (15-17%), меди (2%)

9. Дюралюминий - сплав алюминия (90%), меди (3-5%), магния (4%)

10. Силумин - сплав алюминия (86 - 88%) и кремния (12-14%)

11. Магналий - сплав алюминия (80 - 97%) с магнием (3-20%)

Классификация сталей

Химический состав.

Сталями принято называть сплавы железа с углеродом, содержащие до 2,14% углерода. В зависимости от химического состава различают стали углеродистые и легированные. В свою очередь углеродистые стали могут быть:

малоуглеродистыми, т. е. содержащими углерода менее 0,25%;

среднеуглеродистыми, содержание углерода составляет 0,25-0,60%

высокоуглеродистыми, в которых концентрация углерода превышает 0,60%

Легированные стали подразделяют на:

низколегированные содержание легирующих элементов до 2,5%

среднелегированные, в их состав входят от 2,5 до 10% легирующих элементов;

высоколегированные, которые содержат свыше 10% легирующих элементов.

Назначение

Конструкционные, предназначенные для изготовления строительных и машиностроительных изделий.

Инструментальные, из которых изготовляют режущий, мерительный, штамповый и прочие инструменты. Эти стали содержат более 0,65% углерода.

С особыми физическими свойствами, например: электротехническая сталь; с особыми химическими свойствами, например: нержавеющие, жаростойкие или жаропрочные стали.

Качество

В зависимости от содержания вредных примесей: серы и фосфора-стали подразделяют на:

Стали обыкновенного качества, содержание до 0.06% серы и до 0,07% фосфора.

Качественные - до 0,035% серы и фосфора каждого отдельно.

Высококачественные - до 0.025% серы и фосфора.

Особовысококачественные, до 0,025% фосфора и до 0,015% серы.

Сталь обыкновенного качества подразделяется еще и по поставкам на 3 группы:

С таль группы А поставляется потребителям по механическим свойствам (такая сталь может иметь повышенное содержание серы или фосфора);

сталь группы Б - по химическому составу;

сталь группы В - с гарантированными механическими свойствами и химическим составом

Степень раскисления

По степени удаления кислорода из стали, т. е. По степени её раскисления, существуют:

спокойные стали "сп"; кипящие стали - слабо раскисленные "кп"; полуспокойные стали, "пс".

Нелегированные конструкционные стали обыкновенного качества

Обозначают по ГОСТ 380-94 буквами "Ст" и условным номером марки (от 0 до 6) в Например:

Ст1кп2 - углеродистая сталь обыкновенного качества, кипящая, № марки 1, второй категории, поставляется потребителям по механическим свойствам (группа А);

Нелегированные конструкционные качественные стали.

В соответствии с ГОСТ 1050-88 эти стали маркируются двухзначными числами, показывающими среднее содержание углерода в сотых долях процента: 05 ; 08 ; 10 ; 25 ; 40 и т.д.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.


Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.


© cyberpedia.su 2017-2020 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

Общие сведения о металлах, их свойствах, кристаллическое строение.

Металлы – это вещества, обладающие рядом характерных свойств. Они хорошо отражают свет, что обуславливает их непрозрачность и блеск; обладают хорошей тепло- и электропроводностью, повышенной пластичностью. Этими свойствами обладают и смеси двух и более металлов или сплавы. Металлы проявляют различную активность по отношению к кислороду. Медь, железо, алюминий окисляются при обычных условиях, золото, платина – даже при накаливании не соединяются с кислородом, поэтому встречаются в природе в чистом виде, в виде самородков. Химическое соединение металлов называется рудами. Выделение металлов из рудных соединений производят несколькими способами:

а) восстановлением металлов при нагревании,

б) восстановлением металла действием окиси углерода,

в) восстановлением металла из солей действием другого более активного металла

г) восстановлением металла методом электролиза.

Штейнгарт и Батовский все металлы делят на черные и цветные. Черные, в свою очередь, на железные (железо, кобальт, никель), тугоплавкие: ( температура плавления выше 1529 градусов), урановые (актиноиды) и редкоземельные («лантаноиды» - лантан, церий.).

Цветные металлы подразделяются на легкие (алюминий, магний), благородные (серебро, золото, платина, палладий) и легкоплавкие( цинк, кадмий, олово).

Все металлы имеют кристаллическое строение.В жидком состоянии атомы располагаются хаотически. При затвердевании образуется кристаллическая решетка, т.е. происходит кристаллизация, состоящая из двух фаз:

а) зарождение в жидком металле центров кристаллизации или зародышей и

б) рост зародышей.

Каждый центр кристаллизации имеет решетку, свойственную данному металлу. Чем быстрее идет охлаждение, тем больше образуется центров кристаллизации, тем мелкозернистое будет металл.

При охлаждении расплавленного металла температура понижается ниже истинной температуры плавления, а металл еще может оставаться в жидком состоянии. Такое запаздывание кристаллизации называется переохлаждением, а разница между температурой кристаллизации и температурой плавления - степенью переохлаждения. Это явление присуще всем металлам.

Три вида взаимодействия между металлами,

Благородные металлы (золото, серебро, платина палладий).

Лекция № 12.

Нержавеющая сталь.

Кобальто – хромовые сплавы.

Припои для стали и золота.

Вспомогательные металлы.

Характеристика основных компонентов

Нержавеющей хромоникелевой стали.

Общая характеристика нержавеющей хромоникелевой стали.

Положительные и отрицательные качества.

Сортимент изделий и полуфабрикатов

Из нержавеющей хромоникелевой стали, поставляемых

в стоматологические лечебные учреждения.

Характеристика компонентов кобальто-хромовых сплавов (КХС).

Общая характеристика КХС.

Сортимент заготовок из КХС, поставляемых

Краткая характеристика.

Хром составляет 25 - 30% КХС / о нем говорилось выше/. Молибден улучшает межкристаллическую структуру. Марганец повышает износостойкость. Титануменьшает содержание в сплаве карбидов хрома, повышает коррозийную стойкость.

КХС выпускается слитками весом 30 (±2) г или 10 (±1) г каждый, упакованных по 5-15 штук. Для изготовления стандартных зубов и каркасов его не применяют т.к. по причине твердости, такие детали очень трудно припасовывать (притачивать) к модели.

ДЛЯ ПРИМЕНЕНИЯ

КОНСТРУКЦИЙ В СТОМАТОЛОГИИ.

Молибден, марганец, титан).

Свойства и применение.

Вспомогательные металлы используются при составлении сплавов, а сплавы применяются для изготовления штампов, моделей, инструментов.

Медь – металл красного цвета, с плотностью -8,8, температура плавления -1083˚. Обладает хорошей ковкостью, тягучестью, тепло- и электропроводностью. Окисляется во влажной среде, покрываюсь зеленым налетом. Растворяется в слюне, являясь ядовитым для организма человека веществом. Применяется для очистки золотых сплавов от примесей при квартовании, входит в состав золотых сплавов для повышения вязкости и твердости, в состав припоев, амальгамы, для изготовления некоторых инструментов.

Кадмий – серебристо-синеватый металл. Плотность – 8,6; температура плавления - 320˚. Температура кипения - 778˚ (самая низкая из всех металлов). Окисляется под влиянием влажного воздуха, образуя ядовитую темно-желтую окись кадмия. Применяется в припоях и легкоплавких сплавах.

Марганец –серебристо-белый металл. Плотность -7,3, температура плавления -1245˚. Марганец имеет четыре модификации, отличающиеся различным строением кристаллической решетки. Химически активен. В соляной кислоте и разбавленной серной кислоте растворяется, образуя соли. Его вводят в сталь для окисления сплава, уменьшения содержания серы и повышения износостойкости.

Титан – серебристо-белый металл. Плотность -4,5, температура плавления -1668˚, твердость по Бринеллю -100 кгс/кв. мм. Обладает хорошей коррозийной стойкостью, на поверхности металла образуется тонкая пленка, предохраняющая металл от дальнейшего окисления. Слабо-растворим в серной кислоте. В нержавеющей стали титан уменьшает содержание карбидов хрома. Двуокись титана используется как замутнитель пластмассы и в качестве основы в качестве основы в разделительных (маскировочных) лаках.

Легкоплавкие сплавы.

Сплавы на основе меди.

СПЛАВЫ ТИТАНА

Титан – серебристый металл, не темнеющий со временем ни в атмосфере, ни в морской воде; на него не действуют кислоты и щелочи. Коррозийная стойкость титана превышает таковую у нержавеющей стали. При удельной массе, почти такой же, как у алюминия, титан в 12 раз прочнее его и превосходит по прочности железо. В отличие от последнего титан не намагничивается, а такое свойство, как термостойкость (температура плавления – 1670 ˚) резко выделяет его среди других металлов. Стали с присадками титана обладают повышенной жаропрочностью и используются в космической технике и других технологиях. Соединения титана используется в качестве катализаторов в полимеризации мономеров, красителей, наполнителей высокомолекулярных соединений.

В настоящее время сплавы титана используются для получения цельнолитых каркасов зубных протезов, а также мостовидных протезов с последующей обработкой и нанесением покрытий нитрида титана. Это производится нагреванием в атмосфере азота или аммиака. Покрытие нитридом титана увеличивает твердость и придает эстетический вид, пленка имеет золотистый оттенок , (температура плавления - 2950˚, твердость - 7-8 ед. Для сравнения: твердость алмаза -10 ед. топаза-8ед.).

Технология получения ортопедических конструкций из литьевого титана, следующая: к смоделированной по обычной методике восковой модели протеза прикрепляются литниковая система из штифтов диаметром 5-6 мм и устанавливают центральный питатель. Модели с питателем присоединяются к коллекторам блока литниковой системы. Для изготовления керамической формы используется электрокорунд. Общее количество слоев покрытия -9. Каждый слой подвергается сушке в атмосфере аммиака. Затем блок моделей помещают в ванну для выталкивания воска. Формы для литья прокаливают при температуре 1000˚ С и обрабатывается пироуглеродом (подаваемый в печь углеводород при высокой температуре в отсутствии кислорода разлагается и атомарный углерод пропитывает стенки керамической формы, предотвращая ее химическое взаимодействие с металлом). Формы, остывшие до температуры не более 150˚, устанавливают в контейнер под заливку.

Плавку и литье титана проводят в вакуумно-дуговой гарнисажной литьевой установке. Плавку ведут в графитовом тигле с гарнисажем. Благодаря постоянному охлаждению тигля (водой) гарнисаж не расплавляется, защищает тигель от воздействия, расплавленного металла.

После наплавления необходимого количества металла включается центробежная установка, и расплавленный металл сливается в центральный метала

приемник контейнера с формами. Охлаждение металла проводится в вакууме или в среде аргона.

Обработка изделий из титана может быть осуществлена посредством:

1)механической шлифовки и полировки ( по обычной методике);

2)электрополировки.

Состав электролита: серная кислота -60%; плавиковая кислота -30%; глицерин -10%. Деталь является анодом. Катод выполняет из графита. Плотность тока составляет 0,5-0,7 А/мм. Напряжение 24В.

Выдерживание изделий из титана в атмосфере азота при температуре 850-950˚ приводит к образованию на их поверхности золотистой пленки нитрида титана.

ВИРОНИУМ

Механические свойства:

-твердость по Виккерсу – 330 Н/мм 2 ;

-предел прочности на разрыв – 940 Н/мм 2 ;

-0,2% проба на давление – 650 Н/мм 2 ;

-разрывное удлинение А5 – 12%;

Физические свойства:

-температура плавления – 1320-1340˚;

-температура литья - 1440˚;

-удельный вес – 8,4 г/см 3 ;

-модуль Юнга – 210000 Н/мм 2 ;

Состав: Co-63;Mo-5; Cr-29; Si; Mn; N; C- 0,25.

Цвет: серо-белый.

ВИРОКАСТ

Механические свойства:

-твердость по Виккерсу – 330 Н/мм 2 ;

-предел прочности на разрыв – 860 Н/мм 2 ;

-0,2% проба на давление – 590 Н/мм 2 ;

-разрывное удлинение А5 – 7%;

Физические свойства:

-температура плавления – 1280-1350˚;

-температура литья -1460˚;

-удельный вес – 8,2 г/см 3;

-модуль Юнга – 210000 Н/мм 2 .

Состав: Co-33; Cr-30; Fe-29; Mo-5; Si; Mn; C-0,35

ВИРОН – 88

-твердость по Виккерсу – 200 Н/мм 2 ;

-0,2% проба на давление – 360 Н/мм 2 ;

-разрывное удлинение А5 – 15%;

-температура плавления – 1250-1310 Н/мм 2 ;

-температура литья – 1420 ˚;

-удельный вес – 8,2 г/см 3 ;

-модуль Юнга – 200000 Н/мм 2 .

Состав: Ni-64; Cr-24; Mo-10; Si; C- 0,02

Цвет: белый.

ЭСТЕТИКОР

Механические свойства:

-твердость по Виккерсу – 800 H/мм 2

-предел прочности на разрыв – 600 H/мм 2

-0,2% проба на давление – 435 H/мм 2

-разрывное удлинение А5 -9%.

Физические свойства:

-температура плавления – 1150-1260˚;

-удельный вес – 18 г/см 3 ;

-модуль Юнга – 10600 Н/мм 2 ;

-КТР х10 -6 К -1 – 14,2;

-сцепление с фарфором – 115 Н/мм 2 ;

Состав: Аu-77,5; Pt-9,0; Ag-1,0

Цвет: бело-желтоватый.

ЭСТЕТИКОР ПЛЮС

-твердость по Виккерсу -245 Н/мм 2 ;

-предел прочности на разрыв -810 Н/мм 2 ;

-0,2% проба на давление – 515 Н/мм 2 ;

-разрывное удлинение А5 – 15,5%.

-температура плавления – 1230-1280˚;

-удельный вес – 13,7 г/см 3 ;

-модуль Юнга – 12700 Н/мм 2 ;

-КТР х10 -6 К -1 -14,3

Состав: Au-45; Pt-39; Ag-5

ЭСТЕТИКОР РОЙАЛ

-твердость по Виккерсу – 150 Н/мм 2 ;

-предел прочности на разрыв – 500 Н/мм 2 ;

-0,2% проба на давление – 400 Н/мм 2 ;

-разрывное удлинение А5 – 8,5%.

-температура плавления – 1090-1205˚;

-удельный вес – 17,9 г/см 3 ;

-модуль Юнга – 91000 Н/мм 2 .

Состав: Au-81; Pt -8,6; Pd-2

Цвет: желтый.

НЕОКАСТ-2

-твердость по Виккерсу – 160-210 Н/мм 2 ;

-предел прочности на разрыв -520-670 Н/мм 2 ;

-0,2% проба на давление – 330-475 Н/мм 2 ;

-разрывное удлинение А5 – 19-29%;

-температура плавления - 910-970˚;

-удельный вес – 15,6 г/см 3 .

Состав: Au-70; Pt-4; Ag-18,

Лекция № 11

МЕТАЛЛЫ И СПЛАВЫ

Общие сведения о металлах, их свойствах, кристаллическое строение.


Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).


Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Общие сведения о металлах и сплавах

Металлы — кристаллические вещества, характеризующиеся высокими электро- и теплопроводностью, ковкостью, способностью хорошо отражать электромагнитные волны и другими специфическими свойствами. Свойства металлов обусловлены их строением: в их кристаллической решетке есть не связанные с атомами электроны, которые могут свободно перемещаться.

В технике обычно применяют не чистые металлы, а сплавы, что связано с трудностью получения чистых веществ, а также с необходимостью придания металлам требуемых свойств.

Сплавы — это системы, состоящие из нескольких металлов или металлов и неметаллов. Сплавы обладают всеми характерными свойствами металлов. В строительстве применяют сплавы железа с углеродом (сталь, чугун), меди и олова (бронза) и меди и цинка (латунь) и др. На практике термин «металлы» распространяют и на сплавы, поэтому далее он относится и к металлическим сплавам.

Применяемые в строительстве металлы делят на две группы: черные и цветные.

К черным металлам относятся железо и сплавы на его основе (чугун и сталь).

Сталь — сплав железа с углеродом (до 2,14%) и другими элементами. По химическому составу различают стали углеродистые и легированные, а по назначению — конструкционные, инструментальные и специальные.

Чугун — сплав железа с углеродом (более 2,14%), некоторым количеством марганца (до 2%), кремния (до 5%), а иногда и других элементов. В зависимости от строения и состава чугун бывает белый, серый и ковкий.

К цветным металлам относятся все металлы и сплавы на основе алюминия, меди, цинка, титана и др.

Широкое использование металлов в строительстве и других отраслях экономики объясняется сочетанием у них высоких физико-механических свойств с технологичностью.

Металлы обладают высокой прочностью, причем прочность на изгиб и растяжение у них практически такая же, как и на сжатие (у каменных материалов прочность на изгиб и растяжение в 10… 15 раз ниже прочности на сжатие). Так, прочность стали более чем в 10 раз превышает прочность бетона на сжатие и в 100…200 раз прочность на изгиб и растяжение; поэтому, несмотря на то что плотность стали (7850 кг/м ) в 3 раза выше плотности конструкционного бетона (2400 + 50 кг/м ), металлические конструкции при той же несущей способности значительно легче и компактнее бетонных. Этому способствует также высокий модуль упругости стали (в 10 раз выше, чем у бетона и других каменных материалов). Еще более эффективны конструкции из легких сплавов.

Металлы очень технологичны: во-первых, изделия из них можно получать различными индустриальными методами (прокатом, волочением, штамповкой и т. п.), во-вторых, металлические изделия и конструкции легко соединяются друг с другом с помощью болтов, заклепок и сварки.

Однако с точки зрения строителя металлы имеют и недостатки. Высокая теплопроводность металлов требует устройства тепловой изоляции металлоконструкций зданий. Хотя металлы негорючи, но металлические конструкции зданий необходимо специально защищать от действия огня. Это объясняется тем, что при нагревании прочность металлов резко снижается и металлоконструкции теряют устойчивость и деформируются. Большой ущерб экономике наносит коррозия металлов. Металлы широко применяют в других отраслях промышленности, поэтому их использование в строительстве должно быть обосновано экономически.

Наука, изучающая состав, строение и свойства металлов и сплавов, а также зависимость между внутренним строением (структурой) и свойствами металлических сплавов называется металловедением.

Отличительными особенностями металлов являются: блеск, ковкость, непрозрачность, теплопроводность и электропроводность.

Таким образом, под термином «металлы» понимают всю группу металлических материалов — чистые металлы и сплавы. Чистые металлы используют только в тех случаях, когда от материала требуются высокие показатели теплопроводности, электропроводности и высокая температура плавления. Эти свойства у них всегда выше, чем у сплавов.

Основными материалами при монтаже металлоконструкций, трубопроводов и оборудования являются сплавы, имеющие по сравнению с чистыми металлами следующие преимущества: – более высокую прочность; – способность изменять свойства при изменении химического состава; » – способность улучшать свойства под влиянием термической обработки; – более низкую температуру плавлеиия; – большую текучесть в расплавленном состоянии; – меньшую усадку.

Указанные свойства сплавов имеют большое практическое значение, так как позволяют получать всевозможные металлоконструкции с показателями, отвечающими требуемым эксплуатационным условиям.

Применяемые в строительстве сплавы делят на две группы:
I группа — сплавы на основе железа (сталь, чугун);
II группа—сплавы на основе металлов (сплавы на медной, алюминиевой, магниевой и другой основе — бронза, латунь, силумины и др.).

К физическим свойствам металлов относятся: удельный вес, теплопроводность, электропроводность и температура плавления.

Удельный вес — это вес 1 см3 металла, сплава или любого другого вещества, выраженный в граммах. Например, удельный вес железа равен 7,88 г/см3. Удельные веса наиболее распространенных металлов приведены в табл. 1.

Теплопроводность — способность металлов и сплавов проводить тепло. Теплопроводность измеряется количеством тепла, которое проходит по металлическому стержню сечением 1 см2 за 1 мин.

Электропроводность — способность металлов и, сплавов проводить электричество. Это свойство наиболее характерно для чистых металлов. Для сплавов более характерным является свойство, обратное электропроводности — электросопротивление.

Удельным электрическим сопротивлением называется сопротивление проводника сечением 1 мм2 и длиной 1 м, выраженное в омах.

Температура плавления — степень нагрева, при которой металл переходит из твердого состояния в жидкое (табл. 1).

К механическим свойствам металлов и сплавов относят: твердость, прочность, упругость, пластичность.

Эти свойства обычно являются решающими показателями, определяющими способность металлов сопротивляться прилагаемым к детали, узлам и металлоконструкциям внешним нагрузкам, характеризующим пригодность сплава” или изделия к различным условиям эксплуатации.

Твердость — способность металла сопротивляться внедрению в его поверхность другого, более твердого тела. ,

Прочность — способность металла сопротивляться разрушению при действии на него нагрузки.

Упругость—способность металла принимать первоначальную форму и размеры после прекращения действия нагрузки.

Пластичность (вязкость) — способность металла изменять первоначальные формы и размеры под действием нагрузки и сохранять приданные формы и размеры после прекращения ее действия.

К технологическим свойствам относят обрабатываемость резанием, ковкость, жидкотекучесть, усадку, свариваемость и другие свойства, определяющие пригодность материала к обработке тем или иным способом.

Обрабатываемость резанием — способность металла более или менее легко обрабатываться острым режущим инструментом.

Ковкость — способность металла поддаваться обработке давлением, принимать новую форму и размеры под влиянием прилагаемой нагрузки без нарушения целостности.

Жидкотекучесть — способность расплавленного металла или сплава заполнять литейную форму.

Усадка—уменьшение объема отливки при охлаждении сплава.

Свариваемость — способность металлов образовывать прочные соединения отдельных металлических заготовок путем их местного нагрева до расплавленного или пластического состояния.

Химические свойства металлов — это способность металлов вступать в соединения с различными веществами, и в первую очередь с кислородом. Чем легче металл вступает в соединение с другими элементами, тем легче он разрушается. Разрушение металлов и сплавов под действием окружающей среды называется коррозией.

Что такое металлы и их строение

Определение металлов можно дать с позиций химии, физики и техники.

В химии металлы — это химические элементы, находящиеся в левой части периодической системы элементов Д. И. Менделеева, которые обладают особым механизмом взаимодействия валентных электронов (ионов) с ядром как в самих металлах, так и при вступлении в химические реакции с другими элементами, в том числе с металлами.

Физика характеризует металлы как твердые тела, обладающие цветом, блеском, способностью к плавкости (расплавлению) и затвердеванию (кристаллизации), тепло- и электропроводностью, магнитными и другими свойствами.

В технике металлы — это конструкционные материалы, обладающие высокой обрабатываемостью (ковкостью, штампуемостью, обрабатываемостью резанием, паяемостью, свариваемостью и др.), прочностью, твердостью, ударной вязкостью и рядом других ценных свойств, благодаря которым они находят широкое применение.

Русский ученый М. В. Ломоносов (1711 — 1765), исследуя металлы и неметаллы в своем труде «Первые основания металлургии или рудных дел», дал металлам определение: «Металлом называется светлое тело, которое ковать можно. Таких тел находим только шесть: золото, серебро, медь, олово, железо и свинец». Это определение М. В. Ломоносов дал в 1773 г., когда известны были только шесть металлов.

Из металлов, добываемых из недр земли, получают большую группу конструкционных материалов, применяемых в различных отраслях промышленности. В природе одни металлы встречаются в чистом, самородном виде, другие — в виде оксидов (соединений металла с кислородом), нитридов и сульфидов, из которых состоят различные руды этих металлов.

Самыми распространенными металлами, применяемыми в качестве конструкционных материалов, являются железо, алюминий, медь и сплавы на основе этих металлов.

К металлам относятся более 80 элементов периодической системы Менделеева. Все эти металлы подразделяются на две большие группы: черные металлы и цветные металлы.

Характерными признаками черных металлов являются темно-серый цвет, блеск, высокие плотность и температура плавления, твердость, прочность, вязкость и полиморфизм (аллотропия). По физикохимическим свойствам черные металлы подразделяют на пять групп:

  • железистые (железо, кобальт, никель, марганец);
  • тугоплавкие (вольфрам, рений, тантал, молибден, ниобий, ванадий, хром, титан и др.);
  • урановые — актиниды (уран, торий, плутоний и др.);
  • редкоземельные — лантаниды (лантан, церий, иттрий, скандий и др.);
  • щелочно-земельные (литий, натрий, калий, кальций и др.).

Из этих пяти групп черных металлов особенно широкое применение в промышленном производстве находят железистые и тугоплавкие металлы.

Железистые металлы, кроме марганца, называют еще ферромагнетиками. Ферромагнетики способны намагничиваться и притягивать металлы своей группы.

К тугоплавким относятся металлы, которые имеют температуру плавления выше температуры плавления железа (1 539 °С): титан — 1 667 °С, ванадий — 1 902 °С, хром — 1 903 °С, молибден — 2 615 °С, ниобий — 2 460 °С, тантал — 2 980 °С, вольфрам — 3 410 °С. Тугоплавкие металлы в основном применяются как легирующие элементы в производстве жаропрочных, жаростойких, теплостойких и специальных сплавов, в том числе твердых сплавов и высоколегированных сталей.

2. Строение металлов

Атомно-кристаллическая структура металлов. Как известно, все вещества состоят из атомов, в том числе и металлы. Каждый металл (химический элемент) может находиться в газообразном, жидком или твердом агрегатных состояниях. Каждое агрегатное состояние будет иметь свои особенности, отличные друг от друга. В газообразном металле расстояние между атомами велико, силы взаимодействия малы и атомы хаотично перемещаются в пространстве; газ стремится к расширению в сторону большего объема. При понижении температуры и давления вещество переходит в жидкое состояние. Свойства жидкого вещества резко отличаются от свойств газообразного. В жидком металле атомы сохраняют лишь так называемый ближний порядок атомов, т. е. в объеме расположено небольшое количество атомов, а не атомы всего объема. При понижении температуры жидкий металл переходит в твердое состояние, которое имеет строгую закономерность расположения атомов.

Если условно провести вертикальные и горизонтальные линии связи через центры атомов, можно увидеть, что у металлов в твердом состоянии атомы расположены в строго определенном порядке и представляют собой множество раз повторяющиеся элементарные геометрические фигуры — параллелепипеды (рис. 1). Наименьшую геометрическую фигуру называют элементарной ячейкой. Элементарные ячейки, расположенные на горизонтальных и вертикальных кристаллографических плоскостях (рис. 2), образуют пространственную кристаллическую решетку.

расположение элементарных геометрических ячеек в атомных решетках металлов и сплавов

Рис. 1. Схема расположения элементарных геометрических ячеек в атомных решетках металлов и сплавов

Расположение кристаллографических плоскостей

Рис. 2. Расположение кристаллографических плоскостей: 1 и 2 — соответственно горизонтальная и вертикальная кристаллографические плоскости

Элементарные кристаллические решетки характеризуют следующие основные параметры: расстояние между атомами по осям координат (по линиям связи), углы между линиями связи, координационное число — число атомов, находящихся на наиболее близком и равном расстоянии от любого атома в решетке. Форму элементарной ячейки рассматривают по кристаллографическим плоскостям в трех измерениях.

Таким образом, любой металл можно представить не как однородную цельную массу, а как массу, сложенную из множества элементарных ячеек. Блок элементарных атомных кристаллических ячеек образует атомно-кристаллическую ячейку (решетку). Если выделить эту элементарную ячейку, то в зависимости от металла получим следующие типы кристаллических ячеек (рис. 3): куб (К), объемно-центрированный куб (ОЦК), гранецентрированный куб (ГЦК), гексагональная плотноупакованная ячейка (ГПУ), гексагональная простая ячейка (Г) и др.

Простая кубическая ячейка (рис. 3, а) характерна для неметаллов, которые обладают наибольшими плотностью и удельным весом, и имеет восемь атомов, которые расположены в каждой вершине куба.

Объемно-центрированная кубическая ячейка (рис. 3, б ) состоит из восьми атомов, которые расположены по одному атому в каждой вершине куба, и одного, находящегося в центре куба на равных расстояниях от его граней. Эту форму атомной кристаллической ячейки имеют железо модификации Fe-α, ванадий, вольфрам, молибден, тантал и хром, т. е. в основном черные металлы.

Гранецентрированная кубическая ячейка (рис. 3, в) имеет 14 атомов — по одному атому в каждой вершине куба (восемь атомов) и по одному атому в центре каждой грани (шесть атомов). Гранецентрированную кубическую ячейку имеют алюминий, железо модификации Fe-γ, золото, кобальт, медь, никель, платина и серебро, в основном это цветные металлы и часть черных металлов.

Гексагональная плотноупакованная ячейка (рис. 3, г) состоит из 17 атомов. Форма геометрического тела, которую образуют эти атомы, является шестигранной призмой. При этом по шесть атомов расположены в каждой вершине верхнего и нижнего оснований, по одному атому в центре этих оснований и три атома в центре одной их трех граней (через грань). Гексагональную плотноупакованную ячейку имеют бериллий, кадмий, магний, ванадий, тантал.

Простая гексагональная ячейка (рис. 3, д) состоит из 12 атомов, которые расположены в вершинах верхнего и нижнего оснований шестигранной призмы. Такую кристаллическую ячейку имеют ртуть и цинк.


Рис. 3. Геометрические формы элементарных кристаллических ячеек: а — куб; б — объемно-центрированный куб; в — гранецентрированный куб; г — гексагональная плотноупакованная ячейка; д — гексагональная простая ячейка

Связь между атомами в кристаллической решетке и между решетками осуществляется за счет так называемой металлической связи. От прочности этой связи зависят прочность и твердость металлов. Чем выше эта связь, тем бо´льшую прочность и твердость имеют металлы. Механизм связи между атомами в решетке и между решетками имеет сложную физико-химическую природу.

В практике идеальное расположение кристаллических решеток обычно не наблюдается. Кристаллы, образуемые кристаллическими решетками, имеют искаженную геометрическую форму и различную величину.

Анизотропия металлов. Анизотропия (от гр. anisos — неравный и tropos — направление) — неодинаковость физических свойств среды (тела) в различных направлениях. Анизотропия предполагает зависимость свойств металлов от направления по плоскостям атомно-кристаллических решеток. Чем больше в плоскости атомов, тем выше свойства металлов. В горизонтальных плоскостях в любой форме атомно-кристаллических решеток больше, чем в вертикальных плоскостях. Следовательно, прочность металлов, испытанная в горизонтальном направлении, выше, чем в вертикальном. Анизотропия проявляется в процессе обработки конструкционных материалов давлением (проката, волочения, штамповки и других технологических способов получения заготовок и изделий).

На рис. 2 кристаллографические плоскости совпадают с линиями связи, проходящими через атомы металла. Форма элементарной кристаллической ячейки, расстояние между атомами и прочность металлической связи определяют физические, механические и технологические свойства металлов. Если исследуемый металл рассматривать по трем кристаллографическими плоскостям, по линиям связи между атомами, то можно заметить, что свойства по этим трем измерениям будут различны. Число атомов в этих плоскостях неодинаково. Металлическая связь между горизонтально и вертикально расположенными атомами также неодинакова. Это, в свою очередь, приводит к различной прочности металлов в продольном и поперечном направлениях. Например, предел прочности меди в продольном направлении будет в 2 раза больше, чем в поперечном.

Все металлы анизотропны, так как они состоят из кристаллов. Кристаллическое строение металлов обусловливает пластическую деформацию, т. е. изменение внешней формы и размеров под действием нагрузок без разрушения. Способность металлов и сплавов пластически деформироваться положена в основу их обработки давлением (прокатка, волочение, ковка, штамповка и прессование). При обработке давлением, например прокатке (рис. 4, а), происходит перемещение одного слоя атомных решеток по другому по кристаллографическим плоскостям (рис. 4, б).

Схема деформации металлов и сплавов (прокатка)

Рис. 4. Схема деформации металлов и сплавов (прокатка): а — деформация; б — скольжение металлов по кристаллографическим плоскостям в процессе деформации; 1 — кристаллографические плоскости

В процессе деформации металла при прокатке происходит не только изменение поперечных и продольных размеров заготовок, но и изменение микроструктуры металла.

Зерна под действием давления прокатных валков искажаются, приобретая продолговатую или пластинчатую форму, а затем преобразуются в волокна. Изменение микроструктуры металла в процессе деформации условно показано на рис. 5.

Процесс кристаллизации. Рассмотрим, как происходит образование кристаллов у чистых металлов. Установлено, что процесс кристаллизации металлов из жидкого состояния в твердое идет в две стадии:

  • образование центров кристаллизации;
  • рост кристаллов вокруг этих центров (рис. 6).

Изменение микроструктуры металла в процессе деформации

Рис. 5. Изменение микроструктуры металла в процессе деформации: а — микроструктура металла до деформации; б — микроструктура металла после первой операции деформации; в — микроструктура металла после окончательной деформации

Процесс кристаллизации металлов и сплавов

Рис. 6. Процесс кристаллизации металлов и сплавов: а — е — последовательные этапы процесса

Далее вновь появляются новые центры, и происходит рост твердой фазы вокруг первичных и вторичных центров. Процесс происходит до того момента, пока образованные таким образом кристаллы не будут соприкасаться друг с другом и не будет наличия жидкой фазы металла (см. рис. 6, г — е). Когда образование кристалла идет в жидкой фазе (в расплавленном металле), он будет иметь правильную форму, т. е. состоять из определенных геометрических фигур правильной формы. Когда кристаллы начинают соприкасаться друг с другом, а процесс затвердевания еще не закончен, тогда происходят искажения формы зерен. В практике замечено, что когда идет быстрое охлаждение, образуются мелкие зерна — мелкозернистая структура. При медленном охлаждении появление новых центров кристаллизации замедляется, но происходит рост зерна вокруг первичных центров кристаллизации. В этом случае металл будет иметь крупнозернистую структуру.

Процесс образования кристаллов в жидком состоянии и перехода металла в твердое состояние называется первичной кристаллизацией. Величина и форма зерна влияет на механические свойства металлов. Чем зерна мельче и чем правильнее их форма, тем большую твердость и прочность будет иметь металл. Чем зерна больше и чем искаженнее их форма, тем ниже твердость и прочность металла.

Аллотропия металлов. Такие металлы, как железо, кобальт, никель и др., обладают способностью изменять кристаллическую решетку при нагревании в твердом состоянии. Процесс изменения кристаллических решеток в твердом состоянии называется вторичной кристаллизацией, или аллотропией, а состояние вещества (металла) при наличии нескольких кристаллических решеток при изменении параметров (давления, температуры) — аллотропическими модификациями, или полиморфизмом. Такие металлы, как железо, молибден, вольфрам, литий в твердом состоянии при нормальной температуре имеют объемно-центрированную кубическую ячейку; алюминий, медь, серебро в твердом состоянии при нормальной температуре имеют форму гранецентрированной кубической ячейки.

На рис. 7 представлены кривые нагрева и охлаждения металла (на примере марганца). Аллотропные состояния (модификации), имеющие те или иные кубические ячейки, обозначаются греческими буквами. Первоначальное аллотропное состояние при нормальной температуре обозначается буквой α, при дальнейших повышении температуры и перекристаллизации металла — буквами β, γ, δ и т. д. При охлаждении металлов и сплавов процесс аллотропного превращения происходит в обратном порядке, как правило при тех же температурах.

Кривые нагрева и охлаждения марганца

Рис. 7. Кривые нагрева (а) и охлаждения (б) марганца: t — температура; τ — время

Читайте также: