Определение молярной массы эквивалента металла вывод

Обновлено: 22.01.2025

Цель работы: определить эквивалент и молярную массу неизвестного металла.

Оборудование и реактивы: бюретка, двурогая пробирка, уравнительный цилиндр, соединительные резиновые трубки, термометр, барометр, аналитические весы, стеклянные стаканы, неизвестный металл, неизвестная кислота неизвестной концентрации.

Теоретическая часть:

Для определения эквивалента металла собирают прибор из двурогой пробирки, бюретки и уравнительного цилиндра (Рис 1).

Практическая часть:

1) Собрали установку (рис.1);

2) Заполнили бюретку водой так, чтобы при выравнивании менисков воды в бюретке и цилиндре уровень воды в бюретке был на нулевом делении;

3) Перед каждым измерением проверяли прибор на герметичность;

4) Затем в одно из колен двурогой пробирки поместили кусочек неизвестного металла, известной массы. А в другое колено залили неизвестную кислоту, неизвестной концентрации;

5) Прилили кислоту к металлу. Для увеличения скорости реакции нагревали колено, в котором происходила реакция; (В это время выделяющийся водород вытеснял воду из бюретки);

6) Охлаждали прибор до комнатной температуры;

7) Опыт проводили 3 раза, с соблюдением всех правил;

8) Результаты занесли в таблицу:

№ опыта m, г. T, K P, атм. V(Н2)выд., мл. Mэк, гр./экв.
0,027 295,5 0,975 10,2 32,86
0,027 295,5 0,975 10,4 32,26
0,027 295,5 0,975 10,3 32,42

Если Ме одновалентный:

Me + HА МеА + 1/2Н2

Если же металл двухвалентный, то значение молярного эквивалента необходимо умножить на 2;

9) Оценим погрешность измерений:

x3= 32,42. n – число опытов, тогда n=3.

Х=σ ∙ τ, где τ2; 0,95 = 4, 3020

∆Х = 0,19,113 ∙ 4, 3020 = 0,82224

Mэк = ± ∆Х = (32,523±0,82224) (гр./экв.)

10) Получили в препараторской кусочек неизвестного металла и взвесили его на аналитических весах по принятой технологии. Масса металла равна массе гирек, лежавших на правой чаше весов: 100+20+20+5+2+1+2∙0,2 = 148,4 (грамма);

11) Поставили стакан с дистиллированной водой на песчаную баню, для того, чтобы вода нагрелась;

12) После того, как вода в стакане закипела, мы погрузили в неё кусочек металла так, чтобы он не касался стенок сосуда (подвесили на деревянную палочку), и кипятили в течении 30 минут;

13) В то время, как металл находился в кипящей воде, мы собрали калориметр – в толстостенный сосуд из нетеплопроводного материала поставили стеклянный стакан, и налили в него 300 мл. дистиллированной воды, а так как плотность воды составляет 1 гр./см 3 ., то масса воды равна 300 грамм. По показаниям термометра температура воды составила 25ºС, что равно 298K.

14) По истечению 30 минут металл из кипящей воды был помещён в калориметр так, чтобы металл не касался стенок сосуда. При этом за температуру металла мы приняли температуру кипящей воды, которая по показаниям термометра составила 98ºС или 371К.

15) Помешивая воду в калориметре мы наблюдали за показанием термометра, опущенного в стакан с металлом. Максимальная температура воды оказалась равна 26,5 ºС или 299,5К.

16) Измерили теплоёмкость металла:

М – масса воды в калориметре = 300 грамм = 0,3 кг.;

Т – начальная температура воды в калориметре = 298К;

T1 – температура воды в калориметре после погружения в неё горячего металла = 299,5K;

m – масса металла = 148,4 грамма = 0,1484 кг.;

T2 – температура горячего металла = 371K

Следовательно по закону Дюлонга – Пти, молярная масса равна 26/0,414 = 63 (г./моль).

Мы определили молярную массу металла двумя способами. С помощью закона эквивалентов мы получили значение молярного эквивалента металла, которое с учётом погрешностей составило 32,523±0,82224 (гр./экв.), а с помощью калориметра значение молярной массы металла 63 (г./моль). Примерное значение молярной массы металла приблизительно в два раза больше молярного эквивалента этого же металла, следовательно металл – двухвалентный. Тем самым, мы можем принять удвоенный молярный эквивалент металла за молярную массу металла: 65,046±1,64448 гр./моль. Два полученных значения приблизительно равны между собой. В периодической системе элементов Д.И. Менделеева находятся два элемента, молярные массы которых находятся в допустимых пределах нашего определения – это медь и цинк. Но в ряду активности металлов медь находиться правее водорода, следовательно реакция взаимодействия меди и кислоты невозможна. Таким образом, искомый металл – цинк, молярная масса которого 65 гр./моль. Как мы видим, наиболее точный результат даёт метод, связанный с определением эквивалента металла.

В препараторской мы убедились, что исследуемый металл – это действительно цинк.

Роль языка в формировании личности: Это происходит потому, что любой современный язык – это сложное .

Основные направления социальной политики: В Конституции Российской Федерации (ст. 7) характеризуется как.

Социальное обеспечение и социальная защита в РФ: Понятие социального обеспечения тесно увязывается с понятием .

Поиск по сайту

Лабораторная работа № 1 определение эквивалентной и мольной массы металла

Цель работы: Приобретение навыков экспериментального определения эквивалентной и мольной массы металла по объему вытесненного водорода.

В основе работы лежит способность некоторых активных металлов вытеснять водород из растворов кислот (HCl, H2SO4) по реакции

2 Me + 2n H + = 2 Me n+ + n H2,

где Me = Mg, Al, Zn, Fe и другие.

змерив объем водорода, вытесненного из кислоты металлом заданной массы, и применив закон эквивалентов, можно определить эквивалентную массу, а затем и мольную массу металла.

Объем выделившегося в результате реакции водорода можно определить при помощи установки, изображенной на рис. 1. Установка состоит из бюретки 1 и химической воронки 2, соединенных каучуковой трубкой 3, и представляющих собой сообщающиеся сосуды, закрепленные на штативе 4. К бюретке присоединена пробирка 5.

Расположите воронку на штативе 4 так, чтобы уровень воды в бюретке находился на нулевой отметке (или на 0,1-0,5 мл ниже), а сама воронка была заполнена водой примерно наполовину.

Перед началом работы убедитесь в герметичности установки. Для этого, проверив, плотно ли закрыты отверстия 6 и 7, поднимите воронку на 10-15 см, закрепите ее в этом положении и наблюдайте в течение 1-2 минут за уровнем воды в бюретке. Если уровень воды за это время не меняется, значит, герметичность соединений обеспечена, и можно приступать к работе.

Рис. 1. Установка для определения эквивалентной массы металла по водороду

олучите навеску металла (m≈ 0,03-0,05 г) у преподавателя. По нижнему краю мениска замерьте уровень воды (V1) в бюретке 1. Держа пробирку в наклонном положении, осторожно поместите в нее навеску металла так, чтобы после присоединения пробирки к установке металл находился ниже пробки, но не касался кислоты. Вновь проверьте герметичность установки, чтобы исключить потери выделившегося в результате реакции водорода. Затем установите пробирку вертикально, чтобы весь металл упал в кислоту.

После окончания реакции дайте пробирке охладиться (2-4 мин) и, перемещая воронку по штативу, установите одинаковый уровень воды в бюретке и воронке. Замерьте уровень воды в бюретке (V2). Разность двух значений уровня воды в бюретке, до и после реакции металла с кислотой, дает объем выделившегося водорода V = V2  V1.

В лабораторном журнале вычертите таблицу 1, в которую внесите полученные данные. Туда же запишите показания термометра и барометра во время опыта.

Необходимо учесть, что водород, собранный над водой в бюретке, содержит водяной пар. Поэтому общее давление в бюретке (Ратм), равное атмосферному, складывается из парциальных давлений газообразного водорода Р(Н2) и насыщенного водяного пара Р(Н2O): Ратм = Р(Н2) + Р(Н2O).

Давление водяного пара при температуре эксперимента определите из табличных данных (табл. 2.).

Расчеты

Расчет мольной массы эквивалента (эквивалентной массы) металла МЭ оп по экспериментальным данным следует проводить двумя способами:

1) по массе выделившегося водорода m(Н2) с использованием уравнения Менделеева-Клапейрона:

m (Н2) = _________________________________________

и далее по закону эквивалентов:

вычисляем М Э(Ме) : М Э(Ме) = ________________________ .

2) по объему выделившегося водорода с использованием объединенного газового закона: приводят объем выделившегося в результате реакции водорода V(Н2) к нормальным условиям Vо2 ):

Vо2) = _________________________________

и далее по закону эквивалентов с использованием эквивалентного объема водорода

где Vэ2) = 11,2 л/моль = 11200 мл/моль, Vо2) – объем водорода, приведенный к нормальным условиям; ро и То – значения давления и температуры при нормальных условиях.

Вычислите среднее значение эквивалентной массы металла:

М Э(Ме) оп =  и запишите его в табл. 1

Если валентность металла (W) известна, находите экспериментальное значение молярной массы металла – М (Ме) оп: М (Ме)оп = М Э(Ме)оп • W.

По значению молярной массы М(Ме) Оп и его валентности по периодической системе элементов определите металл и теоретическое значение его молярной массы М(Ме) теор.

Если валентность металла неизвестна, следует последовательно придавать ей значения 1, 2, 3. Затем, умножая мольную массу эквивалента на значение валентности, определите возможные значения мольной массы металла и сравните их с подходящими по величине мольными массами элементов в периодической системе. Если свойства металла совпадают со свойствами элемента в данном месте таблицы, то делается вывод о том, что исследуемый металл определен, находится его валентность и теоретическое значение молярной массы.

Далее рассчитайте теоретическое значение эквивалентной массы:

и погрешности (ошибки) опыта (по молярной массе):

относительную  отн =  •100 %.

Все рассчитанные значения занесите в таблицу 1.

Сделайте письменный вывод по проделанной работе и выполненным расчетам.

Экспериментальные и расчетные данные опыта по определению эквивалентной массы металла

Лаба №1Определение эквивалентной массы металла

Цель работы: определение эквивалентной массы металла, которая находится методом вытеснения водорода из раствора кислоты.

Основные теоретические положения: эквивалентом вещества называется такое его количество, которое соединяется с одним молем атомов водорода или замещает то же количество атомов водорода в химических реакциях. Эквивалентной массой называется масса одного эквивалента вещества.

Формулы для вычисления, перечень символов: Согласно закону эквивалентов массы, вступающие в реакцию веществ, пропорциональны эквивалентам этих веществ:


, где М1 и М2 – массы реагирующих веществ, кг; Э1 и Э2 – их эквиваленты.

Эквивалентная масса элемента:

Э = А/n , где А – масса одного моля атомов элемента;

n – его валентность.

Методика эксперимента

Получили навеску опилок металла у преподавателя.

Перед началом опыта проверили сосуд на герметичность.

Подготовили эвдиометр для собирания водорода. Заполнили его до краев водой (с помощью стакана), зажали открытый конец пальцем и, перевернув, погрузили в чашку с водой.

С помощью мерного цилиндра отмерили 5 мл раствора соляной кислоты HCl (в объемном соотношении I:I), влили ее через воронку в пробирку так, чтобы не замочить стенки изнутри. Держа пробирку в слегка наклонном положении, поместили внутрь на сухую стенку навеску опилок металла в папирусной бумаге, закрыли пробирку пробкой и конец газоотводной трубки подвели под водой внутрь эвдиометра.

Атмосферное давление записали по показаниям барометра:

1 мм рт. ст. = 1, 333 · 10 2 Па

763 мм рт. ст. = 1001707,9 Па

Комнатную температуру зафиксировали ртутным термометром:

22 ºС + 273 = 295 К

Значение парциального давления водяных паров h при температуре комнаты нашли по таблице:

Объем полученного водорода Vt = 31 · 10 -6 привели к нормальным условиям:

;

V0 – объем выделившегося водорода при нормальных условиях (Т0 = 273 К, Р0 = 101325 Па), м 3

РН2 – парциальное давление водорода, Па;

Т – температура опыта.

Используя закон эквивалентов, рассчитали эквивалентную массу металла:


ЭМе = м 3 /моль

ЭМе – эквивалентная масса металла, кг/моль;

mMe – навеска металла, кг;

0,0112 – эквивалентный объем водорода при нормальных условиях, м 3 /моль.

11. Вычислим по соотношению Э = А/n теоретическую эквивалентную массу металла Эт


Эт (Zn) = м 3 /моль

12. Вычислим абсолютную и относительную погрешности в определении эквивалентной массы металла в процентах:


Уравнение химической реакции в молекулярном и ионном виде:

2 2 + H2

2

Схема установки:

Рис 1. Схема установки: 1 – штатив; 2 – чашка с водой; 3 – эвдиометр; 4 – пробирка с газоотводной трубкой; 5 – деревянный штатив.

Определение молярной массы эквивалента металла

Цель работы: усвоить понятия химического эквивалента, молярной массы эквивалента, закона эквивалентов; ознакомиться с экспериментальным определением молярной массы эквивалента металла методом вытеснения водорода из кислоты.

Теоретическая часть

Известно, что количество вещества определяется числом структурных единиц (атомов, молекул, ионов) этого вещества и выражается в молях.

Моль ()– это единица количества вещества, содержащая столько же структурных единиц данного вещества, сколько атомов содержится в 0,012 кг углерода, состоящего только из изотопа 12 С.

Молярная масса (М) вещества представляет собой отношение массы вещества (m) к его количеству (), а значение молярной массы численно совпадает с относительной молекулярной массой вещества или относительной атомной массой элемента, но измеряется в г/моль.

Эквивалентом вещества (э), вступающего в какую-либо реакцию, называют такое его количество, которое приходится на единицу валентности соответствующего элемента при образовании им соединения.

Химический эквивалент и молярная масса эквивалента представляют собой важнейшие характеристики элементов, простых и сложных веществ, учитывая то, что согласно закону эквивалентов все вещества взаимодействуют между собой в эквивалентных количествах.

Единицей химического эквивалента (э), так же как и количества вещества является моль, а молярная масса эквивалента (Мэ), соответственно измеряется в г/моль.

Так, водород в своих соединениях, как правило, одновалентен, и его эквивалент равен 1 моль Н или 1/2 моль Н2, а молярная масса его эквивалента Мэ(Н) = 1 г/моль.

Кислород в своих соединениях двухвалентен, тогда его эквивалент равен 1/2 моль О или 1/4 моль О2, а молярная масса его эквивалента Мэ(О) = 8 г/моль.

Железо в своих соединениях может быть и двух-, и трехвалентным, тогда его эквивалент в первом случае будет равен 1/2 моль Fe, а молярная масса эквивалента Мэ(Fe) = 28 г/моль. Эквивалент железа во втором случае будет равен 1/3 моль Fe, а молярная масса эквивалента Мэ(Fe) = 18,6 г/моль. Следовательно, молярную массу эквивалента простого вещества можно рассчитать по формуле:


, (1)

где М(эл-та) – молярная масса элемента; В(эл-та) – валентность элемента.

Молярные массы эквивалентов сложных веществ (оксидов, кислот, оснований, солей) рассчитываются несколько иначе.

Молярная масса эквивалента оксида рассчитывается отношением молярной массы оксида к произведению числа атомов элемента на его валентность.


,

где М(оксида) – молярная масса оксида; n(эл-та) – число атомов элемента; В(эл-та) – валентность элемента.

Для оксида железа (Ш), например, молярная масса его будет равна:


Молярная масса эквивалента кислотырассчитывается отношением молярной массы кислоты к числу атомов водорода в кислоте, способных замещаться в химических реакциях.


где М (кислоты) – молярная масса кислоты; n (H) – число замещающихся в химической реакции атомов водорода.

Для серной кислоты (H2SO4), например, молярная масса эквивалента будет равна:


Молярная масса эквивалента основания рассчитывается отношением молярной массы основания к числу гидроксогрупп.


где М (основания) – молярная масса основания; n (OH) – число гидроксогрупп.

Для гидроксида кальция (Ca(OH)2), например, молярная масса эквивалента будет равна:


Молярная масса эквивалента соли рассчитывается отношением молярной массы соли к произведению числа атомов металла на их валентность.


где М (соли) – молярная масса соли; n (Ме) – число атомов металла; В (Ме) – валентность металла.

Для сульфата натрия (Na2SO4), например, молярная масса эквивалента будет равна:


Из закона эквивалентов следует, что массы вступающих и образующихся в результате реакции веществ прямопропорциональны молярным массам их эквивалентов:


, (2)

где m(1) и Мэ(1) – масса и молярная масса эквивалента первого вещества; m(2) и Мэ(2) – масса и молярная масса эквивалента второго вещества.

Из следствия из закона Авогадро вытекает понятие молярный объем - объем, который занимает 1 моль любого газа при нормальных условиях, т.е. при р = 10 5 Па (1 атм или 760 мм рт. ст.) и Т = 273 К ( 0 о С). Значение этого объема равно 22,4 л/моль (22400 мл/моль). Отсюда можно вывести понятие и молярного объема эквивалента газа (или эквивалентного объема) – объема, занимаемого при нормальных условиях одним эквивалентом (одной молярной массой эквивалента) газа.

Известно, что эквивалент водорода равен 1/2 моль Н2, тогда молярный объем эквивалента водорода Vэ(Н2) = 11,2 л/моль; соответственно Vэ(О2) = 5,6 л/моль, т.к. эквивалент кислорода равен 1/4 моль О2.

Если же в реакции участвуют газы и известны их объемы, то соотношение (2) можно представить следующим образом:


(3)

где m(1) и Мэ(1) – масса и молярная масса эквивалента первого вещества; V(2) и (2) – объем и молярный объем эквивалента второго вещества.

Следует иметь ввиду, что объемы, входящие в соотношение (3), нужно приводить к нормальным условиям по формуле объединенного закона Гей-Люссака – Бойля –Мариотта:

, откуда(4)

где р, V, Т – давление, объем и температура газа при условиях опыта; ро, Vо, То – давление, объем и температура газа при нормальных условиях.

Известны методы экспериментального определения молярных масс эквивалентов: 1) метод прямого определения – молярную массу эквивалента определяют по данным прямого синтеза кислородного или водородного соединения данного элемента; 2) аналитический метод – производится точный анализ соединения данного элемента с любым другим, молярная масса эквивалента которого известна; 3) метод вытеснения водорода - используется для определения молярной массы эквивалента тех металлов, которые способны вытеснить водород из разбавленных кислот и щелочей; 4) электрохимический метод – определяется масса металла, осаждающегося на электроде при электролизе раствора соли этого металла. Молярная масса эквивалента рассчитывается по закону Фарадея: при прохождении через раствор или расплав электролита 965000 Кулонов электричества на электродах выделяется по одному эквиваленту вещества.

Сущность экспериментального определения молярной массы эквивалента металла заключается в определении объема водорода (приведенного к нормальным условиям), вытесняемого из кислоты навеской металла, взятой на аналитических весах.

Произведением молярной массы эквивалента металла на его валентность определяют молярную массу атома металла.

По молярной массе атома металла и его валентности находят местоположение металла в периодической системе элементов Д.И.Менделеева, т.е. его название.

По указанию преподавателя студент взвешивает на аналитических весах навеску металла известной валентности.

Прибор для определения молярной массы эквивалента изображен на рисунке.


еред началом работы прибор следует проверить на герметичность. Для этого отсоединяют пробирку А от прибора, через воронку С заливают водой таким образом, чтобы уровень воды в бюретке В установился на нулевом делении или несколько ниже; избыток воды удалить. Присоединяют пробирку А на место. Затем поднимают воронку C вверх и следят за уровнем воды в бюретке В. Если уровень в последней непрерывно повышается, то это означает, что прибор негерметичен и следует проверить все резиновые соединения. Если же прибор герметичен, то повышение уровня воды в бюретке В произойдет незначительно только в первый момент, а потом он будет оставаться неизменным.

Убедившись в герметичности прибора, отсоединяют пробирку А от прибора и, записав начальный уровень воды в бюретке В, наливают в пробирку А 1/4 ее объема соляной кислоты, приготовленной для определения молярной массы эквивалента металла соответствующей валентности.

Держа пробирку А в положении, близком к горизонтальному, помещают на сухое место у отверстия пробирки взвешенный металл и в таком положении соединяют пробирку А с бюреткой В, следя за тем, чтобы металл не упал в кислоту.

Убедившись вторично в герметичности прибора путем поднятия воронки С вверх, стряхивают металл в кислоту и наблюдают за ходом реакции.

По окончании реакции (прекращение выделения пузырьков водорода), устанавливают уровень воды в бюретке В и воронке С на одной высоте, перемещая кольцо К с воронкой С вниз по штативу, и записывают уровень воды в бюретке В после окончания опыта. Шкала бюретки В проградуирована в миллилитрах (мл).

С помощью барометра определяют величину атмосферного давления ( ратм ), термометра – температуру ( t ) воздуха в помещении (соответственно и температуру воды в приборе) в момент проведения опыта.

С помощью таблицы 1 определяют давление водяного пара ( рН2Опар ), соответствующего измеренной температуре опыта, в мм рт.ст.

Отчёт по лабораторной работе № 1

Усвоить одно из основных химических понятий – понятие об эквиваленте – и научиться определять его количественное значение.

1. Наполнить водой кристаллизатор и бюретку (стеклянную трубку с делениями и краном для выпуска жидкости внизу). Проверить, плотно ли закрыт кран бюретки.

2. Закрыв верхнее отверстие пальцем, перевернуть бюретку и опустить ее в кристаллизатор с водой. Палец убрать под водой, при этом вода из бюретки не вытечет.

3. Закрепить бюретку в штативе. Уровень воды в ней не должен быть выше крайнего деления шкалы.

4. В колбу Вюрца (круглодонная колбас боковым отводом) при помощи мерного цилиндра отобрать 15-20мл соляной кислоты.

5. Вытереть насухо горло колбы фильтром.

6. Расположив колбу горизонтально, поместить в ее горло навеску металла и плотно закрыть колбу пробкой.

7. Стеклянную трубку бокового отвода колбы Вюрца соединить с расположенной под водой частью бюретки.

8. Отметить уровень жидкости в бюретке. Показания следует снимать по положению нижнего края вогнутого мениска жидкости при нахождении его на уровне глаз. Цифры на шкале бюретки – объем в миллилитрах, при снятии показаний необходимо учитывать, что бюретка со шкалой перевернута.

9. Перевести колбу в вертикальное положение, сбрасывая навеску металла в кислоту. В результате реакции выделяется водород, который вытесняет воду из бюретки. Во время протекания реакции не следует держать колбу в руках во избежание ее нагрева и искажения результатов теплового расширения.

10. Когда выделение пузырьков водорода прекратиться, отметить конечный уровень воды в бюретке.

11. При помощи полоски миллиметровой бумаги измерить высоту столба воды в бюретке от нижнего края мениска до уровня воды в кристаллизаторе.

12. По показания барометра и термометра определить атмосферное давление и температуру в лаборатории.

Экспериментальные данные:

Масса навески металла – mМе=0,0096 г

Объем соляной кислоты - VНCl=15 мл

Объем воды в бюретке в начале эксперимента – V1=13,3 мл

Объем воды в бюретке по окончании эксперимента – V2=4,3 мл

Объем выделившегося водорода – Vизм.=V1-V2=9 мл

Высота столба воды в бюретке h=170 мм

Атмосферное давление в лаборатории Pатм= 770 мм рт.ст

Температура в лаборатории Т=20 о С

Обработка экспериментальных данных:

1. Водород находиться в бюретке под давлением ниже атмосферного на величину давления водяного пара, а также разрежения, создаваемого за счет давления столба жидкости в бюретке. Поэтому давление водорода вычисляется по формуле:

где Р1 – давление столба воды в бюретке, Па, Р1=9,8hdaq, 9,8 – переводной коэффициент из мм вод.ст. в Па; daq плотность воды, daq=1 г/см 3 ; Р2-давление насыщенного водяного пара.

Pатм=770 мм рт.ст.=102410 Па

Р=102410-1666-2332,7=98411,3 Па.

2. .Массу выделившегося водорода mН вычисляют по уравнению Клапейрона-Менделеева:

где МН2 – молярная масса водорода, МН2=2г/моль; V – объем водорода, м 3 ; R – универсальная газовая постоянная, R=8,314 Дж/(моль·К).

V=9 мл=9·10 -6 м 3

Т=20 о С=293 К

3. Вычислить эквивалент металла по закону эквивалентов:

где ЭМ(Н) – эквивалентная масса водорода, ЭМ(Н)=1 г/экв.

4. Зная степень окисления,найти молярную массу металла и определить что это за металл:

где Z– степень окисления металла, Z=2

Данный металл – Магний.

5. Вычислить точное значение эквивалентной массы и металла и найти относительную погрешность эксперимента:


В данной лабораторной работе мной определена эквивалентная масса Магния. Погрешность измерений 2,27%,что говорит о том, что опыт проведен верно.

Читайте также: