Оксид железа это металл
Окси́д желе́за(III) — сложное неорганическое вещество, соединение железа и кислорода с химической формулой Fe2O3.
Содержание
Свойства
Оксид железа(III) — амфотерный оксид с большим преобладанием основных свойств. Красно-коричневого цвета. Термически устойчив до высоких температур. Образуется при сгорании железа на воздухе. Не реагирует с водой. Медленно реагирует с кислотами и щелочами. Восстанавливается монооксидом углерода, расплавленным железом. Сплавляется с оксидами других металлов и образует двойные оксиды — шпинели.
В природе встречается как широко распространённый минерал гематит, примеси которого обуславливают красноватую окраску латерита, красноземов, а также поверхности Марса.
Получение
Термическое разложение соединений солей железа(III) на воздухе:
Химические свойства
1. Взаимодействие с разбавленной соляной кислотой:
4. Восстановление железа водородом:
." />
Применение
Применяется как сырьё при выплавке чугуна в доменном процессе, катализатор в производстве аммиака, компонент керамики, цветных цементов и минеральных красок, при термитной сварке стальных конструкций, как носитель аналоговой и цифровой информации (напр. звука и изображения) на магнитных лентах, как полирующее средство (красный крокус) для стали и стекла.
В пищевой промышленности используется в качестве пищевого красителя (E172).
См. также
Литература
- Лидин Р. А. «Справочник школьника. Химия» М.: Астерель, 2003.
- Соединения железа
- Оксиды железа
- Пищевые добавки
- Пигменты
- Амфотерные оксиды
Wikimedia Foundation . 2010 .
Полезное
Смотреть что такое "Оксид железа(III)" в других словарях:
Оксид железа (III) — Гематит «кровавик» Разновидность гематита красная стеклянная голова . Мичиган, (США) Формула Fe2O3 Сингония Тригональная Цвет Металлический серый, до коричнево красного … Википедия
Оксид железа(II,III) — Общие Систематическое наименование О … Википедия
Оксид железа(II) — Общие Систематическое наименование Оксид железа(II) Химическая формула FeO … Википедия
Оксид хрома(III) — Оксид хрома(III) … Википедия
Оксид железа — Оксиды железа соединения железа с кислородом. Известно 3 наиболее распространённых оксида железа: Fe3O4, Магнетит распространённый минерал железа, FeO вюстит (см. ниже) Fe2O3 гематит (см. ниже) Оксид железа(II) Оксид железа FeO чёрные кристаллы,… … Википедия
Оксид железа (II) — Оксиды железа соединения железа с кислородом. Известно 3 наиболее распространённых оксида железа: Fe3O4, Магнетит распространённый минерал железа, FeO вюстит (см. ниже) Fe2O3 гематит (см. ниже) Оксид железа(II) Оксид железа FeO чёрные кристаллы,… … Википедия
Сульфат железа(III) — У этого термина существуют и другие значения, см. Сульфат железа. Сульфат железа(III) … Википедия
Бромид железа(III) — У этого термина существуют и другие значения, см. Бромид железа. Бромид железа(III) Общие Традиционные названия Трибомид железа Химическая формула FeBr3 Физические свойства Сос … Википедия
Фторид железа(III) — У этого термина существуют и другие значения, см. Фторид железа. Фторид железа(III) Общие Систематическое наименование Фторид железа(III) Традиционные названия Фтористое железо Химическая формула FeF3 … Википедия
Хлорид железа(III) — У этого термина существуют и другие значения, см. Хлорид железа. Хлорид железа(III) … Википедия
Железа оксиды
Окси́ды желе́за — соединения железа с кислородом.
Известно 3 наиболее распространённых оксида железа:
- FeO·Fe2O3 (брутто-формула Fe3O4), магнетит — распространённый минерал железа,
- FeO — вюстит (см. ниже)
- Fe2O3 — гематит (см. ниже)
Оксид железа(II)
Оксид железа FeO — чёрные кристаллы, нерастворимые в воде. Температура плавления 1420 °C.
Хорошо растворимы в кислотах:
Оксид железа получают при восстановлении оксида железа (III) при +500 °C оксидом углерода(II):
Оксид железа(II) обладает основными свойствами.
Оксид железа(III)
Оксид железа Fe2O3 — красно-бурый порошок. Температура плавления 1565 °C.
Оксид железа(III) обладает слабо выраженными амфотерными свойствами:
- Сплавляется с щёлочами или с карбонатамищелочных металлов с образованием ферритов:
- Растворяется в кислотах:
Применяются при производстве магнитных носителей информации (магнитных лент для аудио-, видео- и компьютерной техники, дискет, накопителей на жёстких магнитных дисках).
Смотреть что такое "Железа оксиды" в других словарях:
ЖЕЛЕЗА ОКСИДЫ — ЖЕЛЕЗА ОКСИДЫ: FeO Fe2O3 и Fe3O4. Природные оксиды железа (гематит и магнетит) сырье для получения железа. Применяются в производстве магнитных материалов, в качестве пигментов, компонентов футеровочной керамики … Большой Энциклопедический словарь
ЖЕЛЕЗА ОКСИДЫ — ЖЕЛЕЗА ОКСИДЫ: FeO, Fe2O3 и Fe3O4. Природные оксиды железа (гематит и магнетит) сырье для получения железа. Применяются в производстве магнитных материалов, в качестве пигментов, компонентов футеровочной керамики … Энциклопедический словарь
ЖЕЛЕЗА ОКСИДЫ — не растворимые в воде соединения FeO, Fe203 и их смесь Fe304 (в природе минерал магнетит), которые применяют для производства чугуна, стали, ферритов и др … Большая политехническая энциклопедия
ЖЕЛЕЗА ОКСИДЫ — не растворимые в воде соединения железа: чёрный FeO (устар. закись железа), tnл 1368 °С; чёрный Fе2О3 (устар. закись окись железа, в природе минерал магнетит), tnл 1538 °С; жёлтый, коричневый или тёмно красный Fe3O4 (в природе минерал гематит или … Большой энциклопедический политехнический словарь
ЖЕЛЕЗА ОКСИДЫ — Оксид FeO (в технике вюстит). В кристаллич. решетке вюстита имеются вакантные узлы, и его состав отвечает ф ле FexO, где х= 0,89 0,95; ур ние температурной зависимости давления разложения: lg p(O2, в мм рт. ст.) = 26730/T+ 6,43 (T > 1813 К);… … Химическая энциклопедия
ЖЕЛЕЗА ОКСИДЫ — FeO, Fe2O3 и Fe3O4. Природные Ж. о. (гематит и магнетит) сырьё для получения железа. Применяются в произ ве маги, материалов, в качестве пигментов, компонентов футеровочиой керамики … Естествознание. Энциклопедический словарь
ЖЕЛЕЗА — ОКСИДЫ: FeO (черный, tпл 1369шC); Fe2O3 (от темно красного до черно фиолетового или коричневого цвета, tпл 1565шC; минерал гематит и др.); Fe3O4 (черный, tпл 1594шC; минерал магнетит). Природные железа оксиды сырье в производстве железа,… … Современная энциклопедия
ЖЕЛЕЗА ГИДРОКСИДЫ — см. Железа оксиды … Химическая энциклопедия
ОКСИДЫ ЖЕЛЕЗА — ОКСИДЫ ЖЕЛЕЗА, одно из трех соединений, существующих в трех состояниях: окись железа (II) (закись железа, FeO); окись железа (III) (окись железа, Fe2O3), которая встречается в природе как ГЕМАТИТ; и закисно окисное железо (Fе3О4), которое… … Научно-технический энциклопедический словарь
Оксид железа (II,III)
Оксид железа (II,III), закись-окись железа, железная окалина — неорганическое соединение, двойной оксид металла железа с формулой Fe3O4 или FeO·Fe2O3, чёрные кристаллы, не растворимые в воде, образует кристаллогидрат.
- В природе встречаются большие залежи минерала магнетита (магнитного железняка) — Fe3O4 с различными примесями.
- Сжигание порошкообразного железа на воздухе:
- Действие перегретого пара на железо:
- Осторожное восстановление оксида железа (III) водородом:
Физические свойства
Оксид железа (II,III) при комнатной температуре образует чёрные кристаллы кубической сингонии, пространственная группа F d3m, параметры ячейки a = 0,844 нм , Z = 8 (структура шпинели). При 627 °С α -форма переходит в β -форму. При температуре ниже 120—125 К существует моноклинная форма.
Ферромагнетик с точкой Кюри 858 К (585 °С).
Обладает электрической проводимостью. Полупроводник. Электропроводность низкая. Истинная удельная электропроводность монокристаллического магнетита максимальна при комнатной температуре ( 250 Ом −1 ·см −1 ), она быстро снижается при понижении температуры, достигая значения около 50 Ом −1 ·см −1 при температуре перехода Вервея (фазового перехода от кубической к низкотемпературной моноклинной структуре, существующей ниже TV = 120—125 К ). Электропроводность моноклинного низкотемпературного магнетита на 2 порядка ниже, чем кубического ( ~1 Ом −1 ·см −1 при TV ); она, как и у любого типичного полупроводника, очень быстро уменьшается с понижением температуры, достигая нескольких единиц ×10 −6 Ом −1 ·см −1 при 50 К . При этом моноклинный магнетит, в отличие от кубического, проявляет существенную анизотропию электропроводности — проводимость вдоль главных осей может отличаться более чем в 10 раз . При 5,3 К электропроводность достигает минимума ~10 −15 Ом −1 ·см −1 и растёт при дальнейшем понижении температуры. При температуре выше комнатной электропроводность медленно уменьшается до ≈180 Ом −1 ·см −1 при 780—800 К , а затем очень медленно растёт вплоть до температуры разложения.
Кажущаяся величина электропроводности поликристаллического магнетита в зависимости от наличия трещин и их ориентировки может отличаться в сотни раз.
Образует кристаллогидрат состава Fe3O4·2H2O.
- Разлагается при нагревании:
- Реагирует с разбавленными кислотами:
- Реагирует с концентрированными окисляющими кислотами:
- Реагирует с щелочами при сплавлении:
- Окисляется кислородом воздуха:
- Восстанавливается водородом и монооксидом углерода:
- Конпропорционирует при спекании с железом:
- Алюминат железа II ( Fe(AlO2)2 ) Алюминат железа II
- Арсенат железа II (Fe3(AsO4)2) Железо мышьяковокислое
- Арсенат железа III (FeAsO4) Мышьяковокислое железо
- Ацетат железа II (Fe(CH3COO)2) Железо уксуснокислое
- Ацетат железа III (Fe(CH3COO)3) Уксуснокислое железо
- Берлинская лазурь () Прусская Синь
- Бромид железа II (FeBr2) Бромистое железо
- Бромид железа III (FeBr3) Трибромид железа
- Бромид железа II,III (Fe3Br8) Железо бромистое
- Ванадат железа III (FeVO4) Железо ванадиевокислое
- Вольфрамат железа II (FeWO4) Железо вольфрамовокислое
- Гексаплутонийжелезо (FePu6) Гексаплутонийжелезо
- Гексахлороплатинат IV железа (Fe[PtCl6]) Гексахлороплатеат железа
- Гексацианоферрат II железа II (Fe2[Fe(CN)6]) Гексацианоферрат железа II
- Гексацианоферрат II железа III (Fe4[Fe(CN)6]3) Гексацианоферрат железа III
- Гексацианоферрат III железа II,III (Fe III 4Fe II 3[Fe(CN)6]6) Гексацианоферрат железа II,III
- Гексацианоферрат III железа II (Fe3[Fe(CN)6]2) Турнбулева синь
- Гексацианоферрат II калия (K4[Fe(CN)6]) Желтая кровяная соль
- Гексацианоферрат III калия (K3[Fe(CN)6]) Красная кровяная соль
- Гидроксид железа II (Fe(OH)2) Гидроксид железа II
- Гидроксид железа III (Fe(OH)3) Гидроксид железа III
- Динитрозилдикарбонилжелезо (Fe(CO)2(NO)2) Динитрозилдикарбонилжелезо
- Дипразеодимгептадекажелезо (Fe17Pr2) Гептадекажелезодипразеодим
- Диренийтрижелезо (Fe3Re2) Трижелезодирений
- Дисамарийгептадекажелезо (Fe17Sm2) Гептадекажелезодисамарий
- Диселенид железа (FeSe2) Железо селенистое
- Дисилицид железа (FeSi2) Железо кремнистое
- Дистаннид железа (FeSn2) Дистаннид железа
- Дистаннид трижелеза (Fe3Sn2) Дистаннид трижелеза
- Дисульфид железа II (FeS2) Дисульфид железа
- Дителлурид железа (FeTe2) Дителлурид железа
- Дихромат железа III (Fe2(Cr2O7)3) Хромовокислое железо
- Додекакарбонилтрижелезо (Fe3(CO)12) Додекакарбонилтрижелезо
- Железо (Fe)
- Железистосинеродистая кислота (H4[Fe(CN)6]) Кислота железистосинеродистая
- Железониобий (FeNb) Железониобий
- Железосинеродистая кислота (H3[Fe(CN)6]) Кислота железосинеродистая
- Йодид железа II,III (Fe3I8) Йодистое железо
- Йодид железа II (FeI2) Железо йодистое
- Карбонат железа II (FeCO3) Железо углекислое
- Лактат железа II (Fe(C3H5O3)2) Железо молочнокислое
- Лактат железа III (Fe(C3H5O3)3) Молочнокислое железо
- Метаванадат железа III (Fe(VO3)3) Ванадиевокислое железо
- Метагидроксид железа (FeO(OH)) Железо метагидроксид
- Молибдат железа II (FeMoO4) Железо молибденовокислое
- Нитрат железа II (Fe(NO3)2) Железо азотнокислое
- Нитрат железа III (Fe(NO3)3) Азотнокислое железо
- Нитрид дижелеза (Fe2N) Железо азотистое
- Оксалат железа II (FeC2O4) Железо щавелевокислое
- Оксид железа II (FeO) Оксид железа
- Оксид железа III (Fe2O3) Окись железа ( Железный сурик )
- Оксид железа II,III (Fe3O4) Закись-окись железа
- Оксихлорид железа (FeOCl) Оксид-хлорид железа
- Пентакарбонилжелезо ([Fe(CO)5]) Пентакарбонил железа
- Перхлорат железа II (Fe(ClO4)2) Железо хлорнокислое
- Пирофосфат железа III (Fe4(P2O7)3) Железо пирофосфорнокислое
- Пирофосфат железа III-натрия (FeNaP2O7) Фосфорнокислое железо-натрий
- Платинажелезо (FePt) Железоплатина
- Плутонийдижелезо (Fe2Pu) Плутонийдижелезо
- Празеодимдижелезо (Fe2Pr) Дижелезопразеодим
- Ржавчина
- Самарийдижелезо (Fe2Sm) Дижелезосамарий
- Самарийпентажелезо (Fe5Sm) Пентажелезосамарий
- Самарийтрижелезо (Fe3Sm) Трижелезосамарий
- Селенид железа II (FeSe) Селенистое железо
- Силикат железа II (FeSiO3) Железо кремнекислое
- Силицид дижелеза (Fe2Si) Кремнистое железо
- Силицид железа (FeSi)
- Соль Мора (FeSO4·(NH4)2SO4·6H2O) Сульфат аммония-железа II
- Станнид железа (FeSn)
- Станнид трижелеза (Fe3Sn)
- Сульфат железа (FeSO4) Железо сернокислое (Железный купорос)
- Сульфат железа II-калия (K2Fe(SO4)2) Сернокислое железо-калий
- Сульфат железа III (Fe2(SO4)3) Железо сернокислое III
- Сульфат железа III-аммония (NH4Fe(SO4)2·12H2O) Сернокислое железо-аммоний
- Сульфат железа III-калия (KFe(SO4)2) Сернокислое железо-калий
- Сульфид железа II,III (Fe3S4)
- Сульфид железа II (FeS)
- Сульфид железа II-меди II (CuFeS2)
- Сульфид железа III (Fe2S3)
- Сульфид железа III-калия (KFeS2) Сернистое железо-калий
- Сульфит железа II (FeSO3) Железо сернистокислое
- Танталат железа II (Fe(TaO3)2) Железо танталовокислое
- Тартрат железа II (FeC4H4O6) Железо виннокислое
- Теллурид железа II (FeTe) Железо теллуристое
- Теллурид железа III (Fe2Te3) Теллуристое железо
- Тетракарбонилдигидриджелезо (H2Fe(CO)4)
- Тетракарбонилжелезо (Fe(CO)4) Тетракарбонил железа
- Тиосульфат железа II (FeSO3S) Тиосернокислое железо
- Тиоцианат железа II (Fe(SCN)2) Железо роданистое
- Тиоцианат железа III (Fe(SCN)3) Тиоциановокислое железо
- Титанат железа II (FeTiO3) Титановокислое железо
- Триренийдижелезо (Fe2Re3) Дижелезотрирений
- Формиат железа III (Fe(CHO2)3) Железо муравьинокислое
- Фосфат железа II (Fe3(PO4)2) Железо фосфорнокислое
- Фосфат железа III (FePO4) Фосфорнокислое железо
- Фосфинат железа III (Fe(PH2O2)3) Железо фосфорноватистокислое ( гипофосфит железа )
- Фторид железа II (FeF2) Железо фтористое
- Фторид железа III (FeF3) Фтористое железо
- Хлорид железо II (FeCl2) Железо двухлористое
- Хлорид железа III (FeCl3) Железо треххлористое
- Хлорид железа II,III (Fe3Cl8) Хлористое железо II,III
- Хлорид железа III-калия (FeCl3•2KCl•H2O) Хлористое железо-калий
- Хромат железа III (Fe2(CrO4)3) Железо хромовокислое
- Хромит железа II (Fe(СrO2)2) тетраоксид железа-дихрома
- Цианид железа II (Fe(CN)2) Железо цианистое
- Цитрат железа II (FeC6H6O7) Железо лимоннокислое
- Цитрат железа III (FeC6H5O7) Лимоннокислое железо
- Цитрат железа III-аммония (Fe(NH4)3(C6H5O7)2) Лимоннокислое железо-аммоний
© 2000-2020 Все права защищены.
Любое копирование, в т.ч. отдельных частей текстов или изображений, публикация и републикация, перепечатка или любое другое распространение информации, в какой бы форме и каким бы техническим способом оно не осуществлялось, строго запрещается без предварительного письменного согласия со стороны редакции. Во время цитирования информации подписчиками ссылки обязательны. Допускается цитирование материалов сайта без получения предварительного согласия, но в объеме не более одного абзаца и с обязательной прямой, открытой для поисковых систем гиперссылкой на сайт.
Ржавчина
Ржавчина - является общим термином для определения оксидов железа. В разговорной речи это слово применяется к красным оксидам, образующимся в ходе реакции железа с кислородом в присутствии воды или влажного воздуха. Есть и другие формы ржавчины, например, продукт, образующийся в ходе реакции железа с хлором при отсутствии кислорода. Такое вещество образуется, в частности, в арматуре, используемой в подводных бетонных столбах, и называют его зелёной ржавчиной. Несколько видов коррозии различимы зрительно или с помощью спектроскопии, они образуются при разных внешних условиях. Ржавчина состоит из гидратированного оксида железа (III) Fe2O3·nH2O и метагидроксида железа (FeO(OH), Fe(OH)3). При наличии кислорода, воды и достаточного времени любая масса железа в конечном итоге преобразуется полностью в ржавчину и разрушается. Поверхность ржавчины не создаёт защиту для нижележащего железа, в отличие от образования патины на медной поверхности.
Ржавчиной, как правило, называют продукт коррозии только железа и его сплавов, таких как сталь. Многие другие металлы тоже подвергаются коррозии, но именно оксиды железа обычно называют ржавчиной.
- 1 Химические реакции
- 1.1 Причины ржавления
- 1.2 Происходящие реакции
- 2.1 Гальванизация
- 2.2 Катодная защита
- 2.3 Лакокрасочные и другие защитные покрытия
- 2.4 Покрытие слоем металла
- 2.5 Воронение
- 2.6 Снижение влажности
- 2.7 Ингибиторы
Химические реакции
Толстый слой ржавчины на звеньях цепи возле моста Золотые Ворота в Сан-Франциско. Цепь постоянно подвергается воздействию сырости и солёных брызг, вызывающих разрушение поверхности, растрескивание и шелушение металла.
Причины ржавления
Если железо, содержащее какие-либо добавки и примеси (например, углерод), находится в контакте с водой, кислородом или другим сильным окислителем и/или кислотой, то оно начинает ржаветь. Если при этом присутствует соль, например, имеется контакт с солёной водой, коррозия происходит быстрее в результате электрохимических реакций. Чистое железо относительно устойчиво к воздействию чистой воды и сухого кислорода. Как и у других металлов, например, у алюминия, плотно приставшее оксидное покрытие на железе (слой пассивации) защищает основную массу железа от дальнейшего окисления. Превращение же пассивирующего слоя оксида железа в ржавчину является результатом комбинированного действия двух реагентов, как правило, кислорода и воды. Другими разрушающими факторами являются диоксид серы и углекислый газ в воде. В этих агрессивных условиях образуются различные виды гидроксида железа. В отличие от оксидов железа, гидроксиды не защищают основную массу металла. Поскольку гидроксид формируется и отслаивается от поверхности, воздействию подвергается следующий слой железа, и процесс коррозии продолжается до тех пор, пока всё железо не будет уничтожено, или в системе закончится весь кислород, вода, диоксид углерода или диоксид серы.
Происходящие реакции
Покрытый ржавчиной и грязью болт. Заметна точечная коррозия и постепенная деформация поверхности, вызванная сильным окислением.
Ржавление железа — это электрохимический процесс, который начинается с переноса электронов от железа к кислороду. Скорость коррозии зависит от количества имеющейся воды, и ускоряется электролитами, о чём свидетельствуют последствия применения дорожной соли на коррозию автомобилей. Ключевой реакцией является восстановление кислорода:
Поскольку при этом образуются гидроксид-анионы, этот процесс сильно зависит от присутствия кислоты. Действительно, коррозия большинства металлов кислородом ускоряется при понижении pH. Обеспечение электронов для вышеприведённой реакции происходит при окисления железа, которое может быть описано следующим образом:
Следующая окислительно-восстановительная реакция происходит в присутствии воды и имеет решающее значение для формирования ржавчины:
4 Fe 2+ + O2 → 4 Fe 3+ + 2 O 2−
Кроме того, следующие многоступенчатые кислотно-щелочные реакции влияют на ход формирования ржавчины:
Fe 2+ + 2 H2O ⇌ Fe(OH)2 + 2 H + Fe 3+ + 3 H2O ⇌ Fe(OH)3 + 3 H +
что приводит к следующим реакциям поддержания баланса дегидратации:
Из приведённых выше уравнений видно, что формирование продуктов коррозии обусловлено наличием воды и кислорода. С ограничением растворённого кислорода на передний план выдвигаются железо (II)-содержащие материалы, в том числе FeO и чёрный магнит (Fe3O4). Высокая концентрация кислорода благоприятна для материалов с трёхвалентным железом, с номинальной формулой Fe(OH)3-xOx/2. Характер коррозии меняется со временем, отражая медленные скорости реакций твёрдых тел.
Кроме того, эти сложные процессы зависят от присутствия других ионов, таких как Ca 2+ , которые служат в качестве электролита, и таким образом, ускоряют образование ржавчины, или в сочетании с гидроксидами и оксидами железа образуют различные осадки вида Ca-Fe-O-OH.
Более того, цвет ржавчины можно использовать для проверки наличия ионов Fe2+, которые меняют цвет ржавчины с жёлтого на синий.
Предотвращение ржавления
Ржавчина является проницаемой для воздуха и воды, поэтому внутрилежащее железо продолжает разъедаться. Предотвращение ржавчины, следовательно, требует покрытия, которое исключает образование ржавчины. На поверхности нержавеющей стали образуется пассивирующий слой оксида хрома (III). Подобное проявление пассивации происходит с магнием, титаном, цинком, оксидом цинка, алюминием, полианилином и другими электропроводящими полимерами.
Гальванизация
Хорошим подходом к предотвращению ржавчины является метод гальванизации, который обычно заключается в нанесении на защищаемый объект слоя цинка либо методом горячего цинкования, либо методом гальванотехники. Цинк традиционно используется, потому что он достаточно дёшев, обладает хорошей адгезией к стали и обеспечивает катодную защиту на стальную поверхность в случае повреждения цинкового слоя. В более агрессивных средах (таких, как солёная вода), предпочтительнее кадмий. Гальванизация часто не попадает на швы, отверстия и стыки, через которые наносилось покрытие. В этих случаях покрытие обеспечивает катодную защиту металла, где оно выступает в роли гальванического анода, на который прежде всего и воздействует коррозия. В более современные покрытия добавляют алюминий, новый материал называется цинк-алюм. Алюминий в покрытии мигрирует, покрывая царапины и, таким образом, обеспечивая более длительную защиту. Этот метод основан на применении оксидов алюминия и цинка, защищающих царапины на поверхности, в отличие от процесса оксидизации, как в случае применения гальванического анода. В некоторых случаях при очень агрессивных средах или длительных сроках эксплуатации применяются одновременно и гальванизация цинком, и другие защитные покрытия, чтобы обеспечить надёжную защиту от коррозии.
Катодная защита
Катодная защита является методом, используемым для предотвращения коррозии в скрытых под землёй или под водой структурах путём подачи электрического заряда, который подавляет электрохимические реакции. Если её правильно применять, коррозия может быть остановлена полностью. В своей простейшей форме это достигается путём соединения защищаемого объекта с протекторным анодом, в результате чего на поверхности железа или стали происходит только катодный процесс. Протекторный анод должен быть сделан из металла с более отрицательным электродным потенциалом, чем железо или сталь, обычно это цинк, алюминий или магний.
Лакокрасочные и другие защитные покрытия
От ржавчины можно предохранять с помощью лакокрасочных и других защитных покрытий, которые изолируют железо из окружающей среды. Большие поверхности, поделённые на секции, как например, корпуса судов и современных автомобилей, часто покрывают продуктами на основе воска. Такие средства обработки содержат также ингибиторы коррозии. Покрытие стальной арматуры бетоном (железобетон) обеспечивает некоторую защиту стали в среде с высоким pH. Однако коррозия стали в бетоне всё ещё является проблемой.
Покрытие слоем металла
Ржавчина может полностью разрушить железо. Обратите внимание на гальванизацию незаржавевших участков.
- Оцинковка (оцинкованное железо/сталь): железо или сталь покрываются слоем цинка. Может использоваться метод горячего цинкования или метод цинкового дутья.
- Лужение: мягкая листовая сталь покрывается слоем олова. В настоящее время практически не используется из-за высокой стоимости олова.
- Хромирование: тонкий слой хрома наносится электролитическим способом на сталь, обеспечивая как защиту от коррозии, так и яркий, полированный внешний вид. Часто используется в блестящих компонентах велосипедов, мотоциклов и автомобилей.
Воронение
Воронение — это способ, который может обеспечить ограниченную устойчивость к коррозии для мелких предметов из стали, таких как огнестрельное оружие и др. Способ состоит в получении на поверхности углеродистой или низколегированной стали или чугуна слоя окислов железа толщиной 1-10 мкм. Для придания блеска, а также для улучшения защитных свойств окисной плёнки, её пропитывают минеральным или растительным маслом.
Снижение влажности
Ржавчины можно избежать, снижая влажность окружающего железо воздуха. Этого можно добиться, например, с помощью силикагеля.
Ингибиторы
Ингибиторы коррозии, как, например, газообразные или летучие ингибиторы, можно использовать для предотвращения коррозии в закрытых системах. Некоторые ингибиторы коррозии чрезвычайно ядовиты. Одним из лучших ингибиторов выступают соли технециевой кислоты.
Экономический эффект
Ржавчина вызывает деградацию изделий и конструкций, изготовленных из материалов на основе железа. Поскольку ржавчина имеет гораздо больший объём, чем исходное железо, её нарост ведёт к быстрому разрушению конструкции, усиливая коррозию на прилегающих к нему участках — явление, называемое поеданием ржавчиной. Это явление стало причиной разрушения моста через реку Мианус (штат Коннектикут, США) в 1983 году, когда подшипники подъёмного механизма полностью проржавели изнутри. В результате этот механизм зацепил за угол одной из дорожных плит и сдвинул её с опор. Ржавчина была также главной причиной разрушения Серебряного моста в Западной Вирджинии в 1967 году, когда стальной висячий мост рухнул меньше, чем за минуту. Погибли 46 водителей и пассажиров, находившихся в то время на мосту.
Мост Кинзу в штате Пенсильвания был снесён смерчем в 2003 году в значительной степени потому, что центральные опорные болты, соединяющие сооружение с землёй, проржавели, из-за чего мост держался лишь под действием силы тяжести.
Кроме того, коррозия покрытых бетоном стали и железа может вызвать раскалывание бетона, что создает серьёзные конструкторские трудности. Это один из наиболее распространённых отказов железобетонных мостов.
Читайте также: