Окисление металла на воздухе

Обновлено: 06.01.2025

Электрохимическая коррозия относится к наиболее часто встречающимся процессам постепенного разрушения металла.

Как мы знаем, наше окружение наполнено электричеством.

В зависимости от среды, меняются показатели проводимости. Не отличается то, что при контакте с такой средой сталь начинает постепенно портиться.

У процесса есть несколько важных отличий.

В первую очередь – неодновременное протекание восстановления окислительного процесса и ионизации атомов металла.

На интенсивность распространения при этом влияет такой параметр, как электродный потенциал металла.

Главная причина электрохимической коррозии в том, что большинство металлов проявляют термодинамическую неустойчивость.

Примеры распространения коррозии такого типа встречаются в воде, почве, на открытом воздухе.

Она часто становится причиной потери прочности и постепенного разрушения металла на днище судов, трубопроводов, опор ЛЭП и других объектов.

Если говорить о типах электрохимической коррозии, то называют 3 разновидности:

  • щелевые поражения;
  • питтинги;
  • межкристаллическое повреждение.

Повреждаться могут разные типы металлов в зависимости от их расположения. Ржавчина появляется при контакте со стоячей и текущей водой, в местах соединения разных металлов, а также на сварных швах.

Какие механизмы отвечают за протекание электрохимической коррозии

Такое повреждение металла проводится двумя механизмами – гомогенным и гетерогенным. Рассмотрим каждый из них подробно.

  • Гомогенный. Первоначально затрагивается поверхностный слой металлического изделия. Постепенно металл начинает растворяться под действием актов – катодного или анодного. На протяжении определенного времени происходит миграция катода и анода. Со временем процесс ускоряется. Особенность гомогенного механизма в том, что затрагивает как твердые, так и жидкие металлы. Меняется только скорость течения.
  • Гетерогенный. У большинства твердых металлов не наблюдается гомогенной поверхности. Это связано с тем, что в самом материале состав кристаллической решетки может отличаться. Также как и в описанном выше случае, формируется анодный и катодный процессы, металл начинает постепенно разрушаться.

У такого вида процесса есть несколько особенностей.

В первую очередь – четкое деление на катодный и анодный процесс. Один из основных факторов, влияющих на их скорость протекания относительно друг друга – это время.

Схема электрохимической коррозии

Схема электрохимической коррозии

В зависимости от типа металла, коррозия может быть локализована на отдельных участках. Также наблюдается растворение поверхностного слоя на анодах, что позволяет поражению затронуть обширные площади.

Здесь появляется еще одна особенность протекания процесса – формирование гальванических элементов. Это происходит из-за специфики структуры поверхности, на которой присутствуют микроэлектроды.

Из-за чего начинает развиваться коррозия

После того, как мы рассмотрели суть электрохимической коррозии, пришло время обратить внимание на причины распространения коррозии.

Среди них три распространенные:

  • Сплав имеет неоднородную структуру. В большинстве сплавов поверхность негомогенная, потому что в кристаллической решетке присутствуют посторонние включения. Ухудшает ситуацию и присутствие пор макро и микротипа. Это приводит к тому, что продукты коррозии также начинают образовываться неравномерно.
  • Неоднородная среда, в которой находится металл. Чтобы коррозия протекла быстрее, важен фактор доступа окислителя. Электрохимическая реакция может быть ускорена.
  • Отличие физических условий. Коррозия усиливается в том случае, если происходит облучение, в среде присутствуют блуждающие тока. Негативно влияет и температура, особенно при перепадах. В таком случае разница между холодными и теплыми местами становится причиной появления анода.

Именно по причине различия в критических факторах, скорость электрохимической коррозии может сильно меняться.

Главные внутренние факторы протекания электрохимической коррозии

На интенсивность распространения коррозийного поражения влияют две группы факторов – внешние и внутренние.

Текущее состояние поверхности металла

Когда поверхность металла неровная, коррозийный процесс протекает намного интенсивнее. Если на поверхности присутствуют небольшие выступы, они начинают накапливать воду.

Это может негативно повлиять на интенсивность распространения.

Чтобы не допустить такого фактора, важно использовать отшлифованный или отполированный металл.

Когда сталь гладкая, вода не так сильно повреждает ее, потому что постепенно происходит формирование равномерной пленки по всей поверхности.

Также хорошим средством для уменьшения поражения становится применение пассивирования, а также ряд других способов.

Степень термодинамической стойкости металла

Разные виды материалов отличаются разными показателями термодинамической устойчивости.

Наиболее стойкие разновидности материала не разрушаются при помещении в агрессивную среду.

Чтобы понять, есть ли у металла склонность к коррозии под действием термодинамических факторов, измеряют потенциал анодного и катодного процесса, а также изобарно-изотермического.

Именно такой фактор оказывает большое влияние на потенциальное воздействие среды на постепенное развитие коррозии.

К сожалению, у большинства представленных в продаже марок металлов стойкость невысокая. Есть и неустойчивые разновидности, у которых этот риск нивелируется благодаря склонности к образованию пассивных пленок на поверхности.

Кристаллографическая структура

Оказывает прямое воздействие на металл.

Как известно, атомы в кристаллической решетке располагаются по-разному. Лучше защищены те разновидности, у которых атомы упакованы неплотно.

Особенности решетки также учитывают при планировании защиты материала методом создания на нем специальных пленок. И пленка и сам основной материал должны четко соответствовать по составу друг другу или быть максимально приближенными.

В этом случае исключается появление напряжения, которое негативно отражается на текущем состоянии заготовки. Если контакт с агрессивной средой все-таки происходит, материал начинает разрушаться слой за слоем.

Гетерогенность

Этот фактор рассматривается в непосредственной связи с величиной зерна металла.

Если в сплаве есть выраженные анодные включения, они сильно влияют на ускорение протекания коррозии.

Катодные включения не столь опасны, потому что на интенсивности процесса не отражаются. Величина зерна как фактор риска рассматривается не так часто и этим показателем можно пренебречь.

Не стоит сбрасывать со счетов и механические факторы

Важно понимать, что многие конструкции из металла используются под постоянным напряжением.

К этой категории относится повышенное внутреннее напряжение, когда сильно увеличивается риск деформации.

Негативно влияют на качество металла также воздействие истирания, периодические контакты с другими металлическими изделиями.

Такой фактор оказывает значительное влияние на интенсивность распространения повреждения.

Даже если само сырье первоначально обладало стойкостью к потенциальным повреждениям, в таком случае она уменьшится – формируемые пленки просто не будут закрепляться на поверхности.

Потому лучше сразу исключить это условие электрохимической коррозии – постараться не использовать металлоконструкции под пиковыми сильными нагрузками, не допускать возникновения трения и соприкосновения между собой стальных деталей.

Основные внешние факторы электрохимической коррозии

Кроме внутренних, на металл также влияют и внешние факторы.

Они могут не только ускорять, но и замедлять процесс, а также влиять на характер его протекания.

К ним относятся следующие:

  • Температура. Температура сильно влияет на то, как себя ведет металл в разных условиях. От нее сильно зависит то, насколько быстро будут растворяться вторичные продукты коррозии. Среди других особенностей – запуск и стимуляция диффузионных процессов в металле, создание перенапряжения на электродах и другие проявления. Когда металлическое изделие помещается в растворы с кислородной деполяризацией, по мере прогрева электролита диффузия окислителя ускоряется. На фоне этого наблюдается сильное снижение перенапряжения ионизации кислорода.

Если деталь помещается в растворы неокисляющихся кислот, наблюдается коррозия с водородной деполяризацией.

Повышение температуры уменьшает скорость распространения повреждений, потому что сильно снижается перенапряжение водорода.

Отдельно стоит отметить ситуацию, когда металл уже покрывается специальной защитной пленкой. В этом случае сам тип пленки будет влиять на то, как именно она поведет себя при контакте с разными видами внешних угроз, в том числе, с повышением температуры.

Нагрев и охлаждение могут отразиться на состоянии катодов и анодов через их внутренние процессы.

В некоторых случаях полярность электродов значительно меняется.

Как мы уже отмечали выше, проблемы могу возникать из-за того, что разные участки детали нагреты до отличающихся друг от друга температур.

В этом случае стремительно увеличивается количество термогальванических пар, стимулирующих распространение коррозии на новые участки.

  • Уровень рН раствора, в который помещен металл. Такой показатель как рН указывает, насколько в растворе будут активными ионы водорода, и как быстро коррозия будет распространяться по материалу. Это опасно, потому что может непредсказуемо менять потенциал катодных процессов, формирование окисных пленок. Также создается значительное перенапряжение реакции на электродах. Рекомендуется не допускать контакта металла со средами, у которых показатель рН высокий.

Если по каким-то причинам металлическая заготовка оказалась помещена в раствор, большое значение будет иметь скорость, с которой он движется, а также само наличие внутренних колебаний.

Заранее определить точное воздействие будет сложно по той причине, что всегда непросто предсказать, как поведут себя нейтральные электролиты.

Cчитается, что при смешении электролита, меняются показатели диффузии кислорода, что значительно отражается на процессе протекания коррозии.

Можно уделять меньше внимания скорости движения электролита в том случае, если вы имеете дело со средами повышенной кислотности.

На них подобное поражение оказывает минимум влияния.

Чем отличаются анодный и катодный процессы

Если вы внимательно проследите за тем, как работает гальванический элемент, то увидите, что в нем протекают сразу два связанных друг с другом процесса – анодный и катодный.

Рассмотрим их более подробно.

Анодный процесс

В химии показывается формулой Fe → Fe2+ + 2e. Она показывает, что постепенно запускается окисление, ионы металла начинают переход в раствор.

Катодный процесс

Может протекать по-разному.

В частности, переизбыток электронов решается ассимиляцией атомами электролита и его молекул. На фоне этого происходит восстановительная реакция непосредственно на самом катоде.

Формула будет зависеть от того, в каких условиях протекает реакция.

Так при наличии водородной деполяризации можно записать процесс как 2 H+ + 2e → H2.

Важно понимать, что оба процесса сильно связаны друг с другом под влиянием кинетического фактора.

С течением времени может происходить взаимное замедление или ускорение анодного или катодного процесса. При этом сам анод всегда будет оставаться тем местом, на котором формируется коррозия металла.

Во время анализа протекания процесса коррозии часто обращают внимание на электропроводящие фазы и момент после их соприкосновения.

Обычно одна фаза имеет положительный заряд, в то время как другая – отрицательный. Это приводит к появлению разности потенциалов.

Таким образом возникает ДЭС или как его часто называют ученые – двойной электрический слой с ассиметричным расположением частиц в местах, где фазы разделяются.

Анодный и катодный процесс

Опасным для металла становится скачок потенциалов. Он может стимулироваться двумя центральными причинами:

  • Большая накопленная энергия гидратации. В таком случае наблюдается отрыв ионов металла и постепенное перетекание их в раствор. На поверхности в результате остается аналогичное число электронов, заряд становится отрицательным. Далее, в соответствии с законами физики, наблюдается перетекание катионов из раствора, формируется ДЭС на границе, как мы уже описывали выше.
  • Разряжение катионов электролита. В результате металл начинает стремительно принимать положительный заряд. ДЭС появляется из-за активности анионов раствора в контакте с катионами электролита.

Что происходит в том случае, если поверхностный слой металла совсем не имеет определенного заряда?

В таком случае ДЭС наблюдаться не будет, возникнет явление нулевого заряда.

Его потенциал будет отличаться в зависимости от того, с каким металлом вам приходится работать.

Описанный процесс значительно отражается на том, как протекает коррозия и как быстро она захватывает все новые и новые участки металла.

В современной науке нет средств, которые могли бы точно измерить величину скачка потенциала, значит и процесс формирования электродвижущей силы оказывается на таким интенсивным.

Если рассматривать вопросы, связанные с процессом поляризации, можно написать отдельную статью на эту тему.

Потому далее мы рассмотрим другой важный показатель – поляризацию.

Поляризация и ее влияние на скорость протекания коррозии

Процесс поляризации связан с интенсивностью распространения электрохимической коррозии.

Этот показатель отражает, насколько сильное перенапряжение наблюдается на определенном участке.

Принято выделять три вида поляризации:

  • Электрохимическая. Чаще всего наблюдается в ситуации, когда катодный и анодный процессы начинают замедляться.
  • Фазовая. Возникает в том случае, если на поверхности материала формируется новая фаза.
  • Концентрационная. Этот процесс появляется в том случае, если есть очень малые показатели скорости отвода продуктов коррозии, а также подхода деполяризатора.

Особенности поляризации также стоит учитывать в том случае, если вы заинтересованы в дополнительной защите металлов от постепенного разрушения.

Обеспечиваем эффективную защиту от коррозии

Наша компания предлагает заказчикам защиту металлоконструкций разных типов от коррозии.

В пользу работы с нами говорит сразу несколько факторов:

  • Опыт работы с 2007 года, есть постоянные заказчики.
  • Большие производственные площади. Три цеха для горячего цинкования, мощность 120 тысяч тонн в год.
  • Универсальность. Работаем со множеством видов изделий благодаря установленной на предприятии самой глубокой ванны в ЦФО – 3,43 метра.

Мы используем в процессе проверенное европейское оборудование. Даем гарантию соответствия качества товаров требованиям ГОСТ 9.307-89.

Чтобы получить дополнительные консультации и ответы на интересующие вас вопросы, звоните нам или оставляйте заявку на сайте.

Коррозия металлов


Всякое явление или процесс вокруг нас связан с химией. Скажем, ржавление железа. Хоть раз в жизни вы наверняка задумывались, почему одни металлы ржавеют и разрушаются, а другие — нет. И что такого особенного в нержавеющей стали, что этот процесс ей нипочем? Обо всем это мы и поговорим в сегодняшней статье.

О чем эта статья:

Коротко о главном

Коррозия металлов или ржавление в химии — это явление, которое возникает из-за взаимодействия металлической пластинки с веществами окружающей среды (кислородом воздуха или кислотами, с которыми может реагировать металлическое изделие).

Обычно окисляются металлы, включая железо, которые находятся левее водорода в ряду напряжений.

Ряд активности металлов

Чаще всего встречаются химическая и электрохимическая коррозии. Чтобы понять, чем они отличаются друг от друга, давайте сравним их по нескольким критериям в таблице ниже.

Таблица 1. Сравнение химической и электрохимической коррозии металлов

Признаки сравнения

Химическая коррозия

Электрохимическая коррозия

Разрушение металлов в из-за взаимодействия с газами или растворами, которые не проводят электрический ток

Разрушение металла, при котором возникает электрический ток в воде или среде другого электролита

При контакте железа с цинком коррозии подвергается цинк:

Zn 0 - 2e - = Zn 2+ .

Защитить металл от коррозии можно по-разному: покрытием защитными материалами, электрохимическими методами, шлифованием и т. д. Далее — подробно обо всем этом.

Что такое коррозия

Коррозия — это самопроизвольное разрушение элементов, чаще всего металлов, под действием химического или физико-химического влияния окружающей среды.

Иными словами, из-за химического воздействия железо начинает ржаветь. Это весьма сложный процесс, который состоит из несколько этапов. Но суммарное уравнение коррозии выглядит так:

Часто под коррозией понимают химическую реакцию между материалом и средой либо между их компонентами, которая протекает на границе раздела фаз. Обычно это окисление металла. Например:

Некоторые металлы, даже активные, покрываются плотной оксидной пленкой при коррозии. Это одна из их характерных черт. Оксидная пленка не дает окислителям проникнуть в более глубокий слой и поэтому защищает металл от коррозии. Алюминий обычно устойчив при контакте с воздухом и водой, даже горячей. Тем не менее, если поверхность алюминия покрыть ртутью, то образуется амальгама. Она разрушает оксидную пленку, и алюминий начинает быстро превращаться в белые хлопья метагидроксида алюминия:

Коррозии подвергаются и многие малоактивные металлы. Например, поверхность медного изделия покрывается патиной — зеленоватым налетом. Это происходит потому, что на ней образуются смеси основных солей.

Виды коррозии металлов

Химическая коррозия

Химическая коррозия — это процесс разрушения металла, который связан с реакцией между металлом и коррозионной средой.

Химическая коррозия протекает без воздействия электрического тока, и в результате этой реакции металлы окисляются. Этот вид коррозии можно разделить на два подвида:

газовая коррозия — металл корродирует под воздействием различных газов при высоких температурах;

коррозия в жидкостях — неэлектролитах.

Их них более распространенной считают газовую коррозию. Она протекает во время прямого контакта твердого тела с активным газом воздуха. Чаще всего это кислород. В результате на поверхности тела образуется пленка продуктов химической реакции между веществом и газом. Дальше эта пленка мешает контакту корродирующего материала с газом. При высоких температурах газовая коррозия развивается интенсивно. Возникшая при этом пленка называется окалиной, которая со временем становится толще.

Важную роль в процессе коррозии играет состав газовой среды. Но для каждого металла он индивидуален и изменяется с переменой температур.

Электрохимическая коррозия

Электрохимическая коррозия — это разрушение металла, которое протекает при его взаимодействии с окружающей средой электролита.

Этот вид коррозии считают наиболее распространенным. Самым важным происхождением электрохимической коррозии является то, что металл неустойчив в окружающей среде с точки зрения термодинамики. Вот несколько ярких примеров этой реакции: ржавчина в трубопроводе, на обшивке днища морского судна и на различных металлоконструкциях в атмосфере.

В механизме электрохимической коррозии обычно выделяют два направления: гомогенное и гетерогенное. Разберем их подробнее в таблице ниже.

Гомогенный механизм электрохимической коррозии

Гетерогенный механизм электрохимической коррозии

Поверхность металла рассматривается как однородный слой.

У твердых металлов поверхность неоднородна из-за структуры сплава, в котором атомы по-разному расположены в кристаллической решетке.

Растворение металла происходит из-за термодинамической возможности для катодного или анодного процессов.

Неоднородность можно наблюдать при наличии в сплаве каких-либо включений.

Скорость, с которой протекает электрохимическая коррозия, зависит от времени протекания процесса.

В электрохимической коррозии протекает одновременно два процесса на аноде и на катоде, которые зависят друг от друга. Растворение основного металла происходит только на анодах. Анодный процесс заключается в том, что ионы металла отрываются и переходят в раствор:

В результате происходит реакция окисления металла. В данном случае анод заряжается отрицательно.

При катодном процессе избыточные электроны переходят в молекулы или атомы электролита, которые, в свою очередь, восстанавливаются. На катоде идет реакция восстановления. Он носит заряд положительного электрода.

Торможение одного процесса приводит к торможению и другого процесса. Окисление металла может происходить только в анодном процессе.

Как защитить металлы от коррозии

От коррозии можно и нужно защищаться. Чтобы уберечь металлы от этой реакции, их покрывают защитными материалами, обрабатывают электрохимическими методами, шлифованием и т. д. Рассмотрим все эти способы подробнее.

Способ № 1. Защитные покрытия.

Для защиты от коррозии металлические изделия покрывают другим металлом, т. е. производят никелирование, хромирование, цинкование, лужение и т. д. Еще один вариант защиты — покрыть поверхность металла специальными лаками, красками, эмалями.

Способ № 2. Легирование.

Легирование — это введение добавок, которые образуют защитный слой на поверхности металла. Например, при легировании железа хромом и никелем получают нержавеющую сталь.

Способ № 3. Протекторная защита.

Протекторная защита — это способ уберечь металл от коррозии, при котором металлическое изделие соединяют с более активным металлом. Этот второй металл в итоге и разрушается в первую очередь.

Способ № 4. Электрохимическая защита.

Чтобы защитить металлы от электрохимической коррозии, нейтрализуют ток, который возникает при ней. Это делают с помощью постоянного тока, который пропускают в обратном направлении.

Способ № 5. Изменение состава среды путем добавления ингибиторов.

Для защиты от коррозии используют специальные средства, которые ее замедляют — ингибиторы. Они изменяют состояние поверхности металла — образуют труднорастворимые соединения с катионами металла. Защитные слои, образованные ингибиторами, всегда тоньше наносимых покрытий.

Способ № 6. Замена корродирующего металла на другие материалы: керамику и пластмассу.

Способ № 7. Шлифование поверхностей изделия.

Проверьте себя

Что такое коррозия?

Где в повседневной жизни можно встретить ржавление железа и других металлов? Приведите примеры.

Гидроксид железа Fe(OH)3 называют:

Что является причиной возникновения коррозии?

Чем отличаются химический и электрохимический типы коррозии?

Что такое коррозионная среда?

Узнайте все о коррозии металлов и разберитесь в других темах за 9 класс на онлайн-курсах по химии в Skysmart! Наши преподаватели помогут выяснить, где скрываются пробелы в знаниях, и восполнить их. Никаких скучных задач и сухих лекций — только интерактивные упражнения, опыты и теория простым языком. Все это поможет разобраться даже в тех темах, которые не давались в школе. Ждем на бесплатном вводном уроке!

Коррозия металлов. Виды коррозии металлов

Материалы из металлов под химическим или электрохимическим воздействием окружающей среды подвергаются разрушению, которое называется коррозией.

Коррозия металлов вызывается окислительно-восстановительными реакциями, в результате которых металлы переходят в окисленную форму и теряют свои свойства, что приводит в негодность металлические материалы.

Можно выделить 3 признака, характеризующих коррозию:

  • Коррозия – это с химической точки зрения процесс окислительно-восстановительный.
  • Коррозия – это самопроизвольный процесс, возникающий по причине неустойчивости термодинамической системы металл – компоненты окружающей среды.
  • Коррозия – это процесс, который развивается в основном на поверхности металла. Однако, не исключено, что коррозия может проникнуть и вглубь металла.

Наиболее часто встречаются следующие виды коррозии металлов:

  1. Равномерная – охватывает всю поверхность равномерно
  2. Неравномерная
  3. Избирательная
  4. Местная пятнами – корродируют отдельные участки поверхности
  5. Язвенная (или питтинг)
  6. Точечная
  7. Межкристаллитная – распространяется вдоль границ кристалла металла
  8. Растрескивающая
  9. Подповерхностная

виды коррозии металлов

Основные виды коррозии металлов

С точки зрения механизма коррозионного процесса можно выделить два основных типа коррозии: химическую и электрохимическую.

Химическая коррозия металлов

Химическая коррозия металлов — это результат протекания таких химических реакций, в которых после разрушения металлической связи, атомы металла и атомы, входящие в состав окислителей, образуют химическую связь.

Электрический ток между отдельными участками поверхности металла в этом случае не возникает. Такой тип коррозии присущ средам, которые не способны проводить электрический ток – это газы, жидкие неэлектролиты.

Виды химической коррозии

Химическая коррозия металлов бывает газовой и жидкостной.

Газовая коррозия металлов – это результат действия агрессивных газовых или паровых сред на металл при высоких температурах, при отсутствии конденсации влаги на поверхности металла. Это, например, кислород, диоксид серы, сероводород, пары воды, галогены. Такая коррозия в одних случаях может привести к полному разрушению металла (если металл активный), а в других случаях на его поверхности может образоваться защитная пленка (например, алюминий, хром, цирконий).

Жидкостная коррозия металлов– может протекать в таких неэлектролитах, как нефть, смазочные масла, керосин и др. Этот тип коррозии при наличии даже небольшого количества влаги, может легко приобрести электрохимический характер.

При химической коррозии скорость разрушения металла пропорциональна скорости химической реакции и той скорости с которой окислитель проникает сквозь пленку оксида металла, покрывающую его поверхность. Оксидные пленки металлов могут проявлять или не проявлять защитные свойства, что определяется сплошностью.

Фактор Пиллинга-Бэдворса

Сплошность такой пленки оценивают величине фактора Пиллинга—Бэдвордса: (α = Vок/VМе) по отношению объема образовавшегося оксида или другого какого-либо соединения к объему израсходованного на образование этого оксида металла

где Vок — объем образовавшегося оксида

VМе — объем металла, израсходованный на образование оксида

Мок – молярная масса образовавшегося оксида

ρМе – плотность металла

n – число атомов металла

AMe — атомная масса металла

ρок — плотность образовавшегося оксида

Оксидные пленки, у которых α < 1, не являются сплошными и сквозь них кислород легко проникает к поверхности металла. Такие пленки не защищают металл от коррозии. Они образуются при окислении кислородом щелочных и щелочно-земельных металлов (исключая бериллий).

Оксидные пленки, у которых 1 < α < 2,5 являются сплошными и способны защитить металл от коррозии.

При значениях α > 2,5 условие сплошности уже не соблюдается, вследствие чего такие пленки не защищают металл от разрушения.

Ниже представлены значения сплошности α для некоторых оксидов металлов

МеталлОксидαМеталлОксидα
KK2O0,45ZnZnO1,55
NaNa2O0,55AgAg2O1,58
LiLi2O0,59ZrZrO21.60
CaCaO0,63NiNiO1,65
SrSrO0,66BeBeO1,67
BaBaO0,73CuCu2O1,67
MgMgO0,79CuCuO1,74
PbPbO1,15TiTi2O31,76
CdCdO1,21CrCr2O32,07
AlAl2­O21,28FeFe2O32,14
SnSnO21,33WWO33,35
NiNiO1,52

Электрохимическая коррозия металлов

Электрохимическая коррозия металлов – это процесс разрушения металлов в среде различных электролитов, который сопровождается возникновением внутри системы электрического тока.

При таком типе коррозии атом удаляется из кристаллической решетки результате двух сопряженных процессов:

  • Анодного – металл в виде ионов переходит в раствор.
  • Катодного – образовавшиеся при анодном процессе электроны, связываются деполяризатором (вещество — окислитель).

Сам процесс отвода электронов с катодных участков называется деполяризацией, а вещества способствующие отводу – деполяризаторами.

Наибольшее распространение имеет коррозия металлов с водородной и кислородной деполяризацией.

Водородная деполяризация

Водородная деполяризация осуществляется на катоде при электрохимической коррозии в кислой среде:

2H + +2e — = H2 разряд водородных ионов

Кислородная деполяризация

Кислородная деполяризация осуществляется на катоде при электрохимической коррозии в нейтральной среде:

O2 + 4H + +4e — = H2O восстановление растворенного кислорода

Все металлы, по их отношению к электрохимической коррозии, можно разбить на 4 группы, которые определяются величинами их стандартных электродных потенциалов:

  1. Активные металлы (высокая термодинамическая нестабильность) – это все металлы, находящиеся в интервале щелочные металлы — кадмий (Е 0 = -0,4 В). Их коррозия возможна даже в нейтральных водных средах, в которых отсутствуют кислород или другие окислители.
  2. Металлы средней активности (термодинамическая нестабильность) – располагаются между кадмием и водородом (Е 0 = 0,0 В). В нейтральных средах, в отсутствии кислорода, не корродируют, но подвергаются коррозии в кислых средах.
  3. Малоактивные металлы (промежуточная термодинамическая стабильность) – находятся между водородом и родием (Е 0 = +0,8 В). Они устойчивы к коррозии в нейтральных и кислых средах, в которых отсутствует кислород или другие окислители.
  4. Благородные металлы (высокая термодинамическая стабильность) – золото, платина, иридий, палладий. Могут подвергаться коррозии лишь в кислых средах при наличии в них сильных окислителей.

Виды электрохимической коррозии

Электрохимическая коррозия может протекать в различных средах. В зависимости от характера среды выделяют следующие виды электрохимической коррозии:

  • Коррозия в растворах электролитов — в растворах кислот, оснований, солей, в природной воде.
  • Атмосферная коррозия – в атмосферных условиях и в среде любого влажного газа. Это самый распространенный вид коррозии.

Например, при взаимодействии железа с компонентами окружающей среды, некоторые его участки служат анодом, где происходит окисление железа, а другие – катодом, где происходит восстановление кислорода:

А: Fe – 2e — = Fe 2+

K: O2 + 4H + + 4e — = 2H2O

Катодом является та поверхность, где больше приток кислорода.

  • Почвенная коррозия – в зависимости от состава почв, а также ее аэрации, коррозия может протекать более или менее интенсивно. Кислые почвы наиболее агрессивны, а песчаные – наименее.
  • Аэрационная коррозия — возникает при неравномерном доступе воздуха к различным частям материала.
  • Морская коррозия – протекает в морской воде, в связи с наличием в ней растворенных солей, газов и органических веществ.
  • Биокоррозия – возникает в результате жизнедеятельности бактерий и других организмов, вырабатывающих такие газы как CO2, H2S и др., способствующие коррозии металла.
  • Электрокоррозия – происходит под действием блуждающих токов на подземных сооружениях, в результате работ электрических железных дорог, трамвайных линий и других агрегатов.

Методы защиты от коррозии металла

Основной способ защиты от коррозии металла – это создание защитных покрытий – металлических, неметаллических или химических.

Металлические покрытия

Металлическое покрытие наносится на металл, который нужно защитить от коррозии, слоем другого металла, устойчивого к коррозии в тех же условиях. Если металлическое покрытие изготовлено из металла с более отрицательным потенциалом (более активный) , чем защищаемый, то оно называется анодным покрытием. Если металлическое покрытие изготовлено из металла с более положительным потенциалом (менее активный), чем защищаемый, то оно называется катодным покрытием.

Например, при нанесении слоя цинка на железо, при нарушении целостности покрытия, цинк выступает в качестве анода и будет разрушаться, а железо защищено до тех пор, пока не израсходуется весь цинк. Цинковое покрытие является в данном случае анодным.

Катодным покрытием для защиты железа, может, например, быть медь или никель. При нарушении целостности такого покрытия, разрушается защищаемый металл.

Неметаллические покрытия

Такие покрытия могут быть неорганические (цементный раствор, стекловидная масса) и органические (высокомолекулярные соединения, лаки, краски, битум).

Химические покрытия

В этом случае защищаемый металл подвергают химической обработке с целью образования на поверхности пленки его соединения, устойчивой к коррозии. Сюда относятся:

оксидирование – получение устойчивых оксидных пленок (Al2O3, ZnO и др.);

азотирование – поверхность металла (стали) насыщают азотом;

воронение стали – поверхность металла взаимодействует с органическими веществами;

цементация – получение на поверхности металла его соединения с углеродом.

Изменение состава технического металла и коррозионной среды

Изменение состава технического металла также способствует повышению стойкости металла к коррозии. В этом случае в металл вводят такие соединения, которые увеличивают его коррозионную стойкость.

Изменение состава коррозионной среды (введение ингибиторов коррозии или удаление примесей из окружающей среды) тоже является средством защиты металла от коррозии.

Электрохимическая защита

Электрохимическая защита основывается на присоединении защищаемого сооружения катоду внешнего источника постоянного тока, в результате чего оно становится катодом. Анодом служит металлический лом, который разрушаясь, защищает сооружение от коррозии.

Протекторная защита – один из видов электрохимической защиты – заключается в следующем.

К защищаемому сооружению присоединяют пластины более активного металла, который называется протектором. Протектор – металл с более отрицательным потенциалом – является анодом, а защищаемое сооружение – катодом. Соединение протектора и защищаемого сооружения проводником тока, приводит к разрушению протектора.

Примеры задач с решениями на определение защитных свойств оксидных пленок, определение коррозионной стойкости металлов, а также уравнения реакций, протекающих при электрохимической коррозии металлов приведены в разделе Задачи к разделу Коррозия металлов

КОРРОЗИЯ МЕТАЛЛОВ – физико-химическое или химическое взаимодействие между металлом (сплавом) и средой, приводящее к ухудшению функциональных свойств металла (сплава), среды или включающей их технической системы.

Слово коррозия происходит от латинского «corrodo» – «грызу» (позднелатинское «corrosio» означает «разъедание»).

Коррозия вызывается химической реакцией металла с веществами окружающей среды, протекающей на границе металла и среды. Чаще всего это окисление металла, например, кислородом воздуха или кислотами, содержащимися в растворах, с которыми контактирует металл. Особенно подвержены этому металлы, расположенные в ряду напряжений (ряду активности) левее водорода, в том числе железо.

В результате коррозии железо ржавеет. Этот процесс очень сложен и включает несколько стадий. Его можно описать суммарным уравнением:

Гидроксид железа(III) очень неустойчив, быстро теряет воду и превращается в оксид железа(III). Это соединение не защищает поверхность железа от дальнейшего окисления. В результате железный предмет может быть полностью разрушен.

Многие металлы, в том числе и довольно активные (например, алюминий) при коррозии покрываются плотной, хорошо скрепленной с металлами оксидной пленкой, которая не позволяет окислителям проникнуть в более глубокие слои и потому предохраняет металл от коррозии. При удалении этой пленки металл начинает взаимодействовать с влагой и кислородом воздуха.

Алюминий в обычных условиях устойчив к воздействию воздуха и воды, даже кипящей, однако если на поверхность алюминия нанести ртуть, то образующаяся амальгама разрушает оксидную пленку – выталкивает ее с поверхности, и металл быстро превращается в белые хлопья метагидроксида алюминия:

Амальгамированный алюминий взаимодействует с водой с выделением водорода:

Коррозии подвергаются и некоторые довольно мало активные металлы. Во влажном воздухе поверхность меди покрывается зеленоватым налетом (патиной) в результате образования смеси основных солей.

Иногда при коррозии металлов происходит не окисление, а восстановление некоторых элементов, содержащихся в сплавах. Например, при высоких давлениях и температурах карбиды, содержащиеся в сталях, восстанавливаются водородом.

Разрушение металлов в присутствии водорода обнаружили в середине девятнадцатого века. Французский инженер Сент Клэр Девиль изучал причины неожиданных разрывов орудийных стволов. При их химическом анализе он нашел в металле водород. Девиль решил, что именно водородное насыщение явилось причиной внезапного падения прочности стали.

Много хлопот доставил водород конструкторам оборудования для одного из важнейших промышленных химических процессов – синтеза аммиака. Первые аппараты для этого синтеза служили лишь десятки часов, а затем разлетались на мелкие части. Только добавление в сталь титана, ванадия или молибдена помогло решить эту проблему.

К коррозии металлов можно отнести также их растворение в жидких расплавленных металлах (натрий, свинец, висмут), которые используются, в частности, в качестве теплоносителей в ядерных реакторах.

По стехиометрии реакции, описывающие коррозию металлов, довольно просты, однако по механизму они относятся к сложным гетерогенным процессам. Механизм коррозии определяется, прежде всего, типом агрессивной среды.

При контакте металлического материала с химически активным газом на его поверхности появляется пленка продуктов реакции. Она препятствует дальнейшему контакту металла и газа. Если сквозь эту пленку происходит встречная диффузия реагирующих веществ, то реакция продолжается. Процесс облегчается при высоких температурах. В ходе коррозии пленка продукта непрерывно утолщается, а металл разрушается. Большие убытки от газовой коррозии терпит металлургия и другие отрасли промышленности, где используются высокие температуры.

Наиболее распространена коррозия в средах электролитов. В некоторых технологических процессах металлы контактируют с расплавами электролитов. Однако чаще всего коррозия протекает в растворах электролитов. Металл не обязательно должен быть полностью погружен в жидкость. Растворы электролитов могут находиться в виде тонкой пленки на поверхности металла. Они нередко пропитывают окружающую металл среду (почву, бетон и др.).

Во время строительства метромоста и станции «Ленинские горы» в Москве в бетон добавляли большое количество хлорида натрия, чтобы не допустить замерзания еще не схватившегося бетона. Станция была сооружена в кратчайшие сроки (всего за 15 месяцев) и открыта 12 января 1959. Однако присутствие хлорида натрия в бетоне вызвало разрушение стальной арматуры. Коррозии оказались подвергнуты 60% железобетонных конструкций, поэтому станция была закрыта на реконструкцию, продолжавшуюся почти 10 лет. Лишь 14 января 2002 состоялось повторное открытие метромоста и станции, получившей название «Воробьевы горы».

Использование солей (обычно хлорида натрия или кальция) для удаления снега и льда с дорог и тротуаров также приводит к ускоренному разрушению металлов. Сильно страдают транспортные средства и подземные коммуникации. Подсчитано, что только в США применение солей для борьбы со снегопадами и гололедом приводит к потерям на сумму около 2 млрд. долл. в год в связи с коррозией двигателей и 0,5 млрд. долл. на дополнительный ремонт дорог, подземных магистралей и мостов.

В средах электролитов коррозия обусловлена не только действием кислорода, воды или кислот на металлы, но и электрохимическими процессами. Уже в начале 19 в. электрохимическую коррозию изучали английские ученые Гемфри Дэви и Майкл Фарадей. Первая теория электрохимической коррозии была выдвинута в 1830 швейцарским ученым Де ла Ривом. Она объясняла возникновение коррозии в месте контакта двух разных металлов.

Электрохимическая коррозия приводит к быстрому разрушению более активных металлов, которые в различных механизмах и устройствах контактируют с менее активными металлами, расположенными в электрохимическом ряду напряжений правее. Использование медных или латунных деталей в железных или алюминиевых конструкциях, которые работают в морской воде, существенно усиливает коррозию. Известны случаи разрушения и затопления кораблей, железная обшивка которых была скреплена медными заклепками.

По отдельности алюминий и титан устойчивы к действию морской воды, но если они контактируют в одном изделии, например в боксе для подводной фототехники, алюминий очень быстро разрушается, и бокс протекает.

Электрохимические процессы могут протекать и в однородном металле. Они активизируются, если есть различия в составе зерна металла в объеме и на границе, неоднородное механическое напряжение, микропримеси и т.д. В разработке общей теории электрохимической коррозии металлических материалов участвовали многие наши соотечественники, в том числе Владимир Александрович Кистяковский (1865–1952) и Александр Наумович Фрумкин (1895–1976).

Одной из причин возникновения электрохимической коррозии являются блуждающие токи, которые появляются вследствие утечки части тока из электрических цепей в почву или водные растворы, где они попадают на металлические конструкции. В местах выхода тока из этих конструкций вновь в почву или воду начинается растворение металла. Такие зоны разрушения металлов под действием блуждающих токов особенно часто наблюдаются в районах наземного электрического транспорта (трамвайные линии, железнодорожный транспорт на электрической тяге). Эти токи могут достигать несколько ампер, что приводит к большим коррозионным разрушениям. Например, прохождение тока силой в 1 А в течение одного года вызовет растворение 9,1 кг железа, 10,7 кг цинка, 33,4 кг свинца.

Коррозия может возникать и под влиянием радиационного излучения, а также продуктов жизнедеятельности бактерий и других организмов. С развитием бактерий на поверхности металлических конструкций связано явление биокоррозии. Обрастание подводной части судов мелкими морскими организмами также оказывает влияние на коррозионные процессы.

При одновременном воздействии на металл внешней среды и механических напряжений все коррозионные процессы активизируются, поскольку при этом понижается термическая устойчивость металла, нарушаются оксидные пленки на поверхности металла, усиливаются электрохимические процессы в местах появления трещин и неоднородностей.

Коррозия приводит к огромным безвозвратным потерям металлов, ежегодно полностью разрушается около 10% производимого железа. По данным Института физической химии РАН, каждая шестая домна в России работает впустую – весь выплавляемый металл превращается в ржавчину. Разрушение металлических конструкций, сельскохозяйственных и транспортных машин, промышленной аппаратуры становится причиной простоев, аварий, ухудшения качества продукции. Учет возможной коррозии приводит к повышенным затратам металла при изготовлении аппаратов высокого давления, паровых котлов, металлических контейнеров для токсичных и радиоактивных веществ и т.д. Это увеличивает общие убытки от коррозии. Немалые средства приходится тратить на противокоррозионную защиту. Соотношение прямых убытков, косвенных убытков и расходов на защиту от коррозии оценивают как (3–4):1:1. В промышленно развитых странах ущерб от коррозии достигает 4% национального дохода. В нашей стране он исчисляется миллиардами рублей в год.

Проблемы коррозии постоянно обостряются из-за непрерывного роста производства металлов и ужесточения условий их эксплуатации. Среда, в которой используются металлические конструкции, становится все более агрессивной, в том числе и за счет ее загрязнения. Металлические изделия, используемые в технике, работают в условиях все более высоких температур и давлений, мощных потоков газов и жидкостей. Поэтому вопросы защиты металлических материалов от коррозии становятся все более актуальными. Полностью предотвратить коррозию металлов невозможно, поэтому единственным путем борьбы с ней является поиск способов ее замедления.

Проблема защиты металлов от коррозии возникла почти в самом начале их использования. Люди пытались защитить металлы от атмосферного воздействия с помощью жира, масел, а позднее и покрытием другими металлами и, прежде всего, легкоплавким оловом (лужением). В трудах древнегреческого историка Геродота (5 в. до н. э.) и древнеримского ученого Плиния Старшего (1 в. до н. э.) уже есть упоминания о применении олова для предохранения железа от ржавления. В настоящее время борьбу с коррозией ведут сразу в нескольких направлениях – пытаются изменить среду, в которой работает металлическое изделие, повлиять на коррозионную устойчивость самого материала, предотвратить контакт между металлом и агрессивными веществами внешней среды.

Полностью предотвратить коррозию можно только в инертной среде, например в атмосфере аргона, однако реально создать такую среду при эксплуатации конструкций и механизмов в подавляющем большинстве случаев невозможно. На практике для снижения коррозионной активности среды из нее стараются удалить наиболее реакционноспособные компоненты, например, снижают кислотность водных растворов и почв, с которыми могут контактировать металлы. Одним из методов борьбы с коррозией железа и его сплавов, меди, латуни, цинка, свинца является удаление из водных растворов кислорода и диоксида углерода. В энергетике и некоторых отраслях техники воду освобождают также от хлоридов, которые стимулируют локальную коррозию. Для снижения кислотности почвы проводят известкование.

Агрессивность атмосферы сильно зависит от влажности. Для любого металла есть некоторая критическая относительная влажность, ниже которой он не подвергается атмосферной коррозии. Для железа, меди, никеля, цинка она составляет 50–70%. Иногда для сохранности изделий, имеющих историческую ценность, их температуру искусственно поддерживают выше точки росы. В закрытых пространствах (например, в упаковочных коробках) влажность понижают с помощью силикагеля или других адсорбентов. Агрессивность промышленной атмосферы определяется, в основном продуктами сгорания топлива (см. ЗАГРЯЗНЕНИЕ ОКРУЖАЮЩЕЙ СРЕДЫ). Уменьшению потерь от коррозии способствует предотвращение кислотных дождей и устранение вредных газовых выбросов.

Разрушение металлов в водных средах можно замедлить при помощи ингибиторов коррозии, которые в небольших количествах (обычно менее 1%) вводят в водные растворы. Они способствуют пассивированию поверхности металла, то есть образованию тонкой и плотной пленки оксидов или других малорастворимых соединений, которая препятствует разрушению основного вещества. Для этой цели применяют некоторые соли натрия (карбонат, силикат, борат) и другие соединения. Если бритвенные лезвия погрузить в раствор хромата калия, они хранятся намного дольше. Часто используют органические ингибиторы, которые более эффективны, чем неорганические.

Один из способов защиты от коррозии основывается на разработке новых материалов, обладающих более высокой коррозионной стойкостью. Постоянно ведутся поиски заменителей коррозирующих металлов. Пластмассы, керамика, стекло, резина, асбест и бетон более устойчивы к воздействию окружающей среды, однако по многим другим свойствам они уступают металлам, которые по-прежнему служат основными конструкционными материалами.

Благородные металлы практически не поддаются коррозии, но для широкого применения они слишком дороги, поэтому их используют лишь в наиболее ответственных деталях, например для изготовления некорродирующих электрических контактов. Высокой коррозионной стойкостью обладают никель, алюминий, медь, титан и сплавы на их основе. Их производство растет довольно быстро, однако и сейчас наиболее доступным и широко используемым металлом остается быстро ржавеющее железо. Для придания коррозионной стойкости сплавам на основе железа часто используют легирование. Так получают нержавеющую сталь, которая, помимо железа, содержит хром и никель. Самая распространенная в наше время нержавеющая сталь марки 18–8 (18% хрома и 8% никеля) появилась в 1923. Она вполне устойчива к воздействию влаги и кислорода. Первые тонны нержавеющей стали в нашей стране были выплавлены в 1924 в Златоусте. Сейчас разработано много марок таких сталей, которые, помимо хрома и никеля, содержат марганец, молибден, вольфрам и другие химические элементы. Часто применяют поверхностное легирование недорогих железных сплавов цинком, алюминием, хромом.

Для противостояния атмосферной коррозии на стальные изделия наносятся тонкие покрытия из других металлов, более устойчивых к воздействию влаги и кислорода воздуха. Часто используются покрытия из хрома и никеля. Поскольку хромовые покрытия нередко содержат трещины, их обычно наносят поверх менее декоративных никелевых покрытий. На защиту жестяных консервных банок от коррозии в органических кислотах, содержащихся в пищевых продуктах, расходуется значительное количество олова. Долгое время для покрытия кухонной утвари использовали кадмий, однако теперь известно, что этот металл опасен для здоровья и кадмиевые покрытия используются только в технике.

Для замедления коррозии на поверхность металла наносят лаки и краски, минеральные масла и смазку. Подземные конструкции покрывают толстым слоем битума или полиэтилена. Внутренние поверхности стальных труб и резервуаров защищают дешевыми покрытиями из цемента.

Чтобы лакокрасочное покрытие было более надежным, поверхность металла тщательно очищают от грязи и продуктов коррозии и подвергают специальной обработке. Для стальных изделий используют так называемые преобразователи ржавчины, содержащие ортофосфорную кислоту (Н3РО4) и ее соли. Они растворяют остатки оксидов и формируют плотную и прочную пленку фосфатов, которая способна на некоторое время защитить поверхность изделия. Затем металл покрывают грунтовочным слоем, который должен хорошо ложиться на поверхность и обладать защитными свойствами (обычно используют свинцовый сурик или хромат цинка). Только после этого можно наносить лак или краску.

Одним из наиболее эффективных методов борьбы с коррозией является электрохимическая защита. Для защиты буровых платформ, сварных металлических оснований, подземных трубопроводов их подключают в качестве катода к внешнему источнику тока. В качестве анода используются вспомогательные инертные электроды.

Другой вариант такой защиты применяют для сравнительно небольших стальных конструкций или дополнительно покрытых изоляцией металлических объектов (например, трубопроводов). В этом случае используют протектор – анод из сравнительно активного металла (обычно это магний, цинк, алюминий и их сплавы), который постепенно разрушается, оберегая основной объект. С помощью одного магниевого анода защищают до 8 км трубопровода. Протекторная защита широко распространена; например, в США на производство протекторов ежегодно расходуется около 11,5 тыс. т алюминия.

Защита одного металла другим, более активным металлом, расположенным в ряду напряжений левее, эффективна и без наложения разности потенциалов. Более активный металл (например, цинк на поверхности железа) защищает от разрушения менее активный металл.

К электрохимическим методам борьбы с коррозией можно отнести и защиту от разрушения конструкций блуждающими токами. Одним из способов устранения такой коррозии является соединение металлическим проводником участка конструкции, с которого стекает блуждающий ток, с рельсом, по которому движется трамвай или электропоезд.

Читайте также: