Обзор металлических элементов б групп

Обновлено: 07.01.2025

Перечень вопросов, рассматриваемых в теме: урок посвящён характеристике металлов А- и B-групп периодической системы химических элементов Д. И. Менделеева. Учащиеся получат представление о химических свойствах металлов в связи со строением их атомов

d-элементы – элементы, в атомах которых заполняется d-подуровень.

p-элементы – элементы, в атомах которых заполняется p-подуровень.

s-элементы – элементы, в атомах которых заполняется s-подуровень.

Интерметаллид (интерметаллическое соединение) – химическое соединение двух или более металлов.

Полупроводники – материалы, по своей удельной проводимости занимающие промежуточное место между проводниками и диэлектриками.

«Провал» электрона – переход электрона с внешнего энергетического уровня на более низкий, что объясняется большей энергетической устойчивостью образующихся при этом электронных конфигураций.

Сверхпроводники – материалы, электрическое сопротивление которых при понижении температуры до некоторой величины становится равным нулю.

Щелочноземельные металлы – химические элементы 2А группы периодической таблицы элементов.

Щелочные металлы – элементы 1А группы периодической таблицы химических элементов.

Основная литература: Рудзитис, Г. Е., Фельдман, Ф. Г. Химия. 10 класс. Базовый уровень; учебник/ Г. Е. Рудзитис, Ф. Г, Фельдман – М.: Просвещение, 2018. – 224 с.

Дополнительная литература:

1. Рябов, М.А. Сборник задач, упражнений и тестов по химии. К учебникам Г.Е. Рудзитис, Ф.Г. Фельдман «Химия. 10 класс» и «Химия. 11 класс»: учебное пособие / М.А. Рябов. – М.: Экзамен. – 2013. – 256 с.

2. Рудзитис, Г.Е. Химия. 10 класс: учебное пособие для общеобразовательных организаций. Углублённый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. – М.: Просвещение. – 2018. – 352 с.

Открытые электронные ресурсы:

ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ ДЛЯ САМОСТОЯТЕЛЬНОГО ИЗУЧЕНИЯ

Обзор металлических элементов А- и B-групп

  1. Химические свойства металлических элементов А-групп

Атомы металлических s- и p-элементов, обладая гораздо большим радиусом по сравнению с атомами неметаллов, способны только отдавать валентные электроны, проявляя восстановительные свойства.

Металлы вступают в реакции как с простыми, так и со сложными веществами.

Взаимодействие металлов с простыми веществами

Реакции металлов с галогенами и кислородом протекают очень энергично.

2 Na + Cl2 = 2NaCl

Не так энергично идет реакция с серой.

Гораздо труднее идет взаимодействие с азотом и фосфором.

При определенных условиях возможно также восстановление металлами водорода с образованием гидридов.

Металлы способны также взаимодействовать с другими металлами, образуя интерметаллические соединения. Многие интерметаллиды используются в технике как сильные магниты, полупроводники, сверхпроводники.

Взаимодействие металлов со сложными веществами

С водой при комнатной температуре взаимодействуют щелочные и щелочноземельные металлы (от Cs до Ca), а при нагревании – менее активные (от Mg до Sn). В обоих случаях выделяется водород, но в первом образуются гидроксиды, а во втором оксиды металлов.

Металлы, расположенные в ряду напряжений до водорода, восстанавливают ионы водорода из разбавленных кислот (кроме азотной).

Одни металлы восстанавливают другие из водных растворов солей, если первые расположены левее вторых в ряду стандартных электродных потенциалов.

Не нужно забывать, что такие сильные восстановители как Li, Na, K, Ca будут восстанавливать не металл из соли, а водород из воды.

  1. Химические свойства металлических элементов B-групп

Металлические элементы B-групп принадлежат к d-элементам. В их атомах заполняются d-орбитали предвнешнего энергетического уровня. Поскольку структура внешнего уровня d-элементов одного периода одинакова (1-2 s-электрона), а радиусы атомов имеют близкие значения, то и свойства атомов d-элементов изменяются в периоде слева направо более медленно по сравнению с s- и p-элементами. У атомов некоторых элементов (например, Cr, Cu) в результате «провала» наружных электронов на внешнем уровне остается по одному электрону, что и определяет их свойства.

В B-группах радиусы атомов в направлении сверху вниз изменяются неравномерно, и восстановительные свойства (за некоторыми исключениями) уменьшаются.

В то же время у металлических элементов B-групп прослеживаются и некоторые общие закономерности, такие как:

  1. совпадение максимальной положительной степени окисления у p-элементов 3-7 B-групп с номером группы;
  2. образование некоторыми d-элементами (Ru, Os) соединений, в которых их максимальная степень окисления +8 совпадает с номером группы;
  3. ослабление основных и усиление кислотных свойств с увеличением степени окисления атомов металлов B-групп.

ПРИМЕРЫ И РАЗБОР РЕШЕНИЯ ЗАДАНИЙ ТРЕНИРОВОЧНОГО МОДУЛЯ

1. Решение задачи на расчеты по уравнению реакции

Условие задачи: При взаимодействии 3,12 г одновалентного металла с водой выделилось 0,896 л водорода. Определите этот металл. Ответ дайте в виде химического символа.

Шаг первый: Запишем уравнение реакции металла с водой, зная, что металл одновалентен

Шаг второй: Найдем количество вещества металла.

По уравнению реакции

n(Me) = 2 х 0.04 = 0,08 моль

Шаг третий: Вычислим молярную массу металла

Шаг четвёртый: С помощью таблицы Менделеева найдем металл с соответствующей относительной атомной массой, численно совпадающей с молярной. Этот металл – калий.

2. Решение задачи на химические свойства металла.

Условие задачи: В лаборатории химика имеется порошок желто-коричневого цвета, который при попадании в воду издает сильный чесночный запах. Какое вещество представляет собой порошок, если он получен в результате реакции между алюминием и селеном, протекающей аналогично реакции алюминия с серой или кислородом? Укажите формулу данного вещества.

Шаг первый: Запишем уравнения реакций алюминия с серой и кислородом

Шаг второй: аналогичным образом запишем уравнение реакции алюминия с селеном.

Обзор металлических элементов б групп

ХИМИЯ – это область чудес, в ней скрыто счастье человечества,

величайшие завоевания разума будут сделаны

именно в этой области.(М. ГОРЬКИЙ)

Таблица
Менделеева

Универсальная таблица растворимости

Коллекция таблиц к урокам по химии

Металлы Б-групп ПСХЭ

Переходные элементы располагаются в побочных подгруппах Периодической системы Д.И. Менделеева. Их подразделяют на d-элементы и f-элементы. f-элементы – это лантаноиды и актиноиды.

При образовании соединений атомы металлов могут использовать не только валентные s- и p-электроны , но и d-электроны. Поэтому для d-элементов гораздо более характерна переменная валентность, чем для элементов главных подгрупп. Благодаря этому свойству переходные металлы часто образуют комплексные соединения.

Переходные элементы – это металлы. Поэтому в своих соединениях они проявляют положительные степени окисления. Очень сильно видно различие в свойствах у элементов IV–VIII подгрупп периодической системы. Элементы побочных подгрупп – это металлы, а главных подгрупп – неметаллы. Однако, когда элементы главных и побочных подгрупп находятся в высших степенях окисления, их соединения проявляют заметное сходство.

Например, оксид CrO3 близок по свойствам SO3. Оба эти вещества в обычных условиях находятся в твердом состоянии и образуют при взаимодействии с водой кислоты состава H2ЭO4. Точно также – оксиды марганца и хлора. Соответствующие им высшие оксиды – Mn2O7 и Cl2O7. Им соответствуют кислоты состава HЭО4. Подобная близость свойств объясняется тем, что часто элементы главных и побочных подгрупп в высших степенях окисления приобретают сходное электронное строение. Что касается химических свойств d-элементов, то обращает на себя внимание тот факт, что в пределах одной декады переходных элементов число стабильных степеней окисления сначала увеличивается, а потом уменьшается. См. Табл. 1. Химические свойства переходных элементов довольно сложны.


Значение переходных металлов для организма и жизнедеятельности

Без переходных металлов наш организм существовать не может. Железо – это действующее начало гемоглобина. Цинк участвует в выработке инсулина. Кобальт – центр витамина

В-12. Медь, марганец и молибден, а также некоторые другие металлы входят в состав ферментов.

Многие переходные металлы и их соединения используются в качестве катализаторов. Например, реакция гидрирования алкенов на платиновом или палладиевом катализаторе. Полимеризация этилена проводится с помощью титансодержащих катализаторов.


Большое использование сплавов переходных металлов: сталь, чугун, бронза, латунь, победит. Рис. 1. При исследовании сплавов прослеживается уникальное значение железа для человека. Сплавы даже разделяют на черные и цветные по содержанию в них железа.

Химические свойства железа и его соединений

Железо – это химический элемент №26, который находится в побочной подгруппе VIII группы, в четвертом периоде. Электронная конфигурация атома железа – 1s22s22p63s23p63d64s2.


Распределение валентных электронов на орбиталях представлено на Рис. 2.

Степени окисления железа: 0, +2, +3. Соединения железа (III) проявляют слабые окислительные свойства, образуемые оксиды и гидроксиды Fe2O3 и Fe(OH)3 проявляют амфотерные свойства, хотя основные свойства у этих соединений значительно преобладают.

1. Взаимодействие с неметаллами

При нагревании железо, особенно порошкообразное, способно взаимодействовать практически со всеми неметаллами. Хлор и фтор окисляют железо до Fe+3. Бром может окислить и до Fe+2, и до Fe+3 в зависимости от количества, а йод окисляет только до степени окисления +2 Fe+2. При реакции с серой сначала образуется сульфид железа, а затем дисульфид железа.

FeS + S FeS2 природный минерал такого состава называется пирит. Рис. 3.

Он используется для получения серной кислоты, а также железа и соединений железа.


2. Взаимодействие железа с кислородом

При взаимодействии железа с кислородом, в зависимости от его количества, могут образовываться разные оксиды. В том числе и смешанный оксид Fe3O4.

4Fe + 3О2 2Fe2О3

3. Взаимодействие железа с водой

При сильном нагревании металлическое железо взаимодействует с водой.

3Fe + 4Н2О Fe3О4 + 4Н2↑

Во влажном воздухе при обычных условиях железо реагирует с парами воды и кислородом, с образованием ржавчины. Она состоит из смешенных оксидов, гидроксидов и соединений кислорода. Это не индивидуальное вещество.

Примерная схема ржавления железа:

4Fe + 6Н2О + 3О2 → 4Fe(ОН)3

4. Взаимодействие железа с кислотами

Как и другие типичные металлы, железо взаимодействует с кислотами-неокислителями с выделением водорода.

Fe + 2НCl → FeCl2 + Н2↑

С кислотами-окислителями железо не реагирует из-за пассивации. Но с разбавленными кислотами реакция происходит.

Fe + 4НNO3 → Fe(NO3)3 +NO↑ + 2Н2O

Металлическое железо вытесняет менее активные металлы из растворов их солей.

Fe + CuSO4 → Cu + FeSO4

Амфотерные свойства железа

Железо и некоторые его соединения способны проявлять амфотерные свойства.

Fe + 2NaOH + 2H2O → Na2[Fe(OH)4] + H2↑ В горячем концентрированном растворе щелочи образуется комплексное соединение, и выделяется водород.

Соединения железа (II)

Соли железа (II) можно получить при взаимодействии металлического железа с кислотами-неокислителями или восстановлением железа (III).

2FeCl3 + Fe→ 3FeCl2

Соединения железа (II) обладают восстановительными свойствами.

FeCl2 + 2NaOH → Fe(OH)2 ↓+ 2NaCl. На воздухе Fe(OH)2 ↓окисляется кислородом.

4Fe(OH)2 ↓+2H2O + O2 → 4Fe(OH)3↓

Соединения железа (III)

Соли железа (III) получают либо окислением железа галогенами, либо при его взаимодействии с разбавленными кислотами-окислителями. Соли железа (III) могут проявлять слабые окислительные свойства.

2FeCl3 +2 KI → 2FeCl2 + I2↓ + 2KCl. На этой реакции основан йодометрический способ определения солей железа.

Качественная реакция на соли железа (III)

FeCl3 + 6NaSCN →Na3[Fe(SCN)6] + 3NaCl. При взаимодействии с роданидами образуются ярко-красные, похожие на кровь комплексы различного состава.

Взаимодействие со щелочью.

FeCl3 + 3NaOH → Fe(OH)3 ↓+ 3NaCl

Fe(OH)3 ↓как и Fe(OH)2 ↓ амфотерен, с преобладанием основных свойств.

Fe(OH)3 ↓+3HCl → FeCl3 + 3H2O

Fe(OH)3 + NaOH → NaFeO2+ 2H2O

Железная кислота и её соли

При окислении Fe(OH)3 ↓ или при электролизе раствора щелочи на железном аноде образуются соли, содержащие железо в составе аниона:

2Fe(OH)3 + 3Cl2 + 10NaOH →2Na2FeO4 + 6NaCl + 8H2O

Fe + 2KOH + 2H2O K2FeO4 + 3H2↑

Железо имеет степень окисления +6. Такие соли называются ферраты: Na2FeO4, K2FeO4. Это соли не существующей в свободном виде железной кислоты Н2FeO4. Они относятся к наиболее сильным органическим окислителям и способны медленно окислять даже воду.

Конспект урока по химии на тему "Обзор металлов А-групп. Общий обзор элементов Б-групп" (11 класс)

Тема урока: Обзор металлов А-групп. Общий обзор элементов Б-групп.

Цель урока: углубить знания о химических свойствах металлов, развивать умения составлять уравнения химических реакций.

образовательные – углубить знания учащихся об основных химических свойствах элементов-металлов; продолжить формировать умения и навыки связывать положение металлов в ПСХЭ Д.И.Менделеева, особенности строения их атомов с химическими свойствами, повторить физические свойства металлов;
развивающие –развивать познавательный интерес, умение логически мыслить, находить и объяснять причинно-следственные связи, прогнозировать; развивать познавательную активность учащихся, вырабатывать умение наблюдать, анализировать, делать выводы, объяснять ход эксперимента; углубить представление о многообразии металлов;
развивать умение записывать уравнения реакций, характеризующие свойства металлов;

воспитательные – воспитывать коммуникативные качества, умение высказывать собственное мнение, воспитывать самостоятельность в работе, создать условия для развития познавательного интереса к химии;
способствовать формированию дисциплинированности, умения слушать, концентрировать свое внимание. поддерживать постоянный интерес к приобретению новых знаний, используя для этой цели современные методы и приемы подачи новой информации с помощью современных ТСО.

Формировать УУД:

Познавательные УУД : умение осуществлять поиск нужной информации, выделять главное в тексте, структурировать учебный материал, грамотно формулировать вопросы,

Личностные УУД : умение применять полученные знания в своей практической деятельности.

Регулятивные УУД: умение планировать свою работу при выполнении заданий учителя, делать выводы по результатам работы.

Коммуникативные УУД: умение работать в составе творческих групп, высказывать свое мнение.

Планируемый результат:

Положение металлов в ПСХЭ, особенности строения их атомов. Повторить и обобщить сведения о металлической связи и кристаллической металлической решётке, общие физические свойства металлов, варианты классификации металлов.

Причину изменения восстановительных свойств металлов в ПСХЭ и физических свойств на основе строения атома.

Использовать знания ПЗ и ПСХЭ для объяснения изменений свойств химических элементов и простых веществ на конкретных примерах.

1 . Организация урока.

Приветствие, проверка посещаемости, мотивация на учебную деятельность. Внимательно осмотритесь вокруг. Где бы вы ни были: дома или в школе, на улице или в транспорте – вы увидите, какое множество металлов трудится вокруг нас и для нас.

2 . Мотивация.

Эпиграфом нашего урока можно взять слова Михаила Васильевича Ломоносова: «Металлы – светлое тело, которое ковать можно».

Металлов много есть, но дело не в количестве:

В команде работящей металлической

Такие мастера, такие личности!

Преуменьшать нам вовсе не пристало

Заслуги безусловные металлов

Пред египтянином, китайцем, древним греком

И каждым современным человеком.

Именно ковкость и пластичность металлов были важнейшими свойствами, благодаря которым металлы начали активно использоваться человеком. Первые сведения использования металлов в хозяйственной деятельности людей относятся к 4-3 тыс. до н.э. Это время называют медным веком. Затем бронза заменила чистую медь и именно из этого сплава начали изготавливать орудия труда и оружие.

Когда человек научился получать температуру более 1500 ° С наступила эпоха изделий из железа и его сплавов – чугуна и стали. Это время стали называть железным веком, начало которого датируют с середины 1 тыс. до н.э. условно можно сказать, что железный век продолжается и по сей день. Ведь примерно 9/10 из всех используемых металлов и сплавов – это сплавы на основе железа. Сегодня мы разбираем свойства металлов главных подгрупп.

III . Актуализация ранее усвоенных знаний.

1.Определите способ получения металла и разновидность этого способа.

А) восстановление меди из медного руд куприта ( Cu 2 O )

Cu2O + C = 2Cu + CO ­ ( при t)

Б) восстановление хрома из оксида хрома ( III )

В) восстановление вольфрама из оксида вольфрама ( VI )

(вопросы на слайде).

2.Устно отвечаем на вопросы «Общая характеристика металлов».

1.Кристаллическая решетка - металлическая

2.Вид химической связи - металлическая

-ион Ме n+ ;

-оксид или гидроксид;

3. Металлы являются восстановителями.

Ме 0 – nе = Ме n+ .

3.Самые мягкие – щелочные металлы,

Самый твердый – хром,

Самый легкий – литий (плотность 0,53 г/см),

Самый тяжелый осмий (плотность 22,5 г/см),

Самый легкоплавкий – ртуть (температура плавления –( -38,9С),

Самый тугоплавкий – вольфрам (3420 С),

Магнитными свойствами обладают железо, никель, кобальт,

Вытягиваются в проволоку и листы – золото, медь, алюминий,

Хрупкие – висмут и марганец,

Самые блестящие – серебро, алюминий, палладий,

Наиболее электропроводные – серебро, медь, золото, алюминий.

Драгоценные металлы- золото, серебро, платина, рутений, родий, осмий, иридий.

Радиоактивные металлы – уран, торий, полоний, актиний, франций, радий.

I V . Объяснение нового материала.

Основополагающий вопрос. Какие знания о свойствах металлов необходимы человеку?

1.Классификация металлов.

Металлы 1 главной подгруппы называются щелочными –образуют щелочи, 2 группы – щелочноземельными, из 3 группы изучаем свойства одного из широко применяемых в технике металлов – алюминия.

Атомы щелочных металлов содержат на внешнем энергетическом уровне только 1 электрон, который они легко отдают при химических взаимодействиях, поэтому являются сильными восстановителями.

Строение атома лития и натрия:

Вот, что говорится об элементах 1 группы главной подгруппы ПСХЭ:

Следующие за щелочными металлами элементы составляют главную подгруппу II группы, также являются типичными металлами, обладающими сильной восстановительной способностью. Са, Sr , Ba , Ra – щелочноземельные металлы.

К металлам относятся и элементы главной подгруппы III группы, исключая бор.

Из элементов главных подгрупп следующих групп к металлам относят:

в IV группе – германий, олово, свинец;

в V группе – сурьма и висмут;

в VI группе – полоний.

Элементы побочных подгрупп – все металлы.

2.Химические свойства металлов .

Зная строение металлов, можно предвидеть их общие химические свойства.
В атомах металлов на внешней электронной оболочке находятся электроны, которые легко отрываются от атомов.
Наиболее общим химическим свойством металлов является способность их атомов при химических реакциях отдавать валентные электроны и превращаться в положительно заряженные ионы, т.е. металлы в реакциях являются сильными восстановителями.
2.1. Взаимодействие с простыми веществами: кислородом, галогенами, серой, азотом, водородом.

Реакции с кислородом.
4 N а + O2 → 2 N а2O; (побочный продукт)
Взаимодействие с галогенами.
2К + Cl2 →2 КCl;
Взаимодействие с серой.
2K + S → K2 S;

Взаимодействие с азотом.

Взаимодействие с водородом (щелочные металлы).

2К + Н2 → 2КН
Обратите внимание, что в этих реакциях атомы металлов отдают электроны, т.е. являются восстановителями, а неметаллы принимают электроны, т.е. являются окислителями.

Вывод: Запомните, металлы реагируют с галогенами, кислородом, серой, азотом, водородом, образуя соединения ……иды. В реакциях с неметаллами металлы являются восстановителями.
Давайте теперь рассмотрим с вами взаимодействие металлов со сложными веществами.
2.2. Взаимодействие со сложными веществами.

2.2.1. Взаимодействие металлов с водой.
При каких условиях металлы вступают в реакцию с водой? (При обычной температуре и при нагревании).
Что образуется при взаимодействии воды с активными металлами при обычной температуре? (Образуется гидроксид и выделяется водород).
Обсуждаем, какой металл реагирует более активно с водой? Почему? С чем это связано? (Положение в ПСХЭ, чем больше радиус, тем активнее металл).
2Na + H2O → 2NaOH + H2 ↑.
Ca + 2H2O → Ca(OH)2 + H2 ↑.
Как вы думаете, почему натрий более активно взаимодействует с водой, чем кальций? (Натрий более активный металл, чем кальций. Он легко отдает свои валентные электроны, является самым сильным восстановителем).
При взаимодействии воды с менее активными металлами образуются оксиды металлов и выделяется водород. Это металлы, стоящие в ряду напряжений после алюминия. Составляем уравнение реакции взаимодействия цинка с водой.
Zn + H2O → ZnO + H2 ↑;
Скажите пожалуйста, все ли металлы взаимодействуют с водой? (Нет).
Совершенно верно. А почему? (см. электрохимический ряд напряжения).
Скажите, а будет ли золото взаимодействовать с водой? (Нет).
Почему? (В ЭХ ряду после водорода) .Медь, ртуть, серебро, платина, золото с водой не реагируют!
Au + H2O → реакция не идет
Запомните! Металлы, стоящие в электрохимическом ряду напряжений до алюминия (включительно) образуют с водой гидроксиды, от алюминия до свинца – оксиды. Остальные с водой не реагируют.
2.2.2. Взаимодействие металлов с растворами кислот.
Мg + 2HCl → Мg Cl2 + H2 ↑;
Запомните! Металлы стоящие в электрохимическом ряду напряжений до водорода могут вытеснять водород из растворов кислот. Металлы стоящие в электрохимическом ряду напряжений после водорода не могут вытеснять водород из растворов кислот.
Cu + H2SO4 → не реагирует.
Какой же вывод можно сделать из этого? С помощью преподавателя находят правильные ответы на поставленные вопросы, делают выводы.

Итак, ряд поправок:
1. правило соблюдается, если в реакции металла с кислотой образуется растворимая соль;
2. концентрированная серная кислота и азотная кислота любой концентрации реагируют с металлами по особому, при этом водород не образуется;
3. на щелочные металлы правило не распространяется, т.к. они легко взаимодействуют с водой.
Вывод: из уравнений реакций видно, что в них окислителями являются ионы водорода и ионы неметаллов, а атомы металлов – восстановители.
2.2.3. Взаимодействие металлов с растворами солей.
Показываем, какие металлы вытесняют из солей по ряду напряжений металлов.
Fe + CuSO4 → Cu + FeSO4

Запомните! В электрохимическом ряду напряжений металл, стоящий левее, может вытеснять из растворов солей металл, стоящий правее (записываем в тетрадь).
Исключение: металлы до магния не могут вытеснять другие металлы из растворов солей, так как в первую очередь реагируют с водой, образуя щелочи.

3.Свойства алюминия : Главное, ребята, вес удельный мой,

Потому в дюралях я главный составной,

Назван я «крылатым», так как самолёты

Надежно, легко отправляю в полёты.

« Я металл, серебристый и лёгкий,

И зовусь самолётный металл,

И покрыт я оксидною плёнкой,

Чтоб меня кислород не достал».

Взаимодействие с кислородом.
4Al + 3O2 → 2Al2O3; (при нагревании)
Взаимодействие с галогенами.
2Al + 3Br2 → 2AlBr3; (при нагревании)
Взаимодействие с серой.
2 Al + 3S = Al 2 S3 (при нагревании)

Взаимодействие с азотом

2 Al + N2 = 2 Al N (при нагревании)

С водородом непосредственно не реагирует.

Поскольку алюминий проявляет амфотерные свойства, то он реагирует и с кислотами и с щелочами, образуя соли. Является активным металлом, поэтому также реагирует и с водой. Почему в быту алюминий не проявляет свойства активного металла?» (поверхность алюминия покрыта оксидной пленкой).

Переходные элементы – это металлы. Поэтому в своих соединениях они проявляют положительные степени окисления. Очень сильно видно различие в свойствах у элементов IV–VIII подгрупп периодической системы. Элементы побочных подгрупп – это металлы , а главных подгрупп – неметаллы. Однако, когда элементы главных и побочных подгрупп находятся в высших степенях окисления, их соединения проявляют заметное сходство.

Например, оксид CrO3 близок по свойствам SO3. Оба эти вещества в обычных условиях находятся в твердом состоянии и образуют при взаимодействии с водой кислоты состава H2ЭO4. Точно также – оксиды марганца и хлора. Соответствующие им высшие оксиды – Mn2O7 и Cl2O7. Им соответствуют кислоты состава HЭО4. Подобная близость свойств объясняется тем, что часто элементы главных и побочных подгрупп в высших степенях окисления приобретают сходное электронное строение. Что касается химических свойств d-элементов, то обращает на себя внимание тот факт, что в пределах одной декады переходных элементов число стабильных степеней окисления сначала увеличивается, а потом уменьшается. См. Табл. 1. Химические свойства переходных элементов довольно сложны.

https://static-interneturok.cdnvideo.ru/content/konspekt_image/16673/c4a9a387aadc7c8dbf873da63b8fb1d6.jpg

Значение переходных металлов для организма и жизнедеятельности

https://static-interneturok.cdnvideo.ru/content/konspekt_image/16674/4a840d0786e070eff966681e452eae4a.jpg

5 .Закрепление.

Давайте повторим с вами все, что изучили сегодня на уроке.
Какими знаниями должен обладать человек о металлах? Заполняем схему 11. С какими веществами взаимодействуют металлы? ( С простыми и сложными)
2. Какие вещества образуются при взаимодействии воды с натрием, железом, ртути? (Щелочь, оксид, не реагирует)
3. Вытеснят ли железо и медь (каждый по отдельности) водород из растворов кислот? Почему? (Железо – да, т.к. находится левее его в электрохимическом ряду напряжений. Медь – нет, т.к. находится правее его в электрохимическом ряду напряжений).
4. Будут ли цинк и магний вытеснять медь из раствора хлорида меди (II)? Почему? (Да. Так как цинк и магний находятся левее от меди).

Задание. На западе Франции, в Бретани, улитки стали обгрызать краску с наружных стен домов, заползая на высоту до четырех метров. Попытайтесь объяснить этот факт и предложить варианты решения проблемы.

Ответ. Улиткам требуется кальций, идущий на построение раковины. Если заменить меловую краску краской на масляной основе, то проблема, по-видимому, будет решена

Задание. Художники-реставраторы отмечают, что картины, написанные масляными красками, очень быстро тускнеют. Особенно белая краска со временем приобретает серый оттенок, что, естественно, влияет на качество картины. Что же происходит с белыми красками на воздухе и как это можно предотвратить?

Ответ. Белый пигмент — это свинцовые белила. Это вещество представляет собойкарбонат свинца (II). Он реагирует с сероводородом, содержащимся в воздухе, образуя сульфид свинца (II) соединение черного цвета:

РЬСО3 + H2S = PbS + H2COs

Если же обработать накопившийся PbS пероксидом водорода, то образуется сульфат свинца (II) - соединение белого цвета

PbS + 4Н202 = PbS04 + 4Н20

Таким способом можно реставрировать почерневшие картины, написанные маслом.

Совершить превращение: Ba → BaO → Ba(OH)2 → BaCO3 → Ba(NO3)2

Обзор металлических элементов Б-группы.

Тема: Обзор металлических элементов Б-группы.

Цель урока: объяснить существенное различие в строении атомов металлов главных и побочных подгрупп (Б – групп), рассмотреть способы получения, физические и химические свойства, области применения металлов побочных подгрупп на примере меди, хрома и железа, сделать вывод о сходстве и различии этих металлов.

Образовательные:

1) расширить представления учащихся о металлах и их свойствах;

2) продолжить формирование умений записывать уравнения реакций, характеризующих свойства металлов побочных подгрупп.

Развивающие:

1) способствовать продолжению развития устойчивого интереса к химической науке;

2) применять полученные знания на практике и оценивать результаты выполненных действий;

3) совершенствовать умения обобщать и делать выводы.

Воспитательные:

1) воспитывать положительное отношение к знаниям, инициативность, способность преодолевать трудности для достижения цели;

2) формировать у каждого учащегося умение работать в группах, навыки взаимопроверки и взаимоконтроля.

Тип урока: урок изучения нового материала.

Методы обучения: словесный, частично – поисковый.

Формы организации познавательной деятельности : индивидуальная, фронтальная.

Оборудование:

Периодическая система химических элементов Д.И.Менделеева.

I Организационный этап

2. Проверка подготовленности учащихся к учебному занятию

3. Фиксация отсутствующих.

II Актуализация знаний

Тестирование по теме « Металлические элементы А – групп» (текст тестирования распечатан в двух вариантах и раздается на каждую парту)

III Мотивация учебной деятельности учащихся (постановка цели и задач урока)

- Какие закономерности изменения химической активности проявляются у металлических элементов в главных подгруппах?

Химическая активность металлов главных подгрупп в периодах возрастает справа налево, а в группах – сверху вниз.

- Каким образом происходит заполнение электронами энергетических уровней у металлов главных подгрупп?

Металлы главных подгрупп являются s- и p- элементами, поэтому у них происходит заполнение электронами последнего энергетического уровня s- и p-подуровней. Количество электронов на внешнем энергетическом уровне соответствует номеру группы, в которой находится металл.

-Какие закономерности изменения химической активности проявляются у металлических элементов в побочных подгруппах?

Химическая активность металлов побочных подгрупп возрастает в группах в направлении снизу вверх, в отличие от главных подгрупп.

-Каким образом происходит заполнение электронами у металлов побочных подгрупп?

Металлы побочных подгрупп являются в основном d-элементами, поэтому у них происходит заполнение электронами предпоследнего энергетического уровня d-подуровня, а на внешнем энергетическом уровне находятся два s-электрона. У некоторых элементов происходит «провал» наружных электронов и на внешнем уровне остается только по одному электрону.

-Как вы думаете, что мы будем изучать сегодня на уроке и какова его цель?

Учащиеся озвучивают цель и задачи урока.

III Физкультминутка

Чтобы голова не болела,

Ей вращаем вправо-влево. (Вращение головой)

А теперь руками крутим –

И для них разминка будет. ( Вращение прямых рук вперед и назад)

Тянем наши ручки к небу,

В стороны разводим. (Потягивания – руки вверх и в стороны)

Плавно производим. (Повороты туловища влево и вправо)

Достаем руками пол. ( Наклоны вперед)

Потянули плечи, спинки,

А теперь конец разминке. (Дети садятся)

IV Изучение нового материала

1. Рассмотрим общие закономерности, проявляющиеся у металлических элементов Б – групп.

1. Химическая активность металлических элементов Б – групп в группах уменьшается сверху вниз.

3.Некоторые d-элементы VIII Б - группы, например, Ru и Os, также образуют соединения, в которых максимальная степень окисления равна +8, т.е. соответствует номеру группы.

4.С увеличением степени окисления атомов металлов Б - групп основные свойства их оксидов и гидроксидов уменьшаются, а кислотные – увеличиваются. Например, CrO – основной оксид, Cr2O3 – амфотерный оксид, CrO3 – кислотный оксид.

Из металлов Б – групп наибольшее практическое значение имеют Cu, Zn, Ti, Cr, Fe.

2. Сравнительная характеристика Cu, Cr, Fe.

Используя материал § 29, 31,32 учебника, составить таблицу «Сравнительная характеристика Cu, Cr, Fе» по плану, который написан на доске (таблица прилагается), в связи с большим объемом изучаемого материала таблицу учащиеся закончат дома.

Признаки сравнения:

1.Положение элемента в ПСХЭ, строение атома, возможные степени окисления

2.Нахождение в природе

Признаки сравнения

Положение элемента в ПСХЭ, строение атома, возможные степени окисления

Элемент 4 периода IБ – группы

Элемент 4 периода VIБ – группы

Элемент 4 периода VIII Б – группы

+2, +3, +6(неустойчивы)

Нахождение в природе

Медный блеск Cu2S, куприт Cu2O, медный колчедан CuFeS2, малахит(CuOH)2CO3

Магнитный железняк Fe3O4, бурый железняк 2Fe2O3*3H2O, железный колчеданFeS2

1.Реакции восстановления коксом или оксидом углерода(II) куприта

Cu2O + C = 2Cu + CO

2. Электролиз растворов солей меди

1. Реакции восстановления

а) углем хромистого железняка

FeO*Cr2O3 + 4C = 2Cr + Fe + 4CO

1.Реакция восстановления водородом оксида железа(III)

2.Реакция разложения пентакарбонила железа при нагревании

Медь – металл светло-розового цвета, тягучий, вязкий, легко прокатывается, хорошо проводит эл.ток, Ткип.= 1083 0 С.

Хром – металл серебристо-белого цвета с металлическим блеском, плотность 7,19 г/см 3 , Тпл.= 1907 0 С.

Железо – металл серебристо-серого цвета, мягкий, пластичный, плотность 7,87 г/см 3 , Тпл.= 1539 0 С. Обладает магнитными свойствами.

Химически малоактивный металл

1.Взаимодействие с простыми веществами (при повышенной температуре)

2. Взаимодействие со сложными веществами

Поверхность хрома покрыта тонкой оксидной пленкой, которая химически очень устойчива.

2.Взаимодействие со сложными веществами

Конц. HNO3 пассивирует хром.

в ) Fe + 2HCl ( разб .) = FeCl2 + H2

Конц . HNO3 пассивирует железо .

1.Изготовление электрических проводов, кабелей.

3.Широко применяют соединения меди.

1. Изготовление высококачественной стали, металлорежущих и хирургических инструментов.

2. Хромирование стальных изделий для защиты от коррозии.

1. Изготовление трансформаторов, электромоторов и мембран микрофонов.

2. Производство чугуна и стали.

V Домашнее задание

Используя материал § 29, 31,32 учебника, закончить составление таблицы «Сравнительная характеристика Cu, Cr, Fе », сделать вывод о сходстве и различии Cu, Cr и Fе.

Все химические элементы в Периодической таблице делятся на металлы, неметаллы и полуметаллы. Металлы занимают большую часть и расположены слева от ступенчатой линии, неметаллы справа, а между ними располагаются полуметаллы - B, Si, Ge, As, Sb, Te, At.

На данном уроке рассмотрим металлы, в частности элементы IА – IIIА групп.

Все металлы блестящие, кроме ртути твердые, но пластичные и ковкие. Хорошо проводят тепло и электричество. В химических реакциях легко расстаются с электронами, передают их другим атомам. Чем легче происходит такая передача, тем металл активнее реагирует с другими веществами. Это свойство называется называется металличностью. Металличность – это способность атомов отдавать электроны. Противоположно неметалличности – способности атомов принимать электроны. В периодах слева - направо металличность элементов уменьшается, а неметалличность увеличивается. В группах при перемещении сверху – вниз первое увеличивается, второе уменьшается.

Из вышесказанного следует, что все металлы по сравнению с неметаллами обладают низкой электроотрицательностью, т.е. способностью атомов оттягивать к себе электроны других атомов. В химических реакциях металлы окисляются, являются восстановителями.

Рассмотрим характеристику металлов IA группы (главной подгруппы I группы): литий (Li), натрий (Na), калий (K), рубидий (Rb), цезий (Cs), франций (Fr).

Их называют щелочными, поскольку при контакте с водой они образуют щелочи (гидроксиды), например, NaOH – едкий натр.

Сверху вниз в группе, с увеличением металличности металлов, реакции с водой начинают протекать бурно.
Так, если литий реагирует довольно спокойно, то калий взаимодействует со взрывом.

Общая характеристика щелочных металлов IA группы:

* Низкая электроотрицательность.

* Электронная конфигурация ns 1 , т.е. на внешнем энергетическом уровне только один электрон.

* Легкая ионизация атомов, с последующим образованием катионов (положительно заряженные ионы М+).

* Степень окисления +1.

Рассмотрим строение атомов щелочных металлов IA группы:


1. Литий (Li):

Электронная конфигурация в основном состоянии (ЭК в ОС): 1s 2 2s 1


2.Натрий (Na):

ЭК в ОС: 1s 2 2s 2 2p 6 3s 1


3.Калий (K):

ЭК в ОС: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1


4.Рубидий (Rb):

ЭК в ОС: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 1


5.Цезий (Cs):

ЭК в ОС: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 5s 2 5p 6 6s 1


6. Франций (Fr):

ЭК в ОС: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 4f 14 5s 2 5p 6 5d 10 6s 2 6p 6 7s 1

Данная группа содержит: бериллий (Be), магний (Mg) и щелочноземельные металлы: кальций (Ca), стронций (Sr), барий (Ba), радий (Ra).

Металлы активные, поэтому в природе в свободном состоянии не встречаются.

Самый распространенный среди них кальций, самый редкий – радиоактивный радий.

Многие соединения щелочноземельных металлов изоморфные, то есть сходны по форме и свойствам кристаллов.

Общая характеристика щелочноземельных металлов IIA группы:

* Электронная конфигурация ns 2 – конфигурация благородного газа гелия.

* Высокие значения ионизации атомов, убывающие по ряду Ве—Мg—Са—Sr— Ва.

* Степень окисления +2.

Рассмотрим строение атомов металлов IIA группы:

ЭК в ОС: 1s 2 2s 2


2.Магний (Mg):

ЭК в ОС: 1s 2 2s 2 2p 6 3s 2


3.Кальций (Ca):

ЭК в ОС: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2


4.Стронций (Sr):

ЭК в ОС: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2


5.Барий (Ba):

ЭК в ОС: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 5s 2 5p 6 6s 2


6. Радий (Ra):

ЭК в ОС: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 4f 14 5s 2 5p 6 5d 10 6s 2 6p 6 7s 2

Общая характеристика элементов IIIA группы:

* Электронная конфигурация ns 2 np 1 . Три неспаренных электрона атомов данной группы, находящиеся в sp 2 -гибридизации, активно участвуют в образовании трех ковалентных связей. У атомов остается одна свободная орбиталь. Поэтому элементы IIIA группы образуют четвертую ковалентную связь по донорно-акцепторному механизму, находясь в состоянии sp 3 -гибридизации.

* Степень окисления +3, для таллия наиболее устойчива степень +1.

Рассмотрим электронные конфигурации металлов IIIA группы в основном состоянии :


1.Бор (B):

ЭК в ОС: 1s 2 2s 2 2p 1


2.Алюминий (Al):

ЭК в ОС: 1s 2 2s 2 2p 6 3s 2 3p 1


3.Галлий (Ga):

ЭК в ОС: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 1


4. Индий (In):

ЭК в ОС: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 5s 2 5p 1


5.Таллий (Tl):

ЭК в ОС: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 4f 14 5s 2 5p 6 5d 10 6s 2 6p 1

Читайте также: