Опыты рикке подтвердили что проводимость в металлах

Обновлено: 07.01.2025

§ 34. Электрический ток в металлах. Сверхпроводимость

Типичными представителями класса проводников являются металлы. Какова природа электрического тока в металлах?

Природа электрического тока в металлах. В металлических проводниках носители электрического заряда — свободные электроны. Под действием внешнего электрического поля свободные электроны упорядоченно движутся, создавая электрический ток ( рис. 194 ).

Электронная проводимость металлов была впервые экспериментально подтверждена немецким физиком К. Рикке ( 1845–1915 ) в 1901 г. Суть опыта Рикке заключалась в следующем: по проводнику, состоявшему из трёх отполированных и плотно прижатых друг к другу цилиндров — двух медных и одного алюминиевого ( рис. 195 ), в течение года проходил ток одного и того же направления. За этот промежуток времени через проводник прошёл заряд более 3,5 МКл. После завершения опыта взвешивание показало, что массы цилиндров остались неизменными. Это явилось экспериментальным доказательством того, что перенос заряда при прохождении тока в металлах не сопровождается химическими процессами и переносом вещества, а осуществляется частицами, которые являются одинаковыми для всех металлов, т. е. электронами.

В 1916 г. американский физик Р. Толмен ( 1881—1948 ) и шотландский физик Т. Стюарт усовершенствовали методику этих опытов и выполнили количественные измерения, неопровержимо доказавшие, что ток в металлических проводниках обусловлен движением свободных электронов.

В этих опытах катушку с большим числом витков тонкой проволоки подключали к гальванометру и приводили в быстрое вращение вокруг своей оси ( рис. 195.1 ). При резком торможении катушки в цепи возникал кратковременный ток, обусловленный инерцией носителей заряда. По направлению отклонения стрелки гальванометра было установлено, что электрический ток создают отрицательно заряженные частицы. При этом экспериментально полученное отношение заряда каждой из этих частиц к её массе (удельный заряд) близко к удельному заряду электрона, полученному из других опытов. Так было экспериментально доказано, что носителями свободных зарядов в металлах являются электроны.

Вещества, обладающие электронной проводимостью, называют проводниками первого рода.

В соответствии с классической электронной теорией проводимости металлов, созданной немецким физиком П. Друде ( 1863–1906 ) в 1900 г., металлический проводник можно рассматривать как физическую систему, состоящую из свободных электронов и положительно заряженных ионов, колеблющихся около положений равновесия ( рис. 196 ).

Появление свободных электронов при образовании металлического кристалла из нейтральных атомов можно упрощённо объяснить следующим образом. Электроны, находящиеся на внешних оболочках атомов, слабо связаны со своими ядрами. При образовании кристалла атомы сближаются на расстояние r 0,1 нм , и электроны начинают взаимодействовать не только со своими ядрами, но и с ядрами соседних атомов. В результате этого их взаимодействие с собственными ядрами значительно ослабевает, вследствие чего они теряют с ними связь и могут двигаться по всему кристаллу в любом направлении как свободные частицы. Атомы превращаются при этом в положительно заряженные ионы. В пространстве между ионами беспорядочно движутся подобно частицам идеального газа свободные электроны. Поэтому для описания движения электронов используют модель «электронный газ» — совокупность свободных электронов в кристаллической решётке металла. На рисунке 196.1 пунктирной линией изображена траектория движения одного из электронов.

В этой модели электроны, упорядоченное движение которых является током проводимости, рассматривают как материальные точки, модуль потенциальной энергии взаимодействия которых пренебрежимо мал по сравнению с их кинетической энергией. Считают, что движение электронов под действием электрического поля подчиняется законам классической механики, а их столкновения с ионами кристаллической решётки металла являются неупругими, т. е. при столкновениях электроны полностью передают ионам кинетическую энергию своего упорядоченного движения. В промежутках между столкновениями свободные электроны совершают беспорядочное тепловое движение и в то же время движутся упорядоченно и равноускоренно под воздействием электрического поля.

Интересно знать

Модель электронного газа позволяет теоретически объяснить природу сопротивления и обосновать закон Ома для участка цепи, не содержащего источника тока, на основе классической электронной теории проводимости металлов. Проанализируем упорядоченное движение электронов проводимости.

Пусть электрон движется с ускорением в направлении, противоположном направлению напряжённости электрического поля ( рис. 196.2 ): где m0 — масса электрона, e — элементарный электрический заряд (модуль заряда электрона).

Тогда модуль средней скорости его направленного движения: , где — усреднённый промежуток времени между двумя последовательными столкновениями электрона с ионами кристаллической решётки.

Поскольку электрическое поле внутри однородного прямолинейного проводника с током однородное, то модуль напряжённости этого поля где l — длина проводника, U — напряжение между его концами. Тогда модуль средней скорости направленного движения электронов пропорционален напряжению между концами проводника .

Сила тока в проводнике пропорциональна модулю средней скорости направленного движения электронов:

где q — модуль заряда электронов проводимости, находящихся в проводнике, — усреднённое время прохождения этих электронов по проводнику, N — количество электронов проводимости в проводнике, n — концентрация этих электронов, V = Sl — объём проводника. Следовательно, сила тока пропорциональна напряжению между концами проводника I U.

Ток в металлах

Ранее отмечалось, что протекание тока в металлах обусловлено наличием свободных электронов. Существуют экспериментальные доказательства данного утверждения.

1.Опыт Рикке (1911)

Немецкий ученый Рикке поставил следующий эксперимент. Через три последовательно соединенных металлических цилиндра (медь, алюминий, медь) в течение года протекал электрический ток.

За год прошел электрический заряд Q=3,5 МКл.

Это говорит о том, что ток обусловлен движением частиц, одинаковых для всех металлов.

2.Опыты Папалекси и Мандельштама (1912–1913)

Русские ученые предложили следующую идею: есть проводник, который движется с некоторой скоростью, а потом резко тормозится.

С помощью данного эксперимента можно было установить знак частиц, отвечающих за ток в металлах. Их эксперименты показали, что это отрицательные частицы. Опыт можно было бы выполнить и с количественным результатом, но помешала первая мировая война.

3.Опыты Толмена – Стюарта (1915–1916)

Опыт был поставлен в лаборатории калифорнийского университета США с численным результатом.

С помощью данных экспериментов было подтверждено, что ток обусловлен движением отрицательных частиц и был измерен удельный заряд.

В 1897 году Дж. Дж. Томсон открыл электрон, для которого удельный заряд равен:

Оказалось, что ток в металлах обусловлен движением электронов.

4.Электроны в металле

Электрон в атоме находится в потенциальной яме.

Когда атомы объединяются в кристаллическую решетку, их потенциальные ямы перекрываются. Энергии электрона может хватить, чтобы преодолеть потенциальный барьер. Электрон начинает принадлежать не одному атому, а всему кристаллу. Говорят, что электроны обобществляются или коллективизируются и в металлах существует электронный газ.

Электроны абсолютно свободны в металле, т.к. очень малой разности потенциалов хватает для возникновения тока. Электронный газ выполняет связывающую роль для кристаллов.

Несложно оценить концентрацию электронов в металле.

Такой же порядок концентрации дают и другие, в том числе экспериментальные, методы, например, эффект Холла (см. далее).

5.Классическая электронная теория Друде – Лоренца

Считаем, что электронный газ является идеальным и подчиняется статистике Максвелла-Больцмана.

Дрейфовую скорость упорядоченного движения можно оценить

Это скорость каждого отдельного электрона. За возникновение тока отвечает скорость передачи возбуждения по цепи, т.е. скорость света.

Считаем, что электроны между собой не взаимодействуют, а взаимодействие с узлом кристаллической решетки сводится к столкновениям и передачи им энергии электрона. Пусть время между столкновениями τ, тогда скорость равна

То есть, получаем закон Ома в дифференциальной форме.

Получим закон Джоуля – Ленца в дифференциальной форме.

Теория Друде – Лоренца позволяет обосновать законы Ома и Джоуля – Ленца.

6.О нарушениях закона Ома

Закон Ома справедлив, пока электростатическая энергия много меньше тепловой.

Данное значение напряженности для газов достаточно скромное, поэтому в газах закон Ома не выполняется.

Для металлов:

Для металла такие напряженности невозможны, т.к. нагревание столь велико, что металл испаряется, следовательно, для металлов закон Ома выполняется практически всегда.

Закон Ома нарушается, если характерное время процесса меньше или равно времени пробега.

Закон Ома не выполняется для нелинейных элементов (диод, триод и т.д.), для полупроводников и для контактов металл-полупроводник и полупроводник-полупроводник. Это хорошо, т.к. иначе не существовало бы электроники.

7.Закон Видемана – Франца

Отношение коэффициента теплопроводности к удельной проводимости пропорционально температуре.

Качественно этот закон легко объясним, т.к. за перенос тепла и за перенос заряда отвечают одни и те же частицы (электроны).

Теория Друде – Лоренца позволяет рассчитать коэффициент β, который более или менее удовлетворительно сходится с экспериментальным.

8.Недостатки теории Друде – Лоренца

Теплоемкость электронного газа . Теплоемкость кристаллической решетки – 3R, следовательно, теплоемкость кристалла должна быть – 4,5R. Закон Дюлонга и Пти утверждает, что теплоемкость кристалла –3R.

Не объясняется явление сверхпроводимости.

Вычисленное по экспериментальным данным время пробега оказывается слишком большим, т.е. при таком времени электрон мог бы проходить сотни постоянных решёток.

Данные недостатки объясняются тем, что электронный газ – газ квантовый и подчиняется не статистике Максвелла-Больцмана, а статистике Ферми – Дирака. Классическая теория Друде – Лоренца качественно хорошо объясняет известные закономерности, а количественные – удовлетворительно.

§ 3.2. Электронная проводимость металлов

В предыдущих главах мы неоднократно пользовались представлением о том, что свободными носителями заряда в большинстве металлов являются электроны. В отсутствие электрического поля они движутся беспорядочно, участвуя в тепловом движении (см. рис. 2.1).

Под действием электрического поля электроны начинают упорядоченно перемещаться между ионами, находящимися в узлах кристаллической решетки (см. рис. 2.2), со средней скоростью порядка 10 -4 м/с, образуя электрический ток.

Ионы кристаллической решетки металла в твердом состоянии не принимают участия в создании тока. Их перемещение при прохождении тока означало бы перенос вещества вдоль проводника. Опыты же по пропусканию тока в течение многих месяцев показали, что ничего подобного не происходит.

Опыт Рикке (1901)

Э. Рикке составил цепь, в которую входили три прижатых друг к другу цилиндра, из которых два крайних были медные, а средний — алюминиевый (рис. 3.1). В течение года через эти цилиндры протекал ток порядка 0,1 А, так что общий заряд, прошедший через цилиндры, превысил 3,5 • 10 6 Кл.


По окончании опыта цилиндры были разъединены, и обнаружились лишь следы взаимного проникновения, не превышающие результатов обычной диффузии атомов в твердых телах.

Экспериментальное доказательство существования свободных электронов в металлах

Экспериментальное доказательство того, что проводимость металлов обусловлена движением свободных электронов, было дано в опытах Л. И. Мандельштама и Н. Д. Папалекси в 1912 г. (результаты не были опубликованы), а также Т. Стюарта и Р. Толмена в 1916 г. Идея этих опытов такова. Если резко затормозить движущийся кусок металла, то находящиеся в нем свободные заряды, двигаясь по инерции, будут скапливаться у переднего его конца, и между концами проводника возникнет разность потенциалов.

Существование подобных электроинерционных эффектов и было установлено академиками Л, И. Мандельштамом и Н. Д. Папалекси с помощью следующего опыта. Катушка, соединенная с телефоном, приводилась в колебательное движение вокруг своей оси (рис. 3.2). Благодаря инерции свободных зарядов на концах катушки возникала переменная разность потенциалов, и телефон издавал звук. Однако это были лишь качественные опыты. Никакие измерения и количественные расчеты в этих опытах не были произведены.


Опыт с количественными результатами был осуществлен спустя четыре года Т. Стюартом и Р. Толменом.

В опыте Стюарта и Толмена катушка большого диаметра с намотанным на нее металлическим проводом приводилась в быстрое вращение и затем резко тормозилась (рис. 3,3). При торможении катушки свободные заряды в проводнике продолжали некоторое время двигаться по инерции. Вследствие движения зарядов относительно проводника в катушке возникал кратковременный электрический ток, который регистрировался гальванометром, присоединенным к концам проводника с помощью скользящих контактов.


Направление тока свидетельствовало о том, что он обусловлен движением отрицательно заряженных частиц. Переносимый при этом заряд прямо пропорционален отношению заряда q0 частиц, создающих ток, к их массе m, т. е. . Поэтому, измеряя заряд, проходящий через гальванометр за все время существования тока в цепи, удалось определить отношение — . Оно оказалось равным 1,8 • 10 11 Кл/кг. Это значение совпадает со значением отношения заряда к массе для электрона , найденным ранее из других опытов.

Электронная проводимость металлов

Электронная проводимость металлов была впервые экспериментально доказана немецким физиком Э.Рикке в 1901 г. Через три плотно прижатых друг к другу отполированных цилиндра — медный, алюминиевый и снова медный — длительное время (в течение года) пропускали электрический ток. Общий заряд, прошедший за это время, был равен 3.5·10 6 Кл. Поскольку массы атомов меди и алюминия существенно отличаются друг от друга, то массы цилиндров должны были бы заметно измениться, если бы носителями заряда были ионы.

Результаты опытов показали, что масса каждого из цилиндров осталась неизменной. В соприкасающихся поверхностях были обнаружены лишь незначительные следы взаимного проникновения металлов, которые не превышали результатов обычной диффузии атомов в твердых телах. Следовательно, свободными носителями заряда в металлах являются не ионы, а такие частицы, которые одинаковы и в меди, и в алюминии. Такими частицами могли быть только электроны.

Прямое и убедительное доказательство справедливости этого предположения было получено в опытах, поставленных в 1913 г. Л. И. Мандельштамом и Н. Д. Папалекси и в 1916 г. Т. Стюартом и Р. Толменом.

На катушку наматывают проволоку, концы которой припаивают к двум металлическим дискам, изолированным друг от друга (рис. 1). К концам дисков с помощью скользящих контактов присоединяют гальванометр.

Катушку приводят в быстрое вращение, а затем резко останавливают. После резкой остановки катушки свободные заряженные частицы будут некоторое время двигаться вдоль проводника по инерции, и, следовательно, в катушке возникнет электрический ток. Ток будет существовать короткое время, так как из-за сопротивления проводника заряженные частицы тормозятся и упорядоченное движение частиц прекращается.

Направление тока говорит о том, что он создается движением отрицательно заряженных частиц. Переносимый при этом заряд пропорционален отношению заряда частиц, создающих ток, к их массе, т.е. . Поэтому, измеряя заряд, проходящий через гальванометр за все время существования тока в цепи, удалось определить отношение . Оно оказалось равным 1,8·10 11 Кл/кг. Эта величина совпадает с отношением заряда электрона к его массе, найденным ранее из других опытов.

  1. свободных электронов с концентрацией ~ 10 28 м -3 и
  2. положительно заряженных ионов, колеблющихся около положения равновесия.

Появление свободных электронов в кристалле можно объяснить следующим образом.

При объединении атомов в металлический кристалл слабее всего связанные с ядром атома внешние электроны отрываются от атомов (рис. 2). Поэтому в узлах кристаллической решетки металла располагаются положительные ионы, а в пространстве между ними движутся электроны, не связанные с ядрами своих атомов. Эти электроны называются свободными или электронами проводимости. Они совершают хаотическое движение, подобное движению молекул газа. Поэтому совокупность свободных электронов в металлах называют электронным газом.

Если к проводнику приложено внешнее электрическое поле, то на беспорядочное хаотическое движение свободных электронов накладывается направленное движение под действием сил электрического поля, что и порождает электрический ток. Скорость движения самих электронов в проводнике — несколько долей миллиметра в секунду, однако возникающее в проводнике электрическое поле распространяется по всей длине проводника со скоростью, близкой к скорости света в вакууме (3·10 8 м/с).

Так как электрический ток в металлах образуют свободные электроны, то проводимость металлических проводников называется электронной проводимостью.

Электроны под влиянием постоянной силы, действующей со стороны электрического поля, приобретают определенную скорость упорядоченного движения (ее называют дрейфовой). Эта скорость не увеличивается в дальнейшем со временем, так как при столкновении с ионами кристаллической решетки электроны передают кинетическую энергию, приобретенную в электрическом поле, кристаллической решетке. В первом приближении можно считать, что на длине свободного пробега (это расстояние, которое электрон проходит между двумя последовательными столкновениями с ионами) электрон движется с ускорением и его дрейфовая скорость линейно возрастает со временем

В момент столкновения электрон передает кинетическую энергию кристаллической решетке. Потом он опять ускоряется, и процесс повторяется. В результате средняя скорость упорядоченного движения электронов пропорциональна напряженности электрического поля в проводнике и, следовательно, разности потенциалов на концах проводника, так как , где l — длина проводника.

Известно, что сила тока в проводнике пропорциональна скорости упорядоченного движения частиц

а значит, согласно предыдущему, сила тока пропорциональна разности потенциалов на концах проводника: I ~ U. В этом состоит качественное объяснение закона Ома на основе классической электронной теории проводимости металлов.

Однако в рамках этой теории возникли трудности. Из теории следовало, что удельное сопротивление должно быть пропорционально корню квадратному из температуры (), между тем, согласно опыту, ~ Т. Кроме того, теплоемкость металлов, согласно этой теории, должна быть значительно больше теплоемкости одноатомных кристаллов. В действительности теплоемкость металлов мало отличается от теплоемкости неметаллических кристаллов. Эти трудности были преодолены только в квантовой теории.

В 1911 г. голландский физик Г. Камерлинг-Оннес, изучая изменение электрического сопротивления ртути при низких температурах, обнаружил, что при температуре около 4 К (т.е. при -269°С) удельное сопротивление скачком уменьшается (рис. 3) практически до нуля. Это явление обращения электрического сопротивления в нуль Г. Камерлинг-Оннес назвал сверхпроводимостью.

В дальнейшем было выяснено, что более 25 химических элементов — металлов при очень низких температурах становятся сверхпроводниками. У каждого из них своя критическая температура перехода в состояние с нулевым сопротивлением. Самое низкое значение ее у вольфрама — 0,012К, самое высокое у ниобия — 9К.

Сверхпроводимость наблюдается не только у чистых металлов, но и у многих химических соединений и сплавов. При этом сами элементы, входящие в состав сверхпроводящего соединения, могут и не являться сверхпроводниками. Например, NiBi, Au2Bi, PdTe, PtSb и другие.

  1. электрический ток в сверхпроводнике может существовать длительное время без источника тока;
  2. внутри вещества в сверхпроводящем состоянии нельзя создать магнитное поле:
  3. магнитное поле разрушает состояние сверхпроводимости. Сверхпроводимость — явление, объясняемое с точки зрения квантовой теории. Достаточно сложное его описание выходит за рамки школьного курса физики.

Широкому применению сверхпроводимости до недавнего времени препятствовали трудности, связанные с необходимостью охлаждения до сверхнизких температур, для чего использовался жидкий гелий. Тем не менее, несмотря на сложность оборудования, дефицитность и дороговизну гелия, с 60-х годов XX века создаются сверхпроводящие магниты без тепловых потерь в их обмотках, что сделало практически возможным получение сильных магнитных полей в сравнительно больших объемах. Именно такие магниты требуются для создания установок управляемого термоядерного синтеза с магнитным удержанием плазмы, для мощных ускорителей заряженных частиц. Сверхпроводники используются в различных измерительных приборах, прежде всего в приборах для измерения очень слабых магнитных полей с высочайшей точностью.

В настоящее время в линиях электропередачи на преодоление сопротивления проводов уходит 10 - 15% энергии. Сверхпроводящие линии или хотя бы вводы в крупные города принесут громадную экономию. Другая область применения сверхпроводимости — транспорт.

На основе сверхпроводящих пленок создан ряд быстродействующих логических и запоминающих элементов для счетно-решающих устройств. При космических исследованиях перспективно использование сверхпроводящих соленоидов для радиационной защиты космонавтов, стыковки кораблей, их торможения и ориентации, для плазменных ракетных двигателей.

В настоящее время созданы керамические материалы, обладающие сверхпроводимостью при более высокой температуре — свыше 100К, то есть при температуре выше температуры кипения азота. Возможность охлаждать сверхпроводники жидким азотом, который имеет на порядок более высокую теплоту парообразования, существенно упрощает и удешевляет все криогенное оборудование, обещает огромный экономический эффект.

Электрический ток в металлах

В этом листке мы приступаем к подробному изучению того, как осуществляется прохождение электрического тока в различных проводящих средах — твёрдых телах, жидкостях и газах.

Напомним, что необходимым условием возникновения тока является наличие в среде достаточно большого количества свободных зарядов, которые могут начать упорядоченное движение под действием электрического поля. Такие среды как раз и называются проводниками электрического тока.

Наиболее широко распространены металлические проводники. Поэтому начинаем мы с вопросов распространения электрического тока в металлах.

Мы много раз говорили о свободных электронах, которые являются носителями свободных зарядов в металлах. Вам хорошо известно, что электрический ток в металлическом проводнике образуется в результате направленного движения свободных электронов.

Свободные электроны


Металлы в твёрдом состоянии имеют кристаллическую структуру: расположение атомов в пространстве характеризуется периодической повторяемостью и образует геометрически правильный рисунок, называемый кристаллической решёткой.

Атомы металлов имеют небольшое число валентных электронов, расположенных на внешней электронной оболочке. Эти валентные электроны слабо связаны с ядром, и атом легко может их потерять.

Когда атомы металла занимают места в кристаллической решётке, валентные электроны покидают свои оболочки — они становятся свободными и отправляются «гулять» по всему кристаллу (а именно, свободные электроны перемещаются по внешним орбиталям соседних атомов. Эти орбитали перекрываются друг с другом вследствие близкого расположения атомов в кристаллической решётке, так что свободные электроны оказываются «общей собственностью» всего кристалла). В узлах кристаллической решётки металла остаются положительные ионы, пространство между которыми заполнено «газом» свободных электронов (рис. 1 ).


Рис. 1. Свободные электроны

Свободные электроны и впрямь ведут себя подобно частицам газа (другой адекватный образ — электронное море, которое «омывает» кристаллическую решётку) — совершая тепловое движение, они хаотически снуют туда-сюда между ионами кристаллической решётки. Суммарный заряд свободных электронов равен по модулю и противоположен по знаку общему заряду положительных ионов, поэтому металлический проводник в целом оказывается электрически нейтральным.

Газ свободных электронов является «клеем», на котором держится вся кристаллическая структура проводника. Ведь положительные ионы отталкиваются друг от друга, так что кристаллическая решётка, распираемая изнутри мощными кулоновскими силами, могла бы разлететься в разные стороны. Однако в тоже самое время ионы металла притягиваются к обволакивающему их электронному газу и, как ни в чём не бывало, остаются на своих местах, совершая лишь тепловые колебания в узлах кристаллической решётки вблизи положений равновесия.

Что произойдёт, если металлический проводник включить в замкнутую цепь, содержащую источник тока? Свободные электроны продолжают совершать хаотическое тепловое движение, но теперь — под действием возникшего внешнего электрического поля — они вдобавок начнут перемещаться упорядоченно. Это направленное течение электронного газа, накладывающееся на тепловое движение электронов, и есть электрический ток в металле (поэтому свободные электроны называются также электронами проводимости). Скорость упорядоченного движения электронов в металлическом проводнике, как нам уже известно, составляет приблизительно 0,1мм/с.

Опыт Рикке

Почему мы решили, что ток в металлах создаётся движением именно свободных электронов? Положительные ионы кристаллической решётки также испытывают на себе действие внешнего электрического поля. Может, они тоже перемещаются внутри металлического проводника и участвуют в создании тока?

Упорядоченное движение ионов означало бы постепенный перенос вещества вдоль направления электрического тока. Поэтому надо просто пропускать ток по проводнику на протяжении весьма длительного времени и посмотреть, что в итоге получится. Такого рода эксперимент и был поставлен Э.Рикке в 1901 году.

В электрическую цепь были включены три прижатых друг к другу цилиндра: два медных по краям и один алюминиевый между ними (рис. 2 ). По этой цепи пропускался электрический ток в течение года.


Рис. 2. Опыт Рикке

За год сквозь цилиндры прошёл заряд более трёх миллионов кулон. Предположим, что каждый атом металла теряет по одному валентному электрону, так что заряд иона равен элементарному заряду Кл. Если ток создаётся движением положительных ионов, то нетрудно подсчитать (сделайте это сами!), что такая величина прошедшего по цепи заряда соответствует переносу вдоль цепи около 2кг меди.

Однако после разъединения цилиндров было обнаружено лишь незначительное проникновение металлов друг в друга, обусловленное естественной диффузией их атомов (и не более того). Электрический ток в металлах не сопровождается переносом вещества, поэтому положительные ионы металла не принимают участия в создании тока.

Опыт Стюарта–Толмена

Прямое экспериментальное доказательство того, что электрический ток в металлах создаётся движением свободных электронов, было дано в опыте Т.Стюарта и Р.Толмена (1916 год).

Эксперименту Стюарта–Толмена предшествовали качественные наблюдения, сделанные четырьмя годами ранее русскими физиками Л.И.Мандельштамом и Н.Д.Папалекси. Они обратили внимание на так называемый электроинерционный эффект: если резко затормозить движущийся проводник, то в нём возникает кратковременный импульс тока. Эффект объясняется тем, что в течение небольшого времени после торможения проводника его свободные заряды продолжают двигаться по инерции.

Однако никаких количественных результатов Мандельштам и Папалекси не получили, и наблюдения их опубликованы не были. Честь назвать опыт своим именем принадлежит Стюарту и Толмену, которые не только наблюдали указанный электроинерционный эффект, но и произвели необходимые измерения и расчёты.

Установка Стюарта и Толмена показана на рис. 3 .


Рис. 3. Опыт Стюарта–Толмена

Катушка большим числом витков металлического провода приводилась в быстрое вращение вокруг своей оси. Концы обмотки с помощью скользящих контактов были подсоединены к специальному прибору — баллистическому гальванометру, который позволяет измерять проходящий через него заряд.

После резкого торможения катушки в цепи возникал импульс тока. Направление тока указывало на то, что он вызван движением отрицательных зарядов. Измеряя баллистическим гальванометром суммарный заряд, проходящий по цепи, Стюарт и Толмен вычислили отношение заряда одной частицы к её массе. Оно оказалось равно отношению для электрона, которое в то время уже было хорошо известно.

Так было окончательно выяснено, что носителями свободных зарядов в металлах являются свободные электроны. Как видите, этот давно и хорошо знакомый вам факт был установлен сравнительно поздно — учитывая, что металлические проводники к тому моменту уже более столетия активно использовались в самых разнообразных экcпериментах по электромагнетизму (сравните, например, с датой открытия закона Ома — 1826 год. Дело, однако, заключается в том, что сам электрон был открыт лишь в 1897 году).

Зависимость сопротивления от температуры

Опыт показывает, что при нагревании металлического проводника его сопротивление увеличивается. Как это объяснить?

Причина проста: с повышением температуры тепловые колебания ионов кристаллической решётки становятся более интенсивными, так что число соударений свободных электронов с ионами возрастает. Чем активнее тепловое движение решётки, тем труднее электронам пробираться сквозь промежутки между ионами (Представьте себе вращающуюся проходную дверь. В каком случае труднее проскочить через неё: когда она вращается медленно или быстро? :-)). Скорость упорядоченного движения электронов уменьшается, поэтому уменьшается и сила тока (при неизменном напряжении). Это и означает увеличение сопротивления.

Как опять-таки показывает опыт, зависимость сопротивления металлического проводника от температуры с хорошей точностью является линейной:

Здесь — сопротивление проводника при . График зависимости (1) является прямой линией (рис. 4 ).

Множитель называется температурным коэффициентом сопротивления. Его значения для различных металлов и сплавов можно найти в таблицах.

Длина проводника и его площадь поперечного сечения при изменении температуры меняются несущественно. Выразим и через удельное сопротивление:

и подставим эти формулы в (1) . Получим аналогичную зависимость удельного сопротивления от температуры:

Коэффициент весьма мал (для меди, например, ), так что температурной зависимостью сопротивления металла часто можно пренебречь. Однако в ряде случаев считаться с ней приходиться. Например, вольфрамовая спираль электрической лампочки раскаляется до такой степени, что её вольт-амперная характеристика оказывается существенно нелинейной.


Рис. 5. Вольт-амперная характеристика лампочки

Так, на рис. 5 приведена вольт-амперная характеристика автомобильной лампочки. Если бы лампочка представляла собой идеальный резистор, её вольт-амперная характеристика была прямой линией в соответствии с законом Ома. Эта прямая изображена синим пунктиром.

Однако по мере роста напряжения, приложенного к лампочке, график отклоняется от этой прямой всё сильнее и сильнее. Почему? Дело в том, что с увеличением напряжения ток через лампочку возрастает и больше разогревает спираль; сопротивление спирали поэтому также увеличивается. Следовательно, сила тока хотя и продолжит возрастать, но будет иметь всё меньшее и меньшее значение по сравнению с тем, которое предписывается «пунктирной» линейной зависимостью тока от напряжения.

Читайте также: