Общая характеристика металлов 1 а группы

Обновлено: 06.01.2025

Атомы элементов IА–IIIА групп имеют сходство в строении электронных оболочек и закономерностях изменения свойств, что приводит к некоторому сходству их химических свойств и свойств их соединений.

Металлы IA (первой группы главной подгруппы) также называются «щелочные металлы«. К ним относятся литий, натрий, калий, рубидий, цезий. Франций – радиоактивный элемент, в природе практически не встречается. У всех металлов IA группы на внешнем энергетическом уровне, на s-подуровне в основном состоянии есть один неспаренный электрон:

… ns 1 — электронное строение внешнего энергетического уровня щелочных металлов

Металлы IA группы — s-элементы. В химических реакциях они отдают один валентный электрон, поэтому для них характерна постоянная степень окисления +1.

Рассмотрим характеристики элементов IA группы:

Все щелочные металлы — сильные восстановители. Это самые активные металлы, которые могут непосредственно взаимодействовать с неметаллами. С ростом порядкового номера и уменьшением энергии ионизации металлические свойства элементов усиливаются. Щелочные металлы образуют с кислородом оксиды Э2О. Оксиды щелочных металлов реагируют с водой с образованием основания (щелочи):

Водородные соединения щелочных металлов — это гидриды с общей формулой ЭН. Степень окисления водорода в гидридах равна -1.

Металлы IIA (второй группы главной подгруппы) — щелочноземельные. Раньше к щелочноземельным металлам относили только кальций, стронций, барий и радий, но по решению ИЮПАК бериллий и магний также называются щелочноземельными.

У щелочноземельных металлов на внешнем энергетическом уровне расположены два электрона. В основном состоянии это два спаренных электрона на s-подуровне:

… ns 2 — электронное строение внешнего энергетического уровня элементов IIA группы

Щелочноземельные металлы — s-элементы. Отдавая два валентных электрона, они проявляют постоянную степень окисления +2. Все элементы подгруппы бериллия — сильные восстановители, но восстановительные свойства выражены слабее, чем у щелочных металлов.

Характеристики элементов IIA группы:

Металлы подгруппы бериллия довольно активны. На воздухе они легко окисляются, образуя основные оксиды с общей формулой ЭО. Этим оксидам соответствуют гидроксиды Э(ОН)2.

Первый элемент IIA группы, бериллий, по большинству свойств гораздо ближе к алюминию (диагональное сходство). Это проявляется в свойствах бериллия. Например, он не взаимодействует с водой. Магний взаимодействует с водой только при нагревании. Кальций, стронций и барий — это типичные металлы. Они реагируют с водой при обычных условиях.

Элементам IIA группы соответствуют гидриды с общей формулой ЭН2.

Элементы IIIA (третьей группы главной подгруппы) — это бор, алюминий, галлий, индий, таллий и нихоний. В основном состоянии содержат на внешнем энергетическом уровне три электрона, которые распределены по s- и р-подуровням:

… ns 2 nр 1 — электронное строение внешнего энергетического уровня элементов IIIA группы

Все элементы подгруппы бора относятся к р-элементам. В химических соединениях проявляются степень окисления +3. Хотя для таллия более устойчивая степень окисления +1.

Металлические свойства у элементов подгруппы бора выражены слабее, чем у элементов IIA подгруппы. Элмент бор относится к неметаллам. Энергия ионизации атома у бора наибольшая среди элментов IIIA подгруппы. Алюминий относится к типичным металлам, но оксид и гидроксид алюминия проявляют амфотерные свойства. У таллия более сильно выражены металлические свойства, в степени окисления +1 он близок по свойствам к щелочным металлам. Наибольшее практическое значение среди элементов IIIA подгруппы имеет алюминий.

Общая характеристика подгруппы

Групповое сходство элементов обусловлено наличием 2-х спаренных электронов на внешнем электронном слое и заключается в следующем:

- постоянная валентность II

- постоянная степень окисления +2

- легкость образования 2-зарядных ионов Me +2

С ростом заряда ядра и радиуса атомов свойства элементов за­кономерно изменяются:

- энергия ионизации Еион уменьшается

- сродство атомов к электрону уменьшается

- металлические свойства усиливаются

По важнейшим атомным характеристикам и по физико-химическим свойствам металлов и их соединений наибольшим сходством между собой обладают Са, Sr , Ba , имеющие общее название - щелочноземельные металлы. Эти элементы имеют практически одинаковые значения ЭО, находятся рядом в электрохимическом ряду напряжений; химическая активность в целом от Са к Ва возрастает незначительно; они во многих отношениях сходны со щелочными металлами.


Среди s 2 -элементов резко выделяется бериллий, который обнаруживает более значительное сходство с алюминием (диагональное сходство). По распространенности в природе и по практической значимости важнейшими элементами являются Са и Mg.
В свободном состоянии в виде простых веществ все s 2 -элементы - белые твердые вещества с металлическим блеском на срезе, обладающие всеми общими свойствами металлов. Лишь бериллий хрупкий и плохо поддается обработке.

Характеристические соединения

отношение к воде

не растворимый, не взаимодействует

хорошо растворимые, взаимодействуют

Магний

Изотопы 24 Mg (78.60 %)

Кларк в земной коре 2,35 % по массе. В свободном виде не встречается. Является одним из самых распространенных породообразующих элементов (более 200 минералов). Основные из них:
- магнезит MgCO3 - доломит СаСО3 • МgСО3
- карналлит КСl • МgСl2 • 6Н2O
- горькая (английская) соль MgS04• 7H2O В виде катионов Mg 2+ находится в природных водах (в 1 м 3 морской воды содержится около 1 кг Mg 2+ ). Наряду с ионами Са 2+ обусловливает жесткость воды.

Магний и его соединения играют важную роль в биологических процессах. В качестве комплексообразователя Mg входит в молекулы хлорофилла, а также в другие важные биокомплексы.
Магний - единственный элемент гл. подгр. II группы, применяемый в сравнительно больших количествах в металлическом состоянии (как свободный металл).

Физические свойства

В чистом виде магний - блестящий серебристобелый металл, быстро тускнеющий на воздухе вследствие окисления. Это легкий, относительно мягкий и пластичный металл, легкоплавкий и обладающий хорошей электропроводностью. В сплавах с Al является основным конструкционным материалом в авиа-, судо- и ракетостроении.

Способы получения

1. Электролитический (основной). Электролизу подвергают тщательно обезвоженный расплав хлорида магния (t ≈ 800°C):

2. Карботермический (t ˃ 2000°C)

MgO + С = Mg↑(пары) + СО ↑

Химические свойства

Mg - химически активный металл, особенно в порошкообразном состоянии или в виде ленты. Во всех реакциях магний ведет себя как очень сильный восстановитель:

Как и другие активные металлы, Mg взаимодействует с кислотами, растворами солей менее активных металлов, со многими неметаллами. Ниже приведены реакции, в которых проявляются некоторые особенности химического поведения магния.

Взаимодействие с кислородом и азотом при горении на воздухе

Реакция сопровождается выделением болышого количества энергии. в т. ч в виде света. При этом ослепительно белое пламя обогащено фотохимически активными лучами (магниевая вспышка).

Происходит одновременное образование оксида и нитрида:

Взаимодействие с водой

При обычной температуре Мg с водой не реагирует, так как сразу покрывается плотной пленкой - нерастворимым в воде Мg(ОН)2

1) Мg активно реагирует с кипящей водой:

2) особенно активно реагирует с водяным паром (Т > 380°С), поэтому совершенно недопустимо тушить горящий Мg водой - это может привести к взрыву.

3) Мд легко растворяется в воде в присутствии NH4CI:

Протеканию реакции способствует кислая среда, образующаяся в результате гидролиза NH4Cl

Взаимодействие с углекислым газом и др. оксидами

Благодаря сильному сродству к кислороду Мg отнимает его у многих оксидов, например, зажженный Мg продолжает гореть в атмосфере CO2 восстанавливая его до свободного углерода:

2Мg + CO2 = 2МgО + С

Взаимодействие с оксидами и солями металлов

См. «Основные способы получения металлов. Магнийтермия».

Взаимодействие с галогенопроизводными УВ (в среде безводного эфира)

Образующиеся Мg-органические соединения носят общее название реактивов Гриньяра и широко используются в органическом синтезе.

С ростом заряда ядра многие важнейшие характеристики элементов изменяются немонотонно, в том числе и атомный радиус. Соответственно, свойства простых веществ, оксидов, гидроксидов и других соединений этих элементов имеют неоднозначный характер изменения. Особенно резко выделяется первый элемент подгруппы - бор, являющийся единственным неметаллом среди s 2 p 1 -элементов. Бор проявляет диагональное сходство с элементом главной подгруппы IV группы - кремнием Si.

Алюминий - важнейший элемент подгруппы, также имеет целый ряд специфических особенностей, отличающих его от бора, с одной стороны, и от подгруппы галлия, с другой стороны.

слабая кислота 1-основная

амфотерный (идеальный амфолит)

основный со слабыми признаками амфотерности

амфотерный (основные свойства преобладают)

основание (подобен щелочам)

Алюминий

13Аl [Ne] 3s 2 3p 1

1 стабильный изотоп 27 Al

Кларк в земной коре 8,8 % по массе, самый распространенный металл. В свободном виде не встречается.
Основная форма нахождения в природе - Аl2O3 (в составе различных силикатов, полевых шпатов и глин). Встречается также в виде двойных солей: KAl(SO4)2, Na3[AlF6] и др.


Простое вещество алюминий - лёгкий, парамагнитный металл серебристо-белого цвета, легко поддающийся формовке, литью, механической обработке. Алюминий обладает высокой тепло- и электропроводностью, стойкостью к коррозии за счёт быстрого образования прочных оксидных плёнок, защищающих поверхность от дальнейшего взаимодействия. Алюминий обладает высокой электропроводностью и теплопроводностью, обладает высокой светоотражательной способностью. По электропроводности занимает 4-е место после Сu, Аg, Аu.

1. Электролиз расплава AlCl3:

2. Основной промышленный способ - электролиз расплава Al2O3 (глинозема) в криолите 3NaF • AlF3:

AlCl3 + ЗК = Al + 3KCl

Аl - очень химически активный металл, однако при обычных условиях ведет себя довольно инертно - имеет высокую температуру воспламенения, со многими веществами реагирует только при высокой температуре; все реакции с участием Al проходят через первоначальный замедленный период. Такое химическое поведение алюминия объясняется наличием на его поверхности очень тонкой, прочной, газо- и водонепроницаемой пленки Al2O3. При нарушении цельности этой пленки AI реагирует со многими веществами как активный восстановитель:

Al 0 - Зе - → Аl 3+

В подавляющем большинстве соединений атомы алюминия связаны с соседними атомами ионными связями.

1. Взаимодействие с кислородом и другими неметаллами (галогенами, серой, азотом, углеродом).

Наиболее активно реагирует порошкообразный Al (алюминиевая пудра).

При обычной температуре реакция протекает только на поверхности. После нагревания до температуры воспламенения измельченный Аl сгорает с высоким экзотермичным эффектом.

б) 2Al + 3Cl2 = 2АlСl3 хлорид

Реакция с I2 протекает в присутствии воды. С F2 реакции нет. т. к. в первый же момент образуется прочный поверхностный слой AlF3.

2Al + N2 = 2AlN нитрид

4Al + ЗС = АlС3 карбид

г) C Н2 алюминий непосредственно не соединяется.

2. Взаимодействие с водой в присутствии щелочи.

1) растворение оксидной пленки Al2O3;

2) предотвращение образования нерастворимого гидроксида Аl(ОН)3.

Na[Al(OH)4] - тетрагидроксо-алюминат натрия

В отсутствие щелочи алюминий может вытеснять Н2 из воды в следующих условиях:

1) если его поверхность амальгамировать (покрыть ртутью);

2) в вакууме или в среде инертного газа после предварительной очистки поверхности металла от оксидной пленки.

3. Взаимодействие с «неокисляющими» кислотами (HCl, H2SO4 разб. и др.)

2Al + 6Н + → 2Al 3+ + 3H2

4. Взаимодействие с очень концентрированными HNO3 и H2SO4

При обычной Т реакции не протекают, т. к. происходит пассивирование поверхности Al, связанное с внедрением в нее атомарного или молекулярного кислорода, а также образованием его нерастворимых соединений с Al.

При нагревании реакции протекают довольно активно:

5. Взаимодействие с разбавленной HNO3

Реакция медленно протекает при обычной Т, при нагревании - более быстро.

6. Взаимодействие с органическими кислотами

Реакции протекают с разбавленными уксусной и лимонной кислотами при нагревании, ускоряются в присутствии NaCl:

I группа главная подгруппа Периодической системы Менделеева (щелочные металлы)

I группа главная подгруппа Периодической системы Менделеева представляет собой щелочные металлы. К щелочным металлам относят химические элементы:

Литий Li,

Натрий Na,

Калий K,

Цезий Cs,

Рубидий Rb

Франций Fr

Эти металлы очень активны, поэтому их хранят под слоем вазелина или керосина.

Общая характеристика щелочных металлов

От Li к Fr (сверху вниз в периодической таблице) происходит увеличение:

  • атомного радиуса,
  • металлических, основных, восстановительных свойств,
  • реакционной способности.

Уменьшается

  • электроотрицательность,
  • энергия ионизация,
  • сродство к электрону.

Периодическая таблица-1 группа

Электронные конфигурации у данных элементов схожи, все они содержат 1 электрон на внешнем уровне ns 1 :

Следовательно, типичная степень окисления щелочных металлов в соединениях +1.

Нахождение щелочных металлов в природе

щелочные металлы_нахождение в природе

Способы получения щелочных металлов

Литий

  • Литий получают в промышленности электролизом расплавахлорида лития в смеси с KCl или BaCl2 (эти соли служат для понижения температуры плавления смеси):
  • Известен также способ получения лития из его оксида в вакууме при 300°С:

Натрий

  1. Натрий получают электролизом расплава хлорида натрия с добавками хлорида кальция:

2NaCl (расплав) → 2Na + Cl2

Электролитом обычно служит смесь NaCl с NaF и КСl (что позволяет проводить процесс при 610–650°С).

  1. Натрий можно получить, прокаливая соду с углем в закрытых тиглях, пары металла конденсируются на крышке тигля, выход реакции невысокий:

Калий

  1. Калий получают также электролизом расплавов солей или расплава гидроксида калия, однако на практике таким способом их не получают из-за высокой химической активности
  1. Наиболее распространены методы термохимического восстановления: восстановление калия из расплавов хлоридов или гидроксидов.:

KCl + Na = K + NaCl

KOH + Na = K + NaOH

В качестве восстановителей используют пары натрия, карбид кальция, алюминий, кремний

Цезий, Рубидий

  • Цезий и рубидий получают восстановлением их хлоридов специально подготовленным кальцием при 700–800 °С:

Са + 2CsCl → 2Cs + CaCl2

  • В качестве восстановителя также используют цирконий, реакция протекает при 650 °С:
  • В промышленности используют преимущественно физико-химические методы выделения чистого цезия: многократную ректификацию в вакууме

Химические свойства щелочных металлов

Качественные реакции — окрашивание пламени солями щелочных металлов

Щелочные металлы_цвет пламени

Цвет пламени:

Li — карминно-красный
Na — желтый
K — фиолетовый
Rb — буро-красный
Cs — фиолетово-красный

Взаимодействие щелочных металлов с простыми веществами — неметаллами

С кислородом

С галогенами (F, Cl, Br, I)

Щелочные металлы образуют галогениды:

С водородом

Щелочные металлы образуют гидриды:

С серой

Щелочные металлы образуют сульфиды:

С азотом

При комнатной температуре взаимодействует только литий:

Остальные щелочные металлы реагируют с азотом при нагревании:

С углеродом

Щелочные металлы при нагревании образуют карбиды, преимущественно ацетилениды:

С фосфором

Щелочные металлы активно реагируют с фосфором образуя фосфиды:

Взаимодействие щелочных металлов со сложными веществами

С водой

Щелочные металлы реагируют с водой при обычных условиях:

С кислотами

  • С растворами HCl, H2SO4щелочные металлы взаимодействуют с образованием соли и выделением водорода:

с концентрированной серной:

с разбавленной азотной

с концентрированной азотной

С солями

В расплаве щелочные металлы могут взаимодействовать с некоторыми солями:

3Na + AlCl3 → 3NaCl + Al

Запомните! В растворе щелочные металлы взаимодействуют с водой, а не с солями других металлов.

НЕОРГАНИЧЕСКАЯ ХИМИЯ

I группа главная подгруппа Периодической системы Менделеева представляет собой щелочные металлы. К щелочным металлам относят химические элементы: Литий Li, Натрий Na, Калий K, Цезий Cs, Рубидий Rb Франций Fr Эти металлы очень активны, поэтому их хранят под слоем вазелина или керосина. Общая характеристика щелочных металлов От Li к Fr (сверху вниз в периодической таблице) происходит увеличение: атомного радиуса, металлических, основных, восстановительных свойств, реакционной способности. Уменьшается электроотрицательность, энергия ионизация, сродство к…

II группа главная подгруппа Периодической таблицы Менделеева (щелочноземельные металлы)

К щелочноземельным металлам относят химические элементы: двувалентные металлы, составляющие IIА группу: Бериллий Be магний Mg кальций Ca, стронций Sr, барий Ba и радий Ra. Хотя бериллий Be по свойствам больше похож на алюминий, а магний Mg проявляет некоторые свойства щелочноземельных металлов, но в целом отличается от них. Все щелочноземельные металлы — вещества серого цвета и гораздо более твердые, чем щелочные металлы. Бериллий Be устойчив на воздухе. Магний и кальций (Mg и Ca) устойчивы в сухом воздухе. Стронций Sr и барий Ba хранят под слоем керосина. Общая характеристка щелочноземельных металлов От Be к Ra (сверху…

III группа главная подгруппа периодической таблицы Менделеева (Алюминий)

Общая характеристика алюминия Алюминий – лёгкий серебристо-белый металл, легко поддающийся формовке, литью, механической обработке. Обладает высокой тепло- и электропроводностью. Аl — довольно активный металл, однако при обычных условиях ведет себя инертно — имеет высокую температуру воспламенения, со многими веществами реагирует только при высокой температуре; Все реакции с участием Al проходят через первоначальный замедленный период из-за наличия на его поверхности очень тонкой, прочной, газо- и водонепроницаемой пленки Al2O3. При нарушении цельности этой пленки…

IV группа главная подгруппа периодической таблицы Менделеева (углерод, кремний)

К элементам главной подгруппы IV группы относятся Углерод С Кремний Si Германий Ge Олово Sn Свинец Pb Общая характеристика элементов 4 группы главной подгруппы От С к Pb (сверху вниз в периодической таблице) происходит увеличение: атомного радиуса, металлических, основных, восстановительных свойств, Уменьшается электроотрицательность, энергия ионизация, сродство к электрону. Электронные конфигурации у данных элементов схожи, все они содержат 4 электрона на внешнем слое ns2np2: С – 2s22p2 Si – 3s23p2 Ge…

Соединения углерода

Монооксид углерода (угарный газ) Способы получения угарного газа В промышленности угарный газ получают: при пропускании воздуха через раскаленный уголь: C + O2 → CO2 CO2 + C → 2CO паровая конверсия метана – взаимодействие перегретого водяного пара (температура – 800-900ºС) с метаном. В качестве катализаторов используют Ni, MgO, Al2O3: СН4 + Н2O → СО + 3Н2 взаимодействие метана с углекислым газом (температура – 800-900ºС, кат. – Ni, MgO, Al2O3): СН4 +…

Соединения кремния

Силан (моносилан, гидрид кремния) Способы получения силана Разложение силицида магния соляной кислотой – наиболее распространенный способ получения силана: Mg2Si + 4HCl → 2MgCl2 + SiH4↑ Восстановление галогенидов кремния алюмогидридом лития: SiCl4 + LiAlH4 = SiH4↑ + LiCl + AlCl3 Разложение триэтоксисилана при нагревании до 80ºС в присутствии натрия: 4SiH(OC2H5)3 = SiH4↑ + 3Si(OC2H5)4 Химические свойства силана Силаны (кремневодороды) имеют общую формулу SinH2n+2, где n = 1-8. Цепи -Si-Si- неустойчивы. Моносилан SiH4…

V группа главная подгруппа периодической таблицы Менделеева (азот, фосфор)

К элементам главной подгруппы V группы периодической таблицы Менделеева относятся: Азот N Фосфор P Мышьяк As Сурьма Sb Висмут Bi Общая характеристика элементов 5 группы главной подгруппы От N к Bi (сверху вниз в периодической таблице) Увеличивается атомного радиуса, металлических, основных, восстановительных свойств, Уменьшается электроотрицательность, энергия ионизация, сродство к электрону. Электронные конфигурации у данных элементов схожи, все они содержат 5 электронов на внешнем слое ns2np3: N – 2s2 2p3; P…

Соединения азота

Аммиак (NH3) Способы получения аммиака Промышленный синтез — один из важнейших процессов в химическом производстве. В промышленности аммиак получают прямым синтезом из водорода и азота. Для смещения равновесия в сторону образования аммиака реакцию проводят в присутствии катализатора, при высоком давлении (до 1000 атм.) и высокой температуре (500-550оС): N2 + ЗН2 ⇄ 2NH3+ Q Лабораторный способ В лабораторных условиях аммиак получают при воздействии твердых щелочей на твердые соли аммония: 2NH4Cl +…

Соединения фосфора

Фосфин (PH3) Способы получения фосфина Прямым синтезом PH3 получить нельзя. Фосфин получают путем водного или кислотного гидролиза фосфидов: Ca3P2 + 6H2O → 3Са(ОН)2 + 2PH3↑ Mg3P2 + 6HCl → 3MgCl2 + 2PH3↑ Реакция диспропорционирования фосфора в щелочах: 4P + 3KOH + 3H2O → 3KH2PO2 + PH3↑ Разложение солей фосфония (Температура выше 80ºС): P4I ↔ HI+ PH3↑ Физические свойства фосфина При нормальной температуре фосфин является бесцветным газом с резким чесночным запахом….

VI группа главная подгруппа периодической таблицы Менделеева (кислород, сера)

К элементам главной подгруппы VI группы периодической таблицы Менделеева относятся: Кислород O Сера S Селен Se Теллур Te Полоний Po Общая характеристика элементов 6 группы главной подгруппы От O к Po (сверху вниз в периодической таблице) Увеличивается атомного радиуса, металлических, основных, восстановительных свойств, Уменьшается электроотрицательность, энергия ионизация, сродство к электрону. Электронные конфигурации у данных элементов схожи, все они содержат 6 электронов на внешнем слое ns2np4: O – 2s2 2p4; S…

Читайте также: