Олово тяжелый или легкий металл

Обновлено: 07.01.2025

Олово было известно человеку уже в 4 тысячелетии до н. э. Этот металл был малодоступен и дорог, так как изделия из него редко встречаются среди римских и греческих древностей. Об олове есть упоминания в Библии, Четвертой Книге Моисеевой.

Происхождение названия

Происхождение слова «олово» неизвестно. В Древнем Риме олово называли «белым свинцом» ( plumbum album ), в отличие от plumbum nigrum — чёрного, или обыкновенного, свинца. По-гречески белый — алофос. По-видимому, от этого слова и произошло «олово», что указывало на цвет металла. В русский язык оно попало в XI веке и означало как олово, так и свинец (в древности эти металлы плохо различали).

Латинское название stannum , связанное с санскритским словом, означающим стойкий, прочный, первоначально относилось к сплаву свинца и серебра, а позднее к другому, имитирующему его сплаву, содержащему около 67 % олова; к IV веку этим словом стали называть олово. Происхождение английского (а также голландского и датского) tin неизвестно.

Нахождение в природе

Олово — редкий рассеянный элемент, по распространённости в земной коре олово занимает 47-е место. Содержание олова в земной коре составляет, по разным данным, от 2·10 -4 до 8·10 -3 % по массе. Основной минерал олова — Добыча

Физические и химические свойства

Простое вещество олово алмаза (кубическая кристаллическая решетка с параметром а = 0,6491 нм). В сером олове координационный тетраэдр, металл, а α-Sn относится к числу полупроводников. Ниже 3,72 К α-Sn переходит в сверхпроводящее состояние. Стандартный электродный потенциал Sn 2+ /Sn равен −0.136 В, пары Sn 4+ /Sn 2+ 0.151 В.

При комнатной температуре олово, подобно соседу по группе германию, устойчиво к воздействию воздуха или воды. Такая инертность объясняется образованием поверхностной пленки оксидов. Заметное окисление олова на воздухе начинается при температурах выше 150°C:

С концентрированной соляной кислотой олово медленно реагирует:

Возможно также образование хлороловянных кислот составов HSnCl3, H2SnCl4 и других, например:

В разбавленной серной кислоте олово не растворяется, а с концентрированной реагирует очень медленно.

При сильном нагреве оксид олова (II) гидролизе растворов солей олова (IV) образуется белый осадок — так называемая α-оловянная кислота:

Свежеполученная α-оловянная кислота растворяется в кислотах и щелочах:

При хранении α-оловянная кислота стареет, теряет воду и переходит в β-оловянную кислоту, которая отличается большей химической инертностью. Данное изменение свойств связывают с уменьшением числа активных HO-Sn группировок при стоянии и замене их на более инертные мостиковые -Sn-O-Sn- связи.

При действии на раствор соли олова (II) растворами сульфидов выпадает осадок сульфида олова (II):

Оловянная чума

При температуре ниже 13,2 градусов Цельсия белое олово переходит в серое, происходит увеличение удельного объема на 25,6 %, и металл рассыпается в серый порошок после нескольких сотен циклов. Это превращение называется «оловянной чумой».

Олово используется в основном как безопасное, нетоксичное, коррозионностойкое покрытие в чистом виде или в сплавах с другими металлами. Главные промышленные применения олова — в бронза (с медью). В последнее время возрождается интерес к использованию металла, поскольку он наиболее «экологичен» среди тяжёлых цветных металлов. Так же активно используется для создания циркония обладают высокими температурами плавления (до 2000 °C) и стойкостью к окислению при нагревании на воздухе и имеют ряд областей применения.

Олово является важнейшим легирующим компонентом при получении конструкционных сплавов титана.

Двуокись олова — очень эффективный химических источниках тока в качестве марганцево-оловянный элемент , Свинцово-оловянный аккумулятор обладает в 2,5 раза большей емкостью и в 5 раз большей энергоплотностью на единицу объёма, внутреннее сопротивление его значительно ниже.

Физиологическое действие

Ссылки


az:Qalay bs:Kalaj cs:Cín eo:Stano es:Estaño id:Timah io:Stano nah:Āmochitl nds:Tinn nn:Grunnstoffet tinn no:Tinn (grunnstoff) qu:Chayanta sh:Kalaj sk:Cín tr:Kalay ug:Qeley uz:Qalay

Олово

олово

Олово — пластичный, ковкий и легкоплавкий блестящий металл серебристо-белого цвета. Используется в основном как безопасное, нетоксичное, коррозионностойкое покрытие в чистом виде или в сплавах с другими металлами. Главные промышленные применения олова – в белой жести (луженое железо) для изготовления тары, в припоях для электроники, в домовых трубопроводах, в подшипниковых сплавах и в покрытиях из олова и его сплавов.Элемент состоит из 10 изотопов с массовыми числами 112, 114-120, 122, 124; последний слабо радиоактивен; изотоп 120 Sn наиболее распространен (около 33%).

СТРУКТУРА

структура олова

Олово имеет две аллотропные модификации: a-Sn (серое олово) с гранецентрированной кубической кристаллической решеткой и b-Sn (обычное белое олово) с объемноцентрированной тетрагональной кристаллической решеткой. Фазовый переход b -> a ускоряется при низких температурах (-30° С) и в присутствии зародышей кристаллов серого олова; известны случаи, когда оловянные изделия на морозе рассыпались в серый порошок (“оловянная чума”), но это превращение даже при очень низких температурах резко тормозится наличием мельчайших примесей и поэтому редко встречается, представляя скорее научный, чем практический интерес.

СВОЙСТВА

олово

Плотность b-Sn 7,29 г/см 3 , плотность a-Sn 5.85 г/см 3 ,. Температура плавления 231,9°C, температура кипения 2270°C.
Температурный коэффициент линейного расширения 23·10 -6 (0-100 °С); удельная теплоемкость (0°С) 0,225 кдж/(кг·К), то есть 0,0536 кал/(г·°С); теплопроводность (0°С) 65,8 вт/(м·К.), то есть 0,157 кал/(см·сек·°С); удельное электрическое сопротивление (20 °С) 0,115·10 -6 ом·м, то есть 11,5·10 -6 ом·см. Серое олово является диамагнетиком, а белое – парамагнетиком.

Предел прочности при растяжении 16,6 Мн/м 2 (1,7 кгс/мм 2 ); относительное удлинение 80-90%; твердость по Бринеллю 38,3-41,2 Мн/м 2 (3,9-4,2 кгс/мм 2 ). При изгибании прутков олова слышен характерный хруст от взаимного трения кристаллитов.

Чистое олово обладает низкой механической прочностью при комнатной температуре (можно согнуть оловянную палочку, при этом слышится характерный треск, обусловленный трением отдельных кристаллов друг о друга) и поэтому редко используется.

ЗАПАСЫ И ДОБЫЧА

олово

Олово — редкий рассеянный элемент, по распространенности в земной коре олово занимает 47-е место. Кларковое содержание олова в земной коре составляет, по разным данным, от 2·10 −4 до 8·10 −3 % по массе. Основной минерал олова — касситерит (оловянный камень) SnO2, содержащий до 78,8 % олова. Гораздо реже в природе встречается станнин (оловянный колчедан) — Cu2FeSnS4 (27,5 % Sn). Мировые месторождения олова находятся в основном в Китае и Юго-Восточной Азии — Индонезии, Малайзии и Таиланде. Также есть крупные месторождения в Южной Америке (Боливии, Перу, Бразилии) и Австралии.

В России запасы оловянных руд расположены в Чукотском автономном округе (Пыркакайские штокверки; рудник/посёлок Валькумей, Иультин — разработка месторождений закрыта в начале 1990-х годов), в Приморском крае (Кавалеровский район), в Хабаровском крае (Солнечный район, Верхнебуреинский район (Правоурмийское месторождение)), в Якутии (месторождение Депутатское) и других районах.

В процессе производства рудоносная порода (касситерит) подвергается дроблению до размеров частиц в среднем ~ 10 мм, в промышленных мельницах, после чего касситерит за счет своей относительно высокой плотности и массы отделяется от пустой породы вибрационно-гравитационным методом на обогатительных столах. В дополнение применяется флотационный метод обогащения/очистки руды. Таким образом удается повысить содержание олова в руде до 40-70 %. Далее проводят обжиг концентрата в кислороде для удаления примесей серы и мышьяка. Полученный концентрат оловянной руды выплавляется в печах. В процессе выплавки восстанавливается до свободного состояния посредством применения в восстановлении древесного угля, слои которого укладываются поочередно со слоями руды, или алюминием (цинком) в электропечах: SnO2 + C = Sn + CO2. Особо чистое олово полупроводниковой чистоты готовят электрохимическим рафинированием или методом зонной плавки.

ПРОИСХОЖДЕНИЕ

олово

Основная форма нахождения олова в горных породах и минералах — рассеянная (или эндокриптная). Однако олово образует и минеральные формы, и в этом виде часто встречается не только как акцессорий в кислых магматических породах, но и образует промышленные концентрации преимущественно в окисной (касситерит SnO2) и сульфидной (станнин) формах.

В общем можно выделить следующие формы нахождения олова в природе:

  1. Рассеянная форма: конкретная форма нахождения олова в этом виде неизвестна. Здесь можно говорить об изоморфно рассеянной форме нахождения олова вследствие наличия изоморфизма с рядом элементов (Ta, Nb, W — с образованием типично кислородных соединений; V, Cr, Ti, Mn, Sc — с образованием кислородных и сульфидных соединений). Если концентрации олова не превышают некоторых критических значений, то оно изоморфно может замещать названные элементы. Механизмы изоморфизма различны.
  2. Минеральная форма: олово установлено в минералах-концентраторах. Как правило, это минералы, в которых присутствует железо Fe +2 : биотиты, гранаты, пироксены, магнетиты, турмалины и т. д. Эта связь обусловлена изоморфизмом, например, по схеме Sn +4 + Fe +2 → 2Fe +3 . В оловоносных скарнах высокие концентрации олова установлены в гранатах (до 5,8 вес.%) (особенно в андрадитах), эпидотах (до 2,84 вес.%) и т. д.

На сульфидных месторождениях олово входит как изоморфный элемент в сфалериты (Силинское месторождение, Россия, Приморье), халькопириты (Дубровское месторождение, Россия, Приморье), пириты. Высокие концентрации олова выявлены в пирротине грейзенов Смирновского месторождения (Россия, Приморье). Считается, что из-за ограниченного изоморфизма происходит распад твёрдых растворов с микровыделениями Cu2 +1 Fe +2 SnS4 или тиллита PbSnS2 и других минералов.

ПРИМЕНЕНИЕ

продукция из олова

Олово используется в основном как безопасное, нетоксичное, коррозионностойкое покрытие в чистом виде или в сплавах с другими металлами. Главные промышленные применения олова — в белой жести (лужёное железо) для изготовления тары пищевых продуктов, в припоях для электроники, в домовых трубопроводах, в подшипниковых сплавах и в покрытиях из олова и его сплавов. Важнейший сплав олова — бронза (с медью). Другой известный сплав — пьютер — используется для изготовления посуды. Для этих целей расходуется около 33 % всего добываемого олова. До 60 % производимого олова используется в виде сплавов с медью, медью и цинком, медью и сурьмой (подшипниковый сплав, или баббит), с цинком (упаковочная фольга) и в виде оловянно-свинцовых и оловянно-цинковых припоев. В последнее время возрождается интерес к использованию металла, поскольку он наиболее «экологичен» среди тяжёлых цветных металлов. Используется для создания сверхпроводящих проводов на основе интерметаллического соединения Nb3Sn.
Дисульфид олова SnS2 применяют в составе красок, имитирующих позолоту («поталь»).

Искусственные радиоактивные ядерные изомеры олова 117m Sn и 119m Sn — источники гамма-излучения, являются мёссбауэровскими изотопами и применяются в гамма-резонансной спектроскопии.
Интерметаллические соединения олова и циркония обладают высокими температурами плавления (до 2000 °C) и стойкостью к окислению при нагревании на воздухе и имеют ряд областей применения.

Олово является важнейшим легирующим компонентом при получении конструкционных сплавов титана.
Двуокись олова — очень эффективный абразивный материал, применяемый при «доводке» поверхности оптического стекла.
Смесь солей олова — «жёлтая композиция» — ранее использовалась как краситель для шерсти.

Олово применяется также в химических источниках тока в качестве анодного материала, например: марганцево-оловянный элемент, окисно-ртутно-оловянный элемент. Перспективно использование олова в свинцово-оловянном аккумуляторе; так, например, при равном напряжении, по сравнению со свинцовым аккумулятором свинцово-оловянный аккумулятор обладает в 2,5 раза большей емкостью и в 5 раз большей энергоплотностью на единицу объёма, внутреннее сопротивление его значительно ниже.
Исследуются изолированные двумерные слои олова (станен), созданные по аналогии с графеном.

ОЛОВО — разноликий металл

Металл олово был открыт раньше железа, а его сплав с медью — самый первый, созданный людьми.

Люди отметили значимость бронзы, назвав эпоху своего развития Бронзовым веком.

Неизвестная история

История открытия олова и сплавов из него покрыта пылью времен. Никто не назовет имени первооткрывателя металла, никто не знает — кто догадался первым сплавить олово с медью. Зато известно, что еще 6000 лет назад люди пользовались изделиями из металла.

олово металл

Происхождение латинского названия ученые выводят из санскритского sta — прочный.

Русское наименование относят к греческим корням. Alophoys по-гечески белый, что указывает на цвет металла.

Свойства Sn

олово элемент

Stannum (Sn) — латинское наименование этого гибкого, пластичного, легкоплавкого металла. Имеет № 50 в периодической таблице Менделеева.

По химическим свойствам металл подобен своим «соседям» — германию и свинцу.

В реакциях проявляет степени окисления +2, +4.

С водой или воздухом не реагирует. Причина этому — пленка оксида на поверхности металла.

Растворяется в разбавленных кислотах; с неметаллами реагирует при нагреве.

Физические свойства олова:

  • плотность β-Sn 7,3 г/см3;
  • плотность жидкого олова 6,98 г/см³;
  • удельная электропроводность 8,69 МСм/м.

Металл обладает редким свойством: плавится при низкой температуре (232°С), а кипит при высокой (2620°С).

Свойства атома
Название, символ, номер О́лово / Stannum (Sn), 50
Атомная масса
(молярная масса)
118,710(7)[1] а. е. м. (г/моль)
Электронная конфигурация [Kr] 4d10 5s2 5p2
Радиус атома 162 пм
Химические свойства
Ковалентный радиус 141 пм
Радиус иона (+4e) 71 (+2) 93 пм
Электроотрицательность 1,96 (шкала Полинга)
Электродный потенциал −0,136
Степени окисления +4, +2
Энергия ионизации
(первый электрон)
708,2 (7,34) кДж/моль (эВ)
Термодинамические свойства простого вещества
Плотность (при н. у.) 7,31 г/см³
Температура плавления 231,91 °C[2]
Температура кипения 2893 K, 2620 °C[3]
Уд. теплота плавления 7,19[2]; кДж/моль
Уд. теплота испарения 296[4] кДж/моль
Молярная теплоёмкость 27,11[4] Дж/(K·моль)
Молярный объём 16,3 см³/моль
Кристаллическая решётка простого вещества
Структура решётки тетрагональная
Параметры решётки a=5,831; c=3,181 Å
Отношение c/a 0,546
Температура Дебая 170,00 K
Прочие характеристики
Теплопроводность (300 K) 66,8 Вт/(м·К)
Номер CAS 7440-31-5

Аллотропные свойства олова

Аллотропия — свойство элемента менять свою кристаллическую решетку при изменении температуры. Модификация альфа (серое олово) устойчиво при низких температурах (ниже 13 °С). Имеет кубическую решетку, по типу алмаза. Практического применения не имеет.

Бета-модификация (белое, металлическое олово), из которого делают солдатиков, им же покрывают консервные банки. Кристаллическая структура тетрагональная.

Серое и белое олово

В гамма-модификацию металл переходит при температуре 161-232°С.

Печально: в музее А.В. Суворова случилось несчастье. В запаснике, где хранилась ценная коллекция оловянных солдатиков, зимой лопнули трубы отопления, и коллекция просто рассыпалась в пыль.

Маркировка металла

Промышленность выпускает металл в проволоке, чушках, прутках.

Месторождения оловянных руд

Д.И. Менделеев писал:

«Олово встречается в природе редко, в жилах древних пород, почти исключительно в виде окиси SnO2, называемой оловянным камнем».

Олово относится к редким рассеянным металлам. В природе среди элементов занимает 47-е место по распространенности.

Мировые запасы оловянных руд расположены в:

  • Китае;
  • Малайзии;
  • Индонезии;
  • Бразилии;
  • Перу;
  • Австралии.

Значимые месторождения российских оловянных руд сосредоточены на Дальнем Востоке (в Приморском крае, в Якутии, в Хабаровском крае). Добыча металла большей частью происходит в подземных шахтах.

Основные руды:

    оловянный камень, касситерит — содержит до 78% металла;

Кристаллы касситерита

Печально: по подсчетам ученых, оловосодержащих минералов на Земле осталось лет на 30. Потом придется добывать его из лома, или искать замену…

Сплавы

По своей классификации оловянные сплавы делятся на припои, подшипниковые и легкоплавкие.

  1. Баббиты. В них добавляют свинец, медь, сурьма. Баббиты могут иметь легирующие присадки. Маркировки баббитов: Б88, Б83, Б83С.
  2. Бронза — сплав меди с оловом. Любая бронза содержит небольшие добавки фосфора, цинка, свинца, никеля и других элементов. Марки бронзы: Бр ОФ 6,5-0,15; Бр.ОЦ 4-3; Бр.ОЦ10-2; Бр.ОФ 10-1; Бр.ОНС 11-4-3.
  3. Пьютер. Сплав с висмутом, сурьмой, медью, изредка со свинцом.
  4. Припои. Бывают твердые и легкоплавкие. В сплав добавляют свинец и другие элементы. Марки припоев: ПОС-30, ПОС-40, ПОС-90.

Плюсы и минусы олова

К достоинствам относим:

  1. Нетоксичность, это позволяет использовать металл в пищевой промышленности, в производстве посуды.
  2. Достойная антикоррозионная устойчивость в агрессивных средах.
  3. Не реагирует с серой; поэтому используют везде, где металл «завернут» в резиновую или пластиковую изоляцию.
  1. Подвержен «оловянной чуме».
  2. Довольно высокая стоимость ограничивает широкое применение металла.
  3. Невысокая температура плавления (всего 232°С).

Производство изделий из олова и его сплавов

Продукция из олова была востребована с давних времен. Дети играют в оловянных солдатиков уже 4000 лет.

  • Электроника с ее платами сейчас повсюду, и любые контакты соединяются припоем из олова и его сплавов. Оловянное напыление для медных проводов полезно, это защита от воздействия серы (она входит в состав резиновой изоляции).
  • Оловянные сплавы баббиты обладают прекрасными антифрикционными свойствами. Ни один из механизмов (от велосипеда до могучего КРАЗа) не обходится без подшипников.
  • Используют металл в типографском сплаве гарте. Полиграфическое производство невозможно без оловянных сплавов.

Расплавленное олово

Воздействие на организм оловянных изделий минимально. Поэтому применение металла в пищевой промышленности вполне оправдано.

Простая консервная банка и гибель полярной экспедиции

Французский повар Франсуа Аппер придумал, как долго хранить пищу. Он предложил герметично закрывать продукты в банки из белой жести (это тонкий лист из железа, покрытый оловянным напылением). Теперь мы не можем представить жизни без баночки вкусных консервов.

Но те же консервные банки (вернее, «оловянная чума») способствовали гибели экспедиции Р. Скотта к Южному полюсу. Из баков, запаянных оловянным припоем, вылилось горючее. Металл перешел в альфа-модификацию и просто раскрошился на морозе.

Стоимость олова

Главная мировая площадка инвесторов в металлы находится в Лондоне. Это LME (Лондонская биржа металлов).

Цена тонны олова на LME составляла 15590,0 US$ за тонну (данные на 28.05.2020).

admin

Мне 42 года и я специалист в области минералогии. Здесь на сайте я делюсь информацией про камни и их свойства — задавайте вопросы и пишите комментарии!

Олово – польза и особенности металла

Первое знакомство с этим металлом для многих начинается со сказки Андерсена «Стойкий оловянный солдатик». Олово стало привычным, почти родным.

Олово металл

История

Олово известно людям шесть тысяч лет. Но как компонент бронзы. Чистый металл выделили к XII веку. Через восемь столетий историю открытия пополнила разгадка феномена «оловянной чумы».

Олово как металл упоминают книги Библии и энциклопедист раннего Средневековья Роджер Бэкон.

Интересна этимология названия. Наименование stannum восходит к санскриту и означает «прочный, стойкий». Так именовали сплавы, и лишь с 4 века термин применяется к олову.

Термин «олово» есть в балтийских и всех славянских языках. Однако у славян он обозначает свинец. В балтийской группе основой служит наименование металла по цвету: белый либо желтый.

Что представляет собой

Олово – элемент периодической таблицы Менделеева.

Это легкий серебристо-белый блестящий металл. Состоит из десяти изотопов.

Оловянный куб

Оловянный куб

Олово относится к группе легких цветных металлов.

Международное обозначение – Sn (Stannum).

Мировая цена тонны сырья на Лондонской бирже металлов – $21 000.

По распространенности на планете олово на 47-й позиции, в земной коре его массовое содержание исчисляется тысячными долями процента.

Основной минерал-носитель металла в природе – касситерит (второе название оловянный камень) – почти 80% состава.

Формы нахождения в породах и минералах – рассеянная и минеральная (оксиды, гидроксиды, силикаты, сульфиды, шпинелиды).

Месторождения есть на всех континентах, запасы исчисляются миллионами тонн.

В России регионы залежей – Хабаровский, Приморский края, Якутия, Чукотка.

Физико-химические характеристики

Металл наделен многими достоинствами: пластичен, легок, ковок, нетоксичен.

Химические свойства при обычных температурах не проявляются.

Свойства атома
Название, символ, номер О́лово / Stannum (Sn), 50
Атомная масса
(молярная масса)
118,710(7) а. е. м. (г/моль)
Электронная конфигурация [Kr] 4d10 5s2 5p2
Радиус атома 162 пм
Химические свойства
Ковалентный радиус 141 пм
Радиус иона (+4e) 71 (+2) 93 пм
Электроотрицательность 1,96 (шкала Полинга)
Электродный потенциал −0,136
Степени окисления +4, +2
Энергия ионизации
(первый электрон)
708,2 (7,34) кДж/моль (эВ)
Термодинамические свойства простого вещества
Плотность (при н. у.) 7,31 г/см³
Температура плавления 231,91 °C
Температура кипения 2893 K, 2620 °C
Уд. теплота плавления 7,19; кДж/моль
Уд. теплота испарения 296 кДж/моль
Молярная теплоёмкость 27,11 Дж/(K·моль)
Молярный объём 16,3 см³/моль
Кристаллическая решётка простого вещества
Структура решётки тетрагональная
Параметры решётки a=5,831; c=3,181 Å
Отношение c/a 0,546
Температура Дебая 170,00 K

Недостатки: малая температура плавления, беззащитность перед «оловянной чумой».

«Оловянная чума»

При нормальном давлении металл принимает одну из двух модификаций:

При температуре воздуха ниже +13,2°С β-олово переформатируется в α-модификацию. Структура решетки меняется, серебристый металл становится серым порошком.

Быстрее всего процесс идет при -33°С. Из-за скорости его окрестили «оловянной чумой». Она погубила армию Наполеона при походе в Россию и множество музейных экспонатов, когда помещения выстывали.

Технология получения

Исходником для получения металла служит касситерит.

Кристаллы касситерита — оловянная руда

Кристаллы касситерита — оловянная руда

  1. Руду дробят до частиц не крупнее сантиметра.
  2. Методом флотации отделяют пустую породу. Содержание металла повышается до 42-68%.
  3. Серу и мышьяк удаляют кислородным обжигом концентрата.
  4. Полученным продуктом загружают плавильную печь, чередуя послойно концентрат с древесным углем. Получается восстановленное олово.
  5. Второй вариант восстановления – алюминием либо цинком.

При необходимости металл дополнительно очищают зонной плавкой либо электрохимическим рафинированием.

Марки олова

Металлурги выплавляют металл нескольких марок:

Марка Количество примесей (%)
ОВЧ-000 0,001
О1пч 0,085
О1 0,010
О2 0,435
О3 1,51
О4 3,51

Первые четыре марки олова выпускаются в форме чушек, проволоки, прутков. Из О3 и О4 выплавляют чушки. Это исходник для продукции из олова.

Где используется

Металл востребован как самостоятельный материал, в сплавах, соединениях.

Его химические и физические свойства позволяют изготавливать безопасные, стойкие к ржавению изделия и покрытия.

Оловянный солдатик в форме после литья

Оловянный солдатик в форме после литья

Металл

Чистый металл востребован как:

  • Тара пищевых продуктов.
  • Упаковочная фольга.
  • Анод в химических источниках тока.

Это также покрытие медных проводов. Металл защищает медную «начинку» от губительного воздействия серы, содержащейся в изоляционном материале.

Оловянный кубок

Оловянный кубок из г. Гданьска (Польша)

Олово – самый экологически чистый из легких цветных металлов.

Соединения

Соединения металла нашли применение в разных сегментах хозяйственного комплекса:

  • Авиа- и машиностроение. Присадка в сплавах титана.
  • Электротехника. Сверхпроводящий провод (соединение с ниобием).
  • Оптика. Абразив для финальной обработки поверхности стекла.
  • Легкая промышленность. Желтый краситель для шерсти.
  • Сельское хозяйство. Пестициды.
  • Декор. Компонент «золотых» красок.

Изомеры искусственного происхождения используют в медицине как источник гамма-излучения.

Треть добываемого олова идет на изготовление посуды. Еще 60% «забирают» подшипники, упаковочная фольга, припои. Менее 7% остается на другие цели.

Перспективы

Исследуется потенциал двумерных слоев олова, созданных по технологии получения графена. Название материала созвучно «родителю» – станен.

Металлургией олово используется как компонент сплавов. По сфере применения различают подшипниковые, легкоплавкие составы и припои.

Расплавленное олово

Расплавленное олово

Выработана классификация сплавов по видам:

Баббиты

Сплав на основе олова либо свинца. Применяется как слой, созданный напылением либо заливкой.

Минусы – малая прочность, быстрая «уставаемость». Ввиду этих свойств сплав используется только в подшипниках, защищенных корпусом.

Бронза

Медно-оловянный сплав с доминированием меди. Плюсы: твердость, легкоплавкость, устойчивость к обработке, ржавчине, механическим повреждениям, атмосферным катаклизмам.

Используется как литейный металл, в химической промышленности, автопроме, внешнем декоре зданий.

Припои

Бывают легко- и твердоплавкими. Главный компонент сплава – олово.

Существует несколько марок, в зависимости от соотношения элементов. Сплавы применяются для пайки всего: от посуды, медицинской аппаратуры, радиодеталей, радиаторов отопления до электронного оборудования.

Пьютеры

Сплав с медью, сурьмой, висмутом. Декоративный, эстетичный вариант. Из него делают посуду, мелкие предметы, украшающие жизнь. Но применение ограничивает токсичность.

В некоторых странах использование сплава запрещено. Такие изделия можно найти только у антикваров.

Значение для человека

Микроэлемент – участник метаболизма, содействует росту скелетных тканей.

Рацион

Оловом богаты продукты нескольких групп:

  • Мясо – курятина, индюшатина, говядина, свинина.
  • Молочные продукты, включая сыры твердых сортов.
  • Бобовые.
  • Овощи – картофель, свекла.
  • Семечки подсолнечника.

Ежесуточно человеку необходимо 3-11 мг вещества. Их он получает из пищи. Избыток утилизируется естественным путем, поэтому отравление исключено.

Симптомы нехватки

Нехватка микроэлемента нарушает минеральный баланс организма.

Результатом становятся следующие симптомы:

  • Немотивированное истощение.
  • Торможение роста.
  • Ухудшение слуха.
  • Тусклость, ломкость, выпадение волос.

Дефицит элемента – явление редкое. Так же, как переизбыток.

Переизбыток

Случается у людей, контактирующих с веществом (добыча на рудниках, работа на металлургическом предприятии) или фанатов консервированных продуктов.

Консервная банка с оловянным покрытием

Консервная банка с оловянным покрытием

Целостность оболочки консервных банок при длительном хранении нарушается. Часть олова переходит в содержимое.

О перенасыщенности организма металлом сигнализируют:

  1. Металлический привкус во рту.
  2. Отсутствие аппетита, расстройство ЖКТ (рвота, диарея).
  3. Анемичность, мигрени, головокружения.
  4. Кожа воспаляется, бледнеет, становясь сероватой. На деснах появляется синюшность.

На эмоциональном плане это повышенная агрессивность, возбудимость.

Предостережение

Металлическое олово не токсично, опасность исходит от паров, пылинок, аэрозольных частиц.

Ядовиты некоторые органические соединения олова и оловянистый водород. Их воздействие на организм провоцирует поражение легких.

Предельно допустимая концентрация соединений олова (мг):

  • воздух – 0,05 на кубометр;
  • молочная продукция, соки – 100 на кг;
  • другие продукты питания – 200 на кг.

Токсическая доза металла для человека – 2 г, для интоксикации достаточно 250 мг/кг.

Тяжелые металлы – перечень, свойства и риски элементов

Официально такой группы химических элементов не существует. Однако металлурги, аграрии, особенно экологи, оперируют понятием «тяжелые металлы». Этот сегмент привлекает повышенное внимание.

Тяжелые металлы

Что представляют собой

Термин «тяжелые металлы» еще двести лет назад пытался ввести в научный оборот немецкий химик Лео Гмелин.

Однако в номенклатуре Международного союза, курирующего вопросы теории и практики химии (IUPAC), такое подразделение отсутствует.

Промышленность

В академических и промышленных кругах циркулирует четыре десятка критериев, по которым металл признается тяжелым.

Самые популярные основания:

  • Атомный номер выше 50.
  • Плотность 5+ г/см3.

На практике чаще востребован второй критерий.

То есть к тяжелым металлам относятся элементы с плотностью, превышающей 5 г/см3.

В соответствии с ним таковыми считаются:

  • Традиционные: железо, медь, хром, марганец, кобальт, олово, свинец, никель, цинк.
  • Менее известные: кадмий, молибден, вольфрам, сурьма. Плюс экзотика – галлий, теллур.
  • И самые коварные – ртуть, таллий, висмут.

На бытовом уровне они считаются токсичными элементами. Подобное отождествление некорректно.

Не каждый тяжелый металл токсичен, но таким способно стать при благоприятных условиях безобидное вещество.

Экология, медицина

У экологов и врачей свои подходы. Для них тяжелыми металлами являются особо значимые (полезные либо опасные) для биологических организмов элементы.

Суровее критерии Организации Объединенных наций (ООН). В соответствии с ее экологической доктриной, тяжелыми считаются стабильные металлы либо металлоиды, их соединения (особенно соли тяжелых металлов) с плотностью более 4,5 г/см3.

Критерий действует с 1998 года.

Классификация

Кроме плотности, маркером принадлежности к группе служат температура плавления, степень использования, другие свойства.

На основании этого выделяют следующие виды тяжелых металлов:

    – цинк, медь, олово, свинец, никель. – железо.
  • Редкие – галлий, висмут, таллий, кадмий. – молибден, вольфрам, хром. – кадмий, кобальт, свинец, ртуть, олово, галлий, таллий, висмут.

Самый тяжелый металл планеты – иридий. Кубик с ребром в 1 см весит 22,6 грамма. Но вещество попадает на Землю только с метеоритами.

элемент иридий

Иридий

В сегменте обычных земных «тяжеловесов» лидирует вольфрам – он на три грамма легче. Это восьмая позиция среди металлов.

Откуда берутся

Естественных поставщиков тяжелых металлов четыре:

  1. Горное сырье. Чаще это магматические либо осадочные породы.
  2. Породообразующие минералы. У меди, например, это малахит и другие минералы.
  3. Вулканы. Частицы вещества извергаются попутно с вулканическими продуктами (газами, гейзерами).

Еще один источник – Вселенная. Вещество заносится в стратосферу метеоритами либо облаками космической пыли.

Получение продукта

На большинстве металлургических комбинатах сырье плавят в доменных и мартеновских печах. Это оборудование из позапрошлого века делает процесс тяжелым, опасным для экологии и человека.

Внедрение « зеленых » технологий продвигается медленно, поскольку требует инвестиций.

Результат недостаточной очистки отходов производства – высокое содержание вредных компонентов. Следствие – загрязнение почвы, воды, воздуха.

Влияние на экологию

Особо опасные загрязнители биосферы – именно тяжелые металлы. Самая вредная форма соединений – соли.

Пути поступления

Загрязнение биосферы происходит следующими способами:

  1. Металлургия. Выбросы в процессе плавки, обжига. Вымывание тяжелых веществ из отвалов месторождений либо меткомбинатов водой, выветривание.
  2. Агросектор. Полив плантаций, удобрение полей илом бытовых стоков либо пестицидами.
  3. Быт. Использование как топлива торфа, угля, другого сырья.
  4. Автобаны. Свинцом, цинком, кадмием насыщены обочины автострад.

Свинец пропитывает почву минимум на 100 м по обе стороны дороги.

свинец

Свинец

Способы очищения

Почва очищается от такого груза десятилетиями, иногда столетиями.

Концентрация цинка уменьшается наполовину спустя столетие, кадмию требуется вдвое меньше.

Медь исчезает через три столетия, свинец – через десять:

  • Токсичные соединения растворяются в воде.
  • В почве процесс активируют влажность и растительность.

Флора вытягивает «свои» металлы. Так, лишайники «кушают» цинк, никель, медь.

Самородная медь

Самородная медь

Токсичность тяжелых металлов возрастает с увеличением атомного номера.

Воздействие на человека

Влияние большинства таких веществ двояко:

  • Микродозы цинка, железа, меди задействованы в биологических процессах. Например, поддержании уровня гемоглобина в крови.
  • Превышение микродоз опасно: тормозится работа нервной системы, сердца, почек, других органов. Разрушается скелет, идет разбалансировка жизненных процессов.
  • Токсичны бесполезные свинец, ртуть.

Отравление организма внешне проявляется как тошнота, рвота, головная боль, нарушение координации движений. Плюс более тяжелые последствия, до летального исхода.

В зоне риска следующие категории:

  • Работники меткомбинатов.
  • Жители мегаполисов, окрестностей автострад.
  • Потребители продуктов со стихийных рынков (не прошедших санитарный контроль).

Уровень загрязненности территории экологи определяют благодаря местным животным.

Чуткие «индикаторы» загрязненности на европейской части – лоси, мышь-полевка, кроты, бурый мишка.

Читайте также: