Основные металлические материалы и сплавы применяемые в конструкциях ракетно космической техники
Легендарная ракета Р-7 является безусловным триумфом конструкторской идеи над конструкционным материалом. Интересно, что ровно через 30 лет после ее запуска, 15 мая 1987 года, состоялся и первый старт ракеты «Энергия», которая, наоборот, использовала массу экзотических материалов, недоступных в 1957 году.
Когда Сталин поставил перед С.П. Королёвым задачу копирования Фау-2, многие ее материалы были новы для тогдашней советской промышленности, но к 1955 году уже исчезли проблемы, которые могли бы помешать конструкторам воплощать идеи. К тому же материалы, использованные при создании ракеты Р-7, даже в 1955 году не отличались новизной — ведь нужно было учитывать затраты времени и денег при серийном производстве ракеты. Поэтому основой ее конструкции стали давно освоенные алюминиевые сплавы.
Раньше модно было называть алюминий «крылатым металлом», подчеркивая, что если конструкция не ездит по земле или по рельсам, а летает, то она обязательно должна быть выполнена из алюминия. На самом деле крылатых металлов много, и это определение давно вышло из моды. Спору нет, алюминий хорош, достаточно дешев, сплавы его сравнительно прочны, он легко обрабатывается и т. д. Но из одного алюминия самолет не построишь. А в поршневом самолете и дерево оказывалось вполне уместным (даже в ракете Р-7 в приборном отсеке есть фанерные перегородки!). Унаследовав алюминий от авиации, этим металлом стала пользоваться и ракетная техника. Но тут-то как раз и обнаружилась узость его возможностей.
«Крылатый металл», любимец авиаконструкторов. Чистый алюминий втрое легче стали, очень пластичен, но не очень прочен. Чтобы он стал хорошим конструкционным материалом, из него приходится делать сплавы. Исторически первым был дуралюмин (дюралюминий, дюраль, как мы его чаще всего зовем) — такое имя дала сплаву немецкая фирма, впервые его предложившая в 1909 году (от названия города Дюрен). Этот сплав, кроме алюминия, содержит небольшие количества меди и марганца, резко повышающие его прочность и жесткость. Но есть у дюраля и недостатки: его нельзя сваривать и сложно штамповать (нужна термообработка). Полную прочность он набирает со временем, этот процесс назвали «старением», а после термообработки состаривать сплав нужно заново. Поэтому детали из него соединяют клепкой и болтами.
В ракете он годится только на «сухие» отсеки — клепаная конструкция не гарантирует герметичности под давлением. Сплавы, содержащие магний (обычно не больше 6%), можно деформировать и сваривать. Именно их больше всего на ракете Р-7 (в частности, из них изготовлены все баки).
Американские инженеры имели в своем распоряжении более прочные алюминиевые сплавы, содержащие до десятка разных компонентов. Но прежде всего наши сплавы проигрывали заокеанским по разбросу свойств. Понятно, что разные образцы могут немного отличаться по составу, а это приводит к разнице в механических свойствах. В конструкции часто приходится полагаться не на среднюю прочность, а на минимальную, или гарантированную, которая у наших сплавов могла быть заметно ниже средней.
В последней четверти XX века прогресс в металлургии привел к появлению алюминий-литиевых сплавов. Если до этого добавки в алюминий были направлены только на увеличение прочности, то литий позволял сделать сплав заметно более легким. Из алюминий-литиевого сплава был сделан бак для водорода ракеты «Энергия», из него же делают и баки «Шаттлов».
Наконец, самый экзотический материал на основе алюминия — боралюминиевый композит, где алюминию отведена та же роль, что и эпоксидной смоле в стеклопластике: он удерживает вместе высокопрочные волокна бора. Этот материал только-только начал внедряться в отечественную космонавтику — из него сделана ферма между баками последней модификации разгонного блока «ДМ-SL», задействованного в проекте «Морской старт».
Выбор конструктора за прошедшие 50 лет стал намного богаче. Тем не менее как тогда, так и сейчас алюминий — металл №1 в ракете. Но, конечно же, есть и целый ряд других металлов, без которых ракета не сможет полететь.
Незаменимый элемент любых инженерных конструкций. Железо в виде разнообразных высокопрочных нержавеющих сталей — второй по применению металл в ракетах.
Везде, где нагрузка не распределена по большой конструкции, а сосредоточена в точке или нескольких точках, сталь выигрывает у алюминия.
Сталь жестче — конструкция из стали, размеры которой не должны «плыть» под нагрузкой, получается почти всегда компактнее и иногда даже легче алюминиевой. Сталь гораздо лучше переносит вибрацию, более терпима к нагреву, сталь дешевле, за исключением самых экзотических сортов, сталь, в конце концов, нужна для стартового сооружения, без которого ракета — ну, сами понимаете…
Но и баки ракеты могут быть стальными. Удивительно? Да. Однако первая американская межконтинентальная ракета Atlas использовала баки именно из тонкостенной нержавеющей стали. Для того чтобы стальная ракета выиграла у алюминиевой, многое пришлось радикально изменить. Толщина стенок баков у двигательного отсека достигала 1,27 миллиметра (1/20 дюйма), выше использовались более тонкие листы, и у самого верха керосинового бака толщина составляла всего 0,254 миллиметра (0,01 дюйма). А водородный разгонный блок Centaur, сделанный по такому же принципу, имеет стенку толщиной всего лишь с лезвие бритвы — 0,127 миллиметра!
Столь тонкая стенка сомнется даже под собственной тяжестью, поэтому форму она держит исключительно за счет внутреннего давления: с момента изготовления баки герметизируются, наддуваются и хранятся при повышенном внутреннем давлении.
В процессе изготовления стенки подпираются специальными держателями изнутри. Самая сложная стадия этого процесса — приварка днища к цилиндрической части. Ее обязательно нужно было выполнить за один проход, в результате ее в течение шестнадцати часов делали несколько бригад сварщиков, по две пары каждая; бригады сменяли друг друга через четыре часа. При этом одна из двух пар работала внутри бака.
Нелегкая, что и говорить, работа. Но зато на этой ракете американец Джон Гленн впервые вышел на орбиту. Да и дальше у нее была славная и долгая история, а блок Centaur летает и по сей день. У «Фау-2», между прочим, корпус тоже был стальным — от стали полностью отказались только на ракете Р-5, там стальной корпус оказался ненужным благодаря отделяющейся головной части.
Какой же металл можно поставить на третье место «по ракетности»? Ответ может показаться очевидным. Титан? Оказывается, вовсе нет.
Основной металл электро- и тепловой техники. Ну разве не странно? Довольно тяжелый, не слишком прочный, по сравнению со сталью — легкоплавкий, мягкий, по сравнению с алюминием — дорогой, но тем не менее незаменимый металл.
Все дело в чудовищной теплопроводности меди — она больше в десять раз по сравнению с дешевой сталью и в сорок раз по сравнению с дорогой нержавейкой. Алюминий тоже проигрывает меди по теплопроводности, а заодно и по температуре плавления. А нужна эта бешеная теплопроводность в самом сердце ракеты — в ее двигателе. Из меди делают внутреннюю стенку ракетного двигателя, ту, которая сдерживает трехтысячеградусный жар ракетного сердца. Чтобы стенка не расплавилась, ее делают составной — наружная, стальная, держит механические нагрузки, а внутренняя, медная, принимает на себя тепло.
В тоненьком зазоре между стенками идет поток горючего, направляющегося из бака в двигатель, и тут-то выясняется, что медь выигрывает у стали: дело в том, что температуры плавления отличаются на какую-то треть, а вот теплопроводность — в десятки раз. Так что стальная стенка прогорит раньше медной. Красивый «медный» цвет сопел двигателей Р-7 хорошо виден на всех фотографиях и в телерепортажах о вывозе ракет на старт.
В двигателях ракеты Р-7 внутренняя, «огневая», стенка сделана не из чистой меди, а из хромистой бронзы, содержащей всего 0,8% хрома. Это несколько снижает теплопроводность, но одновременно повышает максимальную рабочую температуру (жаростойкость) и облегчает жизнь технологам — чистая медь очень вязкая, ее тяжело обрабатывать резанием, а на внутренней рубашке нужно выфрезеровать ребра, которыми она прикрепляется к наружной. Толщина оставшейся бронзовой стенки — всего миллиметр, такой же толщины и ребра, а расстояние между ними — около 4 миллиметров.
Чем меньше тяга двигателя, тем хуже условия охлаждения — расход топлива меньше, а относительная поверхность соответственно больше. Поэтому на двигателях малой тяги, применяемых на космических аппаратах, приходится использовать для охлаждения не только горючее, но и окислитель — азотную кислоту или четырехокись азота. В таких случаях медную стенку для защиты нужно покрывать хромом с той стороны, где течет кислота. Но и с этим приходится смиряться, поскольку двигатель с медной огневой стенкой эффективнее.
Справедливости ради скажем, что двигатели со стальной внутренней стенкой тоже существуют, но их параметры, к сожалению, значительно хуже. И дело не только в мощности или тяге, нет, основной параметр совершенства двигателя — удельный импульс — в этом случае становится меньше на четверть, если не на треть. У «средних» двигателей он составляет 220 секунд, у хороших — 300 секунд, а у самых-пресамых «крутых и навороченных», тех, которых на «Шаттле» три штуки сзади, — 440 секунд. Правда, этим двигатели с медной стенкой обязаны не столько совершенству конструкции, сколько жидкому водороду. Керосиновый двигатель даже теоретически таким сделать невозможно. Однако медные сплавы позволили «выжать» из ракетного топлива до 98% его теоретической эффективности.
Драгоценный металл, известный человечеству с древности. Металл, без которого не обойтись нигде. Как гвоздь, которого не оказалось в кузнице в известном стихотворении, он держит на себе все.
Именно он связывает медь со сталью в жидкостном ракетном двигателе, и в этом, пожалуй, проявляется его мистическая сущность. Ни один из других конструкционных материалов не имеет никакого отношения к мистике — мистический шлейф веками тянется исключительно за этим металлом. И так было в течение всей истории его использования человеком, существенно более долгой, чем у меди или железа. Что уж говорить об алюминии, который был открыт только в девятнадцатом столетии, а стал относительно дешевым и того позже — в двадцатом.
За все годы человеческой цивилизации у этого необыкновенного металла было огромное количество применений и разнообразных профессий. Ему приписывали множество уникальных свойств, люди использовали его не только в своей технической и научной деятельности, но и в магии. К примеру, долгое время считалось, что «его боится всевозможная нечисть».
Главным недостатком этого металла была дороговизна, из-за чего его всегда приходилось расходовать экономно, точнее, разумно — так, как требовало очередное применение, которое ему придумывали неугомонные люди. Рано или поздно ему находили те или иные заменители, которые с течением времени с большим или меньшим успехом вытесняли его.
Сегодня, практически на наших глазах, он исчезает из такой прекрасной сферы деятельности человека, как фотография, которая в течение почти полутора столетий делала нашу жизнь более живописной, а летописи — более достоверными. А пятьдесят (или около того) лет назад он стал утрачивать позиции в одном из древнейших ремесел — чеканке монет. Конечно, монеты из этого металла выпускают и сегодня — но исключительно для нашего с вами развлечения: они давно перестали быть собственно деньгами и превратились в товар — подарочный и коллекционный.
Возможно, когда физики изобретут телепортацию и ракетные двигатели будут уже не нужны, наступит последний час и еще одной сферы его применения. Но пока что найти ему адекватную замену не удалось, и этот уникальный металл остается в ракетостроении вне конкуренции — так же, как и в охоте на вампиров.
Вы уже наверняка догадались, что все вышесказанное относится к серебру. Со времен ГИРДа и до сих пор единственным способом соединения частей камеры сгорания ракетных двигателей остается пайка серебряными припоями в вакуумной печи или в инертном газе. Попытки найти бессеребряные припои для этой цели ни к чему пока не привели. В отдельных узких областях эту задачку иногда удается решить — например, холодильники сейчас чинят с помощью медно-фосфорного припоя, — но в ЖРД замены серебру нет. В камере сгорания большого ЖРД его содержание достигает сотен граммов, а иногда доходит до килограмма.
Драгоценным металлом серебро называют скорее по многотысячелетней привычке, есть металлы, которые не считаются драгоценными, но стóят намного дороже серебра. Взять хотя бы бериллий. Этот металл втрое дороже серебра, но и он находит применение в космических аппаратах (правда, не в ракетах). Главным образом он получил известность благодаря способности замедлять и отражать нейтроны в ядерных реакторах. В качестве конструкционного материала его стали использовать позже.
Конечно, невозможно перечислить все металлы, которые можно назвать гордым именем «крылатые», да и нет в этом нужды. Монополия металлов, существовавшая в начале 1950-х годов, давно уже нарушена стекло- и углепластиками. Дороговизна этих материалов замедляет их распространение в одноразовых ракетах, а вот в самолетах они внедряются гораздо шире. Углепластиковые обтекатели, прикрывающие полезную нагрузку, и углепластиковые сопла двигателей верхних ступеней уже существуют и постепенно начинают составлять конкуренцию металлическим деталям.
Но с металлами, как известно из истории, люди работают уже приблизительно десять тысяч лет, и не так-то просто найти равноценную замену этим материалам.
Титан и титановые сплавы
Самый модный металл космического века.
Вопреки широко распространенному мнению, титан не очень широко применяется в ракетной технике — из титановых сплавов в основном делают газовые баллоны высокого давления (особенно для гелия). Титановые сплавы становятся прочнее, если поместить их в баки с жидким кислородом или жидким водородом, в результате это позволяет снизить их массу. На космическом корабле ТКС, который, правда, так ни разу и не полетел с космонавтами, привод стыковочных механизмов был пневматическим, воздух для него хранился в нескольких 36-литровых шар-баллонах из титана с рабочим давлением 330 атмосфер. Каждый такой баллон весил 19 килограммов. Это почти впятеро легче, чем стандартный сварочный баллон такой же вместимости, но рассчитанный на вдвое меньшее давление!
Металлы, применяемые в космической технике
История аэронавтики и астронавтики показала, что определение главных направлений или национальных целей оказывает большое влияние на развитие техники. Основу развития техники составляют знания о свойствах материалов. Решение всей совокупности сложных конструкционных, схемотехнических и технологических задач при разработке, создании и эксплуатации космических средств невозможно без широкого развития и внедрения результатов космического материаловедения.
Содержание
1 Основные сведения о металлах, применяемых в космическом технике 3
1.1 Жаропрочность 6
1.2 Тугоплавкие металлы -
2 Металлы применяемые в космическом кораблестроении 9
2.1 Бериллий….……………………………………………………………………………………-
2.2 Стали.…………………………………………………………………………10
2.3 Титановые сплавы . ………………………………………………………. 12
2.4 Магниевые сплавы…………………………………………………………. 13
2.5 Алюминиевые сплавы………………………………………………………. -
2.6 Космическое золото.…………………………………………………. ……15
Библиографический список 17
Прикрепленные файлы: 1 файл
Металлы применяемые в космической технике - копия.docx
– Фосфор придает стали хладноломкость (хрупкость при пониженных температурах). Это объясняется тем, что фосфор вызывает сильную внутрикристаллическую ликвацию.
– Феррит – железо с объемноцентрированной кристаллической решеткой и сплавы на его основе — является фазой мягкой и пластичной.
– Цементит – карбид железа, химическое соединение с формулой Fe3C, наоборот, предоставляет стали твердость и хрупкость[4].
2.3 Титановые сплавы
Технический титан — это металл серебристо-серого цвета с едва заметным светло-золотистым оттенком. Он легок, почти в 2 раза легче железа, но все же тяжелее алюминия: 1 см3 титана имеет массу m=4,5 г, железа m=7,8 г, а алюминия m=2,7 г. Плавится технический титан почти при Т=1700 °С, сталь – при Т=1500 °С, алюминий – при T=600° С. Он в полтора раза прочнее стали и в несколько раз прочнее алюминия, очень пластичный: технический титан легко прокатывать в листы и даже в очень топкую фольгу, толщиной в доли миллиметра, его можно вытягивать в прутки, проволоку, делать из него лепты, трубы. Технический титан обладает высокой прочностью, т. о. хорошо противостоит воздействию ударом и поддастся ковке, при этом он имеет высокую упругость и отличную выносливость. У технического титана довольно высокий продел текучести, он сопротивляется любым усилиям и нагрузкам, стремящимся смять, изменить форму и размеры изготовленной детали. Это его свойство выше в два с половиной раза, чем у железа, в три раза, чем у меди, и в 18 раз, чем у алюминия. У титана гораздо более высокая твердость, чем у алюминия, магния, меди, железа и некоторых сортов стали, однако ниже, чем у инструментальных сталей.
Технический титан — металл очень большой коррозионной стойкости. Он практически не изменяется и не разрушается на воздухе, в воде, исключительно стоек при обычной температуре во многих кислотах, даже в «царской водке», во многих агрессивных средах.
Титан, будучи весьма химически активным металлом, имеет благоприятные металлохимические свойства для образования прочных соединений — типа непрерывных и ограниченных твердых растворов ковалентных и ионных соединений.
В целом насчитывается более 50 элементов, дающих с титаном твердые растворы, на основе которых можно производить титановые сплавы и их соединения[5].
2.4 Магниевые сплавы
Магний - очень легкий серебристо-белый металл. Его лёгкость могла бы сделать этот металл прекрасным конструкционным материалом. Но, увы, чистый магний - мягок и непрочен. Поэтому конструкторы вынуждены использовать сплавы магния с другими металлами.
Магний имеет температуру плавления Т=650 °С. Магниевые сплавы обладают отличной механической обрабатываемостью, допускающей высокие скорости резания, и сравнительно большой прочностью.
Особенно широко применяют сплавы магния с алюминием, цинком и марганцем. Каждым из компонентов этого содружества вносит свой "пай" в общие свойства: алюминий и цинк увеличивают прочность сплава, марганец повышает его антикоррозионные свойства. Магний придаёт сплаву лёгкость - детали из магниевого сплава на 20…30 % легче алюминиевых и на 50…75 % легче чугунных и стальных. Сплавы этого элемента все чаще применяются в автомобилестроение, текстильную промышленность, полиграфию.
2.5 Алюминиевые сплавы
Алюминий — один из космических «первопроходцев»: конструкторы первых спутников даже не задавались вопросом, какой именно металл использовать в конструкции своих аппаратов. Легкий и прочный алюминий — точнее, «самолетные сплавы», стали постоянными «участниками» космических проектов. Около половины веса современной ракеты приходится на алюминиевые конструкции, а шаттлы почти на 90 % состоят из алюминиевых сплавов.
Неудивительно, что разработка новых технологий в обработке алюминия, усиление его показателей стойкости к высоким и низким температурам, вибрационным нагрузкам и воздействию радиации сегодня представляет собой не просто приоритетное, а стратегическое направление в металлургии. На сегодняшний день перспективы применения алюминия в космической отрасли связывают, прежде всего, с появлением новых сплавов, позволяющих снизить вес ракет, кораблей и станций, что, в свою очередь, обеспечит значительное сокращение топливных расходов при выводе агрегатов на орбиту и значительно расширит функциональность космических объектов.
Основная тенденция в области разработок космических материалов — создание гранулированных алюминиевых сплавов, которые обеспечивают практически тридцатипроцентное снижение веса узловых конструкций. Расширяется и диапазон рабочих температур до Т=850 °С. За последние несколько лет было разработано несколько таких сплавов: специалисты объединяют их в класс интерметаллидов — это, как правило, сплавы титана, причем наиболее перспективными считаются варианты «титан-алюминий». Кроме титановых сплавов в ракетостроении применяются варианты «никель-алюминий» и «железо-хром-алюминий».
Однако есть и более интересные идеи по усилению свойств «ракетного» алюминия. Например, корейские исследователи, применив нанотехнологии, разработали так называемый «умный» алюминий — Smart Aluminum. Название, безусловно, спорно, однако все остальные характеристики нового материала сомнений не вызывают: по словам разработчиков, новый сплав в три раза прочнее обычных «космических» вариантов и примерно в сто раз прочнее стали.
Алюминий и его соединения используются в качестве высокоэффективного ракетного горючего в двухкомпонентных ракетных топливах и в качестве горючего компонента в твёрдых ракетных топливах. Следующие соединения алюминия представляют наибольший практический интерес как ракетное горючее:
- Порошковый алюминий как горючее в твердых ракетных топливах. Применяется также в виде порошка и суспензий в углеводородах.
- Гидрид алюминия.
- Боранат алюминия.
- Триметилалюминий.
- Триэтилалюминий.
- Трипропилалюминий.
Триэтилалюминий (обычно, совместно с триэтилбором) используется также для химического зажигания (то есть, как пусковое горючее) в ракетных двигателях, так как самовоспламеняется в газообразном кислороде.
2.6 Космическое золото
Золото является хорошим проводником тепла и электрического тока, следовательно, широко применяется в электронике. Благодаря свойству отражать световые лучи в области видимого спектра, золото используют в космонавтике и авиации, в качестве защиты от теплового излучения и коррозии. Золотое покрытие защищает космический корабль от инфракрасной радиации.
Золото является металлом с самыми высокими пластичными и ковкими свойствами. Оно легко расплавляется в тончайшие листочки: из одного грамма золота можно изготовить лист площадью в один квадратный метр. Золото легко полируется. Обладает высокой отражательной способностью.
Этот металл обладает высочайшей стойкостью к воздействию агрессивных сред, а в сплавах он проявляет каталитические свойства. Золотое покрытие легко наносят на металлы и керамику. Драгоценный металл легко паяется и сваривается под давлением. Совокупность всех полезных свойств стала причиной разнообразного использования золота в современных отраслях техники: авиационной, космической, аэрокосмической, и в электронике.
На девяносто процентов золото в технике применяют в виде покрытий. В электронике благородный металл используется в соединении схем сваркой под давлением и ультразвуковой сваркой, контактов в радиоаппаратуре, телефонном оборудовании, в качестве проволочных тонких проводников, для пайки транзисторов, генераторов частот и многого другого.
Металл применяется и для контроля особо низких температур в измерительной технике в виде сплава золота с хромом или кобальтом. В 1991 г. в Британии начато производство высокоточного гигрометра, для определения влажности воздуха. Основной деталью, которого является тончайший сердечник из металла с поверхностью из пористого золота. Прибор может определить одну миллионную часть процента содержания влаги в воздухе[6].
Проверенные временем: из каких металлов строят современные ракеты
Первый старт ракеты Р-7 состоялся 15 мая 1957 года. А ведь этот корабль до сих пор носит всех наших космонавтов и является безусловным триумфом конструкторской идеи над конструкционным материалом. Интересно, что ровно через 30 лет после ее запуска, 15 мая 1987 года, состоялся и первый старт ракеты «Энергия», которая, наоборот, использовала массу экзотических материалов, недоступных 30 лет назад.
Когда Сталин поставил перед Королевым задачу копирования Фау-2, многие ее материалы были новы для тогдашней советской промышленности, но к 1955 году уже исчезли проблемы, которые могли бы помешать конструкторам воплощать идеи. К тому же материалы, использованные при создании ракеты Р-7, даже в 1955 году не отличались новизной — ведь нужно было учитывать затраты времени и денег при серийном производстве ракеты. Поэтому основой ее конструкции стали давно освоенные алюминиевые сплавы.
Раньше модно было называть алюминий «крылатым металлом», подчеркивая, что если конструкция не ездит по земле или по рельсам, а летает, то она обязательно должна быть выполнена из алюминия. На самом деле крылатых металлов много, и это определение давно вышло из моды. Спору нет, алюминий хорош, достаточно дешев, сплавы его сравнительно прочны, он легко обрабатывается Но из одного алюминия самолет не построишь. А в поршневом самолете и дерево оказывалось вполне уместным (даже в ракете Р-7 в приборном отсеке есть фанерные перегородки!). Унаследовав алюминий от авиации, этим металлом стала пользоваться и ракетная техника. Но тут-то как раз и обнаружилась узость его возможностей.
Алюминий
«Крылатый металл», любимец авиаконструкторов. Чистый алюминий втрое легче стали, очень пластичен, но не очень прочен.
Чтобы он стал хорошим конструкционным материалом, из него приходится делать сплавы. Исторически первым был дуралюмин (дюралюминий, дюраль, как мы его чаще всего зовем) — такое имя дала сплаву немецкая фирма, впервые его предложившая в 1909 году (от названия города Дюрен). Этот сплав, кроме алюминия, содержит небольшие количества меди и марганца, резко повышающие его прочность и жесткость. Но есть у дюраля и недостатки: его нельзя сваривать и сложно штамповать (нужна термообработка). Полную прочность он набирает со временем, этот процесс назвали «старением», а после термообработки состаривать сплав нужно заново. Поэтому детали из него соединяют клепкой и болтами.
В последней четверти XX века прогресс в металлургии привел к появлению алюминий-литиевых сплавов. Если до этого добавки в алюминий были направлены только на увеличение прочности, то литий позволял сделать сплав заметно более легким. Из алюминий-литиевого сплава был сделан бак для водорода ракеты «Энергия», из него же делают сейчас и баки «Шаттлов».
Наконец, самый экзотический материал на основе алюминия — боралюминиевый композит, где алюминию отведена та же роль, что и эпоксидной смоле в стеклопластике: он удерживает вместе высокопрочные волокна бора. Этот материал только-только начал внедряться в отечественную космонавтику — из него сделана ферма между баками последней модификации разгонного блока «ДМ-SL», задействованного в проекте «Морской старт». Выбор конструктора за прошедшие 50 лет стал намного богаче. Тем не менее как тогда, так и сейчас алюминий — металл №1 в ракете. Но, конечно же, есть и целый ряд других металлов, без которых ракета не сможет полететь.
Самый модный металл космического века. Вопреки широко распространенному мнению, титан не очень широко применяется в ракетной технике — из титановых сплавов в основном делают газовые баллоны высокого давления (особенно для гелия). Титановые сплавы становятся прочнее, если поместить их в баки с жидким кислородом или жидким водородом, в результате это позволяет снизить их массу. На космическом корабле ТКС, который, правда, так ни разу и не полетел с космонавтами, привод стыковочных механизмов был пневматическим, воздух для него хранился в нескольких 36-литровых шар-баллонах из титана с рабочим давлением 330 атмосфер. Каждый такой баллон весил 19 килограммов. Это почти впятеро легче, чем стандартный сварочный баллон такой же вместимости, но рассчитанный на вдвое меньшее давление!
Железо
Незаменимый элемент любых инженерных конструкций. Железо в виде разнообразных высокопрочных нержавеющих сталей — второй по применению металл в ракетах. Везде, где нагрузка не распределена по большой конструкции, а сосредоточена в точке или нескольких точках, сталь выигрывает у алюминия. Сталь жестче — конструкция из стали, размеры которой не должны «плыть» под нагрузкой, получается почти всегда компактнее и иногда даже легче алюминиевой. Сталь гораздо лучше переносит вибрацию, более терпима к нагреву, сталь дешевле, за исключением самых экзотических сортов, сталь, в конце концов, нужна для стартового сооружения, без которого ракета — ну, сами понимаете.
Столь тонкая стенка сомнется даже под собственной тяжестью, поэтому форму она держит исключительно за счет внутреннего давления: с момента изготовления баки герметизируются, наддуваются и хранятся при повышенном внутреннем давлении. В процессе изготовления стенки подпираются специальными держателями изнутри. Самая сложная стадия этого процесса — приварка днища к цилиндрической части. Ее обязательно нужно было выполнить за один проход, в результате ее в течение шестнадцати часов делали несколько бригад сварщиков, по две пары каждая; бригады сменяли друг друга через четыре часа. При этом одна из двух пар работала внутри бака.
Нелегкая, что и говорить, работа. Но зато на этой ракете американец Джон Гленн впервые вышел на орбиту. Да и дальше у нее была славная и долгая история, а блок Centaur летает и по сей день. У «Фау-2», между прочим, корпус тоже был стальным — от стали полностью отказались только на ракете Р-5, там стальной корпус оказался ненужным благодаря отделяющейся головной части. Какой же металл можно поставить на третье место «по ракетности»? Ответ может показаться очевидным. Титан? Оказывается, вовсе нет.
Серебро
Драгоценный металл, известный человечеству с древности. Металл, без которого не обойтись нигде. Как гвоздь, которого не оказалось в кузнице в известном стихотворении, он держит на себе все. Именно он связывает медь со сталью в жидкостном ракетном двигателе, и в этом, пожалуй, проявляется его мистическая сущность. Ни один из других конструкционных материалов не имеет никакого отношения к мистике — мистический шлейф веками тянется исключительно за этим металлом. И так было в течение всей истории его использования человеком, существенно более долгой, чем у меди или железа. Что уж говорить об алюминии, который был открыт только в девятнадцатом столетии, а стал относительно дешевым и того позже — в двадцатом.
Конечно, невозможно перечислить все металлы, которые можно назвать гордым именем «крылатые», да и нет в этом нужды. Монополия металлов, существовавшая в начале 1950-х годов, давно уже нарушена стекло- и углепластиками. Дороговизна этих материалов замедляет их распространение в одноразовых ракетах, а вот в самолетах они внедряются гораздо шире. Углепластиковые обтекатели, прикрывающие полезную нагрузку, и углепластиковые сопла двигателей верхних ступеней уже существуют и постепенно начинают составлять конкуренцию металлическим деталям. Но с металлами, как известно из истории, люди работают уже приблизительно десять тысяч лет, и не так-то просто найти равноценную замену этим материалам.
Пластиковые ракеты: Ракетные материалы, часть 2
Мы продолжаем разговор о «ракетных металлах», начатый в апреле 2007 года, и рассказываем о тех материалах, которые приходят на смену нынешним «любимцам конструкторов».
На рубеже XX и XXI веков основу ракетно-космической техники составляли алюминиевые, никелевые и титановые сплавы, композитных же материалов (КМ) было немного. Пройдет еще десятилетие или два, и ситуация коренным изменится — новое поколение алюминиево-литиевых сплавов, композиты и интерметаллиды вытеснят из ракет традиционные сплавы. Впрочем, хорошо знакомые металлы пока не сдаются: они давно освоены техникой, есть оборудование и технологические процессы, которые позволяют получать требуемые детали. Нужно только повысить качество материалов.
Передовые металлургические технологии могут дать уже известным материалам новую жизнь. Наиболее высокую чистоту титановых и никелевых сплавов обеспечивает электронно-лучевая переплавка с промежуточной емкостью, когда металл расплавляется и продувается очень небольшим количеством нерастворимого в металле инертного газа, обычно гелия, который «вытягивает» за собой вредные примеси, под двумя электронно-лучевыми пушками. В результате происходит удаление серы, кремния, фосфора, кислорода, азота, и качество металла заметно растет, даже повышается температура плавления! Это одна из лучших технологий в мире. Во всяком случае, именно под влиянием российских разработок американцы стали активно строить такие печи.
В порошок
Одно из приоритетных российских направлений — гранульная (порошковая) металлургия. В чем ее преимущества перед литьем? По составу никелевые сплавы в обоих случаях одни и те же, но их характеристики совсем другие. Показатели надежности гранульных материалов более чем вдвое превышают литые — благодаря уникальной однородности и улучшению микроструктуры. Ударная вязкость (параметр, используемый материаловедами; «антихрупкость») выше в полтора раза. Известно, например, что двигатели для крупнейшего в мире европейского аэробуса А380 поставила фирма Rolls-Royce; их лопаточные колеса сделаны из гранульных жаропрочных сплавов. Англичане сами такой металлургией не занимались и попросили помощи у американцев. Те отказались передать оборудование и технологию, но «с радостью» стали продавать диски. Интересная история: «ключик» от А380, за взлетом которого наблюдали Шредер и Ширак, на самом деле находится в США.
Таким образом, серьезного гранульного производства сегодня в Европе нет. А в России есть — существует полная линия гранульной металлургии, созданная на ОАО «Композит» совместно со Ступинским металлургическим комбинатом. Освоено и производство капсул, и выплавка электродов самого высокого качества, и распыление, и получение великолепнейших гранул. В турбонасосных агрегатах двигателей РД-171 и РД-180, идущих на экспорт, используются именно такие материалы. Кстати, при сравнительном анализе экспертами ОАО «Композит» российские гранулы оказались лучше американских.
Под давлением
Традиционное литье может составить конкуренцию спеченному порошку, если отливку потом обработать в газостате под давлением до 2000 атмосфер и при температуре до 12000С. При обычном затвердевании в форме металл усаживается, и в наиболее сложных местах деталей — в изменениях сечений и переходов — образуются микропоры. По этим местам и происходит разрушение. Обработка температурой и давлением в газостате позволяет приблизить свойства детали к идеальным. Вот данные 2003 года: в США 850 газостатов, в Европе 720, в Японии — порядка 400. К сожалению, в России лишь 24 газостата, и вот сейчас на ММЗ «Салют» прибавляется еще один, 25-й. А действуют из них всего четыре!
Эффект от обработки в газостате поразительный: усталостная прочность лопаток ГТД повышается наполовину; количество брака уменьшается в пять раз — с 50 до 10%! А стоимость всего одной литой турбинной лопатки — порядка пятисот долларов! Поверхности деталей, работающих на износ, при традиционных технологиях приходится дополнительно упрочнять. Обычно они азотируются, но тогда на поверхности получается плотный и хрупкий слой, который может скалываться. В газостате азотирование качественно иное — глубина слоя, насыщенного азотом, не 10−20 микрон, как раньше, а 1,5−2,5 мм. Поверхность по твердости вполне соизмерима с алмазом, далее идет плавный переход — никаких сколов поверхностного слоя, — а в глубине твердость, характерная для металла.
Из таких материалов в перспективе будут изготавливать турбины и прочие агрегаты двигателей, а вот корпуса и баки — из алюминий-литиевых сплавов второго поколения. Они намного дешевле сплавов первого поколения, лучше штампуются, гораздо лучше свариваются (можно вместо экзотической сварки трением использовать традиционную аргонно-дуговую) и содержат значительно меньше лития (что, кроме снижения стоимости, увеличивает стойкость к микротрещинам). «Композит» освоил малотоннажное производство Al-Li сплавов второго поколения — трубы и полусферы.
Интерметаллы
Последний класс металлических материалов — интерметаллиды (особый тип химических соединений разных металлов, от сплавов отличаются прочными химическими связями) на основе титана и никеля. Если титановые сплавы работают сейчас до температуры 5500С, а 600−6500 — рекордные цифры, то интерметаллиды в перспективе смогут работать до 800−9000С. При этом их удельный вес 4−6 г/см3 — гораздо меньше, чем у традиционных никелевых жаропрочных сплавов. Интерметаллиды обеспечивают повышение коррозионной стойкости, имеют в 20 раз более высокую стабильность размеров и радиационную стойкость, что особо важно для космических аппаратов (КА), в пять раз более высокую удельную прочность. Впрочем, интерметаллиды были известны давно, но их использованию в технике мешала их хрупкость. Лишь сейчас с нею научились бороться различными хитрыми способами, ранее недоступными.
Крылатые композиты
Но все же, несмотря на новые технологии работы с металлами, неметаллические материалы побеждают. Если в конструкциях российской гражданской авиатехники четвертого поколения применяется примерно 70% алюминиевых сплавов и 15−20% композитов, то последний Airbus уже на 50% состоит из композитных материалов, а американцы в Boeing 787 Dreamliner обещают повысить этот показатель до 70%. С ракетами и космическими аппаратами происходит то же самое. Причина — экономия массы выводимого на орбиту груза, и чем выше «номер ступени», тем больше выигрыш от использования композитов. Кстати, первой ракетной крупногабаритной «цельнопластмассовой» деталью почти полвека назад стал стеклопластиковый головной обтекатель на американских лунных зондах. Современный обтекатель ракеты «Протон-М», сложная сотовая пятислойная углепластиковая конструкция со специальным теплозащитным покрытием (ТЗП), весит на четверть меньше традиционного дюралевого. Большинство наружных ТЗП, которые предохраняют полезный груз от аэродинамического нагрева, работают на испарении и «уносе массы». Это полимерные материалы на основе, как правило, силиконовой резины с различными наполнителями — как снижающими массу покрытия, так и замедляющими его выгорание. Реализован принцип «кипящего чайника»: пока вода не выкипела, температура чайника выше 1000С не поднимется. В результате снаружи, например, головного обтекателя температура свыше 9000С, а в приборном отсеке — всего 60!
Пластмассовые ракеты
Твердотопливные ракеты стали «пластиковыми» почти целиком — из композитов уже давно изготавливают корпуса двигателей, причем в космосе стеклопластик появился на третьей ступени первых американских ракет-носителей «Тор-Эйбл» и «Авангард» в конце 50-х. Хотя «Авангард-1» был запущен ракетой с металлической третьей ступенью, последний спутник этой серии полетел уже на стеклопластиковом двигателе. Чтобы получить максимальный выигрыш от замены металла композитом, корпус двигателя делают одной неразъемной конструкцией, которая за очевидное сходство с продукцией гусениц шелкопряда была названа «коконом». Для намотки «кокона» используются специальные крупногабаритные станки, причем прямо в процессе намотки кокон пропитывается смолами, которые полимеризуются в специальных автоклавах. Кроме стеклопластика используются и углепластики, и даже органопластики (кевлар и др.).
Если говорить о жидкостных ракетах, то пока дело ограничивается межбаковыми отсеками — например, на ракете Falcon-1 переходник между ступенями сделан из углепластика. И в Америке, и у нас разработчики пытаются построить из углепластика баки для горючего и для окислителя, но задача пока не решена — из-за этого, например, был закрыт проект одноступенчатого многоразового носителя Х-33. Ключевым местом конструкции должен был стать композитный бак для жидкого водорода, но оказалось, что под воздействием криотемператур композит растрескивался. Тем не менее попытки будут продолжаться, потому что выигрыш может составить не менее 25% массы конструкции, даже с учетом увеличения толщины.
Матрица
В этом направлении больших успехов добилось Обнинское ПО технологии. Расположение слоев ткани при плетении в особых направлениях обеспечивает работоспособность материала при колебаниях температур от -196 до +2700С, причем деталь совершенно не коробится — материал подбирается так, что попеременно работают то одни слои, то другие, то третьи, расширяясь в разные стороны.
В местах с максимальными температурами применяются углерод-углеродные композиционные материалы (УУКМ). Они фактически незаменимы во вкладышах критического сечения сопел твердотопливных двигателей, входных «воротниках», раструбах сопел. Нос «Шаттла» и кромки его крыльев тоже прикрывают УУКМ.
Существует много технологий получения УУКМ. В общем виде материал представляет собой каркас из углеродных волокон, промежутки между которыми тоже заполнены углеродным материалом, «матрицей». Матрицу получают разложением подходящих органических веществ, жидких или газообразных, прямо в объеме каркаса, при помощи специальных печей; каркас получают методом плетения или сборки и последующего отжига углепластиковых стержней.
Губка из вольфрама
Разрабатываются неметаллические композиционные материалы и для ЖРД. Например, замена металлического соплового насадка двигателя разгонного блока ДМ-SL, используемого в составе РН «Зенит-3SL» комплекса «Морской старт», позволила сэкономить около 10 кг массы самого ЖРД да еще повысить удельный импульс тяги на 8−10 с (1 с удельного импульса тяги — это 20 кг полезного груза на геостационарной орбите!). Впервые насадок из УУКМ был использован при запуске 10 июня 2003 года.
Разгонные блоки работают в вакууме, а струя газов самого двигателя содержит избыток горючего. Задача защиты от окисления УУКМ раньше не ставилась, но теперь наши ведущие КБ пытаются использовать композитные сопла и для ЖРД нижних ступеней (в частности, в рамках программы «Союз-3»). В атмосферном воздухе углерод может загореться, но уже разработаны и готовы к внедрению технологии защиты УУКМ карбидом кремния.
Новые металлизированные виды топлива могут потребовать повышения температуры в критическом сечении сопла до 40000С, так что традиционные УУКМ уже не справятся. Чтобы «облегчить им жизнь» в таких условиях, нужно частично заменить матрицу на тугоплавкие соединения типа карбида гафния или карбида тантала. Это позволит добиться эффекта, который был ранее достигнут в известном сплаве ВМДФ (пористый вольфрам, пропитанный медью): температура повышается, медь испаряется, уносит часть тепла и тем самым защищает вольфрам на время эксплуатации.
Микродвигатели
Композиты из карбида кремния позволят совершить революцию в строительстве микро-ЖРД, необходимых для ориентации космических аппаратов и коррекции их траекторий. Нынешние двигатели чаще всего однокомпонентные, работающие на разложении гидразина, вытеснительная подача которого в камеру сгорания требует тяжелых баков и большого количества вытесняющего газа. Керамо-матричные композиты с каркасом из волокон карбида кремния и матрицей из такого же карбида кремния позволят к 2010 году либо чуть позже создать материал, из которого можно изготовить колесо ротора турбины вместе с лопатками для турбонасосного агрегата такого микро-ЖРД. Условия достаточно жесткие — 10 000 об/мин, температура свыше 17000С. Ни один металлический материал в таких условиях работать не может. Но это еще не все — крутиться ротор этой турбины будет в композитных же подшипниках скольжения! Дело в том, что традиционные подшипники качения требуют смазки, но ни одна смазка не сможет работать в столь жестких условиях долгое время — либо испарится, либо выгорит. Сейчас есть уже два класса материалов — один на основе углепластика, другой — углерод-углерода; они могут применяться для изготовления вкладышей подшипников скольжения, которые полностью заменят подшипники качения. Углерод-углеродный вариант работает при температурах до 4500С, а углерод-карбидный — до 20000С. Еще одно достоинство таких материалов состоит в том, что они могут работать в агрессивных средах.
Переход на турбонасосную подачу и высокоэнергетическое топливо позволит улучшить экономичность микро-ЖРД и весовое совершенство космических аппаратов. С 2002 года в этой области действует программа, утвержденная, курируемая и финансируемая Роскосмосом.
Еще одна перспективная технология — металло-композитные материалы, которые можно применить в составе микро-ЖРД: это многослойные композиции, полученные методом послойного вакуумного напыления. Например, микрокамера из молибдена и ниобия. Молибден — прочный, термостойкий, но очень хрупкий материал, ниобий — также термостойкий, не очень прочный, но весьма пластичный материал. Набирая от 16 до 18 слоев толщиной 15−20 микрон каждый, мы получаем композицию, которая работает при весьма высоких температурах, порядка 2100−22000С, и обеспечивает высокие массовые характеристики. Этот металлический КМ может рассматриваться как альтернатива материалам типа SiC-SiC, поскольку он дешевле и в ряде случаев перспективнее.
Расскажем и о композитах с металлической матрицей. По сравнению с традиционными титановыми или алюминиевыми сплавами удельная жесткость композита «бор-алюминий» выросла в три раза (правда, при увеличении цены примерно в десять раз). Тем не менее этот материал чрезвычайно перспективен для ферменных конструкций КА, там, где толщина, а следовательно, и масса конструкции определяются не прочностью, а устойчивостью. Уже сейчас такой композит серийно используется в разгонных блоках «Фрегат» НПО Лавочкина и DM-SL РКК «Энергия».
Конечно, трудно себе представить «ракету», состоящую практически полностью из неметаллических материалов. Тем не менее будущее за ними. На смену крылатым металлам приходят крылатые неметаллы.
Читайте также: