Образование трещин в металле

Обновлено: 07.01.2025

Описание. Линейные нарушения сплошности на поверхности горячекатаных прутков и профилей, а также катаной проволоки, расположенные чаще всего в продольном направлении и проходящие перпендикулярно или наклонно в глубь материала. Их возникновение и распределение обусловлены самыми различными причинами.

1. Трещины, образовавшиеся вследствие неправильной калибровки при горячей прокатке, ориентированные в продольном направлении. Обычно тонкие, короткие, встречаются в большом количестве.

2. Тонкие трещины, расположенные на равном расстоянии друг от друга, возникающие вследствие изменения (чаще посадки) калибра при горячей прокатке. Могут быть распределены по всему объему.

3. Тонкие трещины от проскальзывания в калибре; могут быть короткими или длинными; распределены беспорядочно по объему.

4. Краевые (идущие от ребер) трещины на профилях или на прутках, имеющих сечение, отличающееся от круглого; они проходят перпендикулярно или под углом к направлению прокатки и имеют преимущественно извилистую форму.

5. Трещины обусловленные сотовыми (подкорковыми) пузырями; неравномерно распределены по поверхности в продольном направлении.

6. Трещины, возникшие от остаточных напряжений. Лишь в редких случаях они прямолинейны и расположены параллельно продольной оси. Чаще всего сильно искривлены, частично доходят до сердцевины.

7. Трещины, обусловленные подкорковыми порами; распределены по поверхности неравномерно и вытянуты в продольном направлении; имеют малую протяженность и чаще всего очень тонкие.

1. Одновременная осадка и уширение (сжимающие и растягивающие напряжения) при прокатке (неблагоприятная калибровка).

2. Углубления, возникающие при прокатке из-за дефектной поверхности прокатных валков. Слишком большое различие в диаметрах одновременно работающих (сопряженных) валков.

6. Остаточные (внутренние) напряжения, возникающие в материале из-за слишком быстрого нагрева или охлаждения, а также в процессе деформации (например, от скручивания) или при травлении (водород).

7. Изложницы с горячими трещинами; газовыделение из-за поглощения влаги или водорода; слишком быстрая разливка.

1. Создание правильной калибровки и соблюдение технологии горячей прокатки стем, чтобы исключить возможность одновременной сильной осадки и уширения; особое внимание следует обращать на это в последних проходах.

Не создавать углублений на поверхности прутка при прокатке, не использовать прокатные валки со слишком глубокими насечками.

4. Оптимальные температуры нагрева и прокатки, nbsp;соответствующие данной марке стали и поперечному сечению заготовки.

Правильная калибровка для предупреждения слишком большого уширения с учетом данной марки и поперечного сечения изделия.

6. Предотвращение при термической обработке и горячей прокатке резких нагревов и охлаждении. Стали, склонные к образованию трещин от остаточных (внутренних) напряжений (легированные стали и стали с повышенным содержанием углерода), следует охлаждать в нагревательных колодцах.

Устранение. Возможно с учетом глубины и количества дефектов, размеров полуфабриката, состава стали, а также формы поперечного сечения и назначения проката. Для горячекатаной прутковой стали возможные методы устранения дефектов — зачистка (шлифовка и строжка), а также обточка. Катаная проволока большого диаметра (свыше 10 мм) может быть обточена. Дефекты в профилях могут быть удалены зачисткой (шлифовкой или строжкой).

Примечание. Необходимо совершенствовать соответствующие технологические процессы, с тем чтобы избежать появления поверхностных продольных трещин. Однако так как причины появления этих трещин могут быть самыми разнообразными (см. выше) и в текущем производстве в настоящее время еще нет сквозного контроля всей прокатываемой продукции на поверхностные дефекты, только с большим трудом можно получить абсолютно свободный от трещин материал. Это означает, что поверхностные трещины в реальном производстве встречаются, к сожалению, часто.

Обусловленное продольными трещинами снижение качества продукции зависит от вида, глубины и количества (частоты расположения) трещин, а также от целей применения продукции. При обработке поверхности резанием (при изготовлении деталей) наличие поверхностных трещин не имеет значения в том случае, если глубина их меньше удаляемого при механической обработке слоя. Для заготовок, предназначенных для последующего волочения или деформации другого вида без удаления поверхностного слоя, поверхностные трещины, напротив, весьма нежелательны; к качеству поверхности таких заготовок предъявляются особенно высокие требования.

Источник: Атлас дефектов стали. Пер. с нем. М. "Металлургия", 1979.

Сайт содержит техническую и нормативную информацию по металлургии.
Все материалы размещенные на сайте предоставляются бесплатно.

Разрушение металлов

Разрушение металлов

Разрушение металлов часто происходит вследствие появления и развития трещин (из-за механического воздействия). Это может быть как несколько трещин, расположенных рядом, так и одна магистральная, возникшая при слиянии более мелких. Способность сопротивляться такому процессу зависит от прочности и надежности материала и определяет его долговечность.

Вследствие воздействий внешней среды также может происходить химическое или электрохимическое разрушение металла – коррозия. Обработка поверхностей для защиты проводится в зависимости от агрессивных факторов. Подробнее о видах и причинах разрушения металлов читайте в нашем материале.

Виды разрушения металлов

Специалисты выделяют вязкое и хрупкое разрушение металлов, но эти виды объединяет общий механизм зарождения трещин. В большинстве случаев микротрещины образуются на фоне скопления движущихся дислокаций перед препятствием – перед границами блоков и зерен, перед слиянием дислокаций, пр.

Значительная плотность дислокаций приводит к их слиянию с одновременным формированием микротрещины. Трещина появляется в плоскости, перпендикулярной плоскости скольжения, при плотности дислокаций Ю10–1013 см-2. Существуют и безбарьерные механизмы образования трещин, например, на фоне взаимодействия дислокаций в кристаллической решетке.

При хрупком разрушении металла отрыв происходит, когда нормальные растягивающие напряжения достигают предельного значения сопротивления отрыву. Перед разрушением материал оказывается подвержен упругой, а в некоторых случаях и небольшой пластической деформации.

VT-metall предлагает услуги:

Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы

Хрупкое разрушение характеризуется сопротивлением отрыву и сопровождается кристаллическим изломом, который в большинстве случаев проходит по границам зерен. Тогда плоскость разрушения является перпендикулярной нормальным растягивающим напряжениям, а поверхность излома имеет «ручьистое» строение.

Хрупкая трещина распространяется с большой скоростью, приближенной к скорости звука, по этой причине данный тип разрушения металла известен как внезапный, катастрофический.

На практике чаще встречается не абсолютно хрупкое, а микропластическое разрушение. Дело в том, что когда материал находится в упругодеформированном состоянии, концентрация напряжений у вершины трещины вызывает пластическую микродеформацию.

Вязкое или пластическое разрушение металла можно описать как срез под действием касательных напряжений. Оно предполагает медленное распространение трещины при большой работе. Перед разрушением наблюдается большая пластическая деформация металла с поглощением энергии внешнего нагружения – данный эффект достигается благодаря вязкости материала.

В результате образуется волокнистый излом, особенности которого объясняются пластическим деформированием металла. Плоскость излома находится под углом, а его микростроение принято характеризовать как «чашечное».

С точки зрения микроструктуры разрушение металла делят на транскристаллитное и интеркристаллитное. В первом случае трещина распространяется по телу зерна, тогда как во втором проходит через его тело.

Факторы, влияющие на пластичное и хрупкое состояние металлов

Вязкостью называют способность материала поглощать механическую энергию внешних сил при помощи пластической деформации. С точки зрения физики, вязкость представляет собой энергетическую характеристику и выражается в единицах работы, например в Джоулях.

Факторы, влияющие на пластичное и хрупкое состояние металлов

На показатель вязкости влияет химический состав металлов и сплавов, примененная термическая обработка и ряд прочих внутренних факторов. Не менее важную роль играют условия, в которых металл находится, а именно учитывают температуру, скорость нагружения, наличие концентраторов напряжения, вид напряженного состояния, размеры изделия. В зависимости от этих показателей, материал может быть вязким или хрупким.

Остановимся на каждом факторе более подробно:

Температурное воздействие

Изменение температуры сильно влияет на предел текучести ат, но почти не оказывает воздействия на сопротивление отрыву или SOT. При температуре Тв, то есть указывающей на верхний порог хрупкости, или ломкости, от < SQT, нагружение вызовет пластическое деформирование и последующее разрушение металла.

В этом случае материал оказывается в вязком состоянии. Тогда как при температурах Тн, то есть нижнего порога хрупкости, или хладноломкости, SOT < ат, разрушение не сопровождается пластической деформацией. Значит, можно говорить о том, что металл пребывает в хрупком состоянии.

Стоит пояснить, что под хладноломкостью понимают склонность металла к переходу в хрупкое состояние на фоне снижения температуры. В число хладноломких входят железо, вольфрам, цинк и другие металлы, характеризующиеся объемно-центрированной кубической (ОЦК) и гексагональной плотноупакованной (ГПУ) кристаллической решеткой. Металлы и сплавы с гранецентрированной кубической или ГЦК-решеткой не относятся к хладноломким, поэтому могут применяться в криогенной технике.

Скорость деформации

При переходе от статического нагружения к динамическому возрастает предел текучести, а сопротивление отрыву почти не зависит от скорости деформации. Увеличение скорости деформации приводит к тому, что хрупкость металла проявляется при более высокой температуре. Если металл при статическом нагружении остается вязким, то динамическое нагружение способно спровоцировать его переход в хрупкое состояние.

Наличие концентраторов напряжения

Под концентраторами напряжений понимают надрезы, отверстия, выточки, канавки, включения – они оказывают значительной воздействие на материал, приводя к повышению его хрупкости. Чаще всего очагами хрупкого разрушения металлов становятся трещины. Для надреза характерна концентрация напряжений у его вершины. Чем больше глубина надреза и чем он острее, тем большее влияние металл испытывает под действием коэффициента концентрации напряжений.

Пластичным материалам свойственна местная пластическая деформация около вершины надреза при Оmax > SQr. Сам металл упрочняется, уменьшается острота надреза, снижается концентрация напряжения, благодаря чему достигается надежная работа изделия. Если материал не склонен к местной пластической деформации, у вершины надреза формируется трещина, а ее развитие вызывает хрупкое разрушение.

Напряженное состояние

Важной характеристикой различных способов нагружения является коэффициент мягкости =max⁡ /Smax, где max⁡ – наибольшие касательные напряжения; Smax – наибольшие растягивающие напряжения. Для осевого сжатия ос = 2; для кручения – 0,8; для осевого растяжения – 0,5. Сжатие металла сопровождается вязким разрушением путем среза, перед которым наблюдается пластическая деформация. Тогда как растяжение того же материала вызывает хрупкое разрушение путем отрыва.

Масштабный фактор

Речь идет о влиянии размеров изделия на разрушение металлов и сплавов. Дело в том, что при увеличении массы повышается вероятность присутствия дефектов в объеме материала, которые могут запустить процесс разрушения.

Усталостное разрушение металлов

Усталость – это разрушение металлов на фоне повторных нагрузок либо связанных с изменением знака напряжений. Она наблюдается у пружин автоматики, деталей кулачковых и любых иных механизмов, постоянно претерпевающих нагружение и последующеее разгружение, растяжение и сжатие или многократно повторяющиеся ударные и плавно возрастающие нагрузки.

Например, материал валов, которые передают крутящий момент, подвержен изгибу с вращением. Из-за этого наблюдается многократное изменение знака напряжения, то есть растяжение сменяется сжатием.

Усталостное разрушение металлов

От других видов усталостное разрушение металлов отличается внезапным характером, оно не сопровождается видимыми внешними признаками предварительной пластической деформации. Обычно в усталостном изломе присутствуют две характерные зоны: с гладкой и неровной поверхностью. Первая формируется при постепенном развитии трещины, а другая представляет собой область, в которой произошел излом оставшейся части сечения.

Усталостное разрушение свойственно деталям, функционирующим при напряжении, не достигающем напряжения предела текучести металла. Формирование подобных трещин объясняется строением материала, то есть присутствием различно ориентированных зерен, блоков, включений неметаллической природы, микропор, дислокаций и твердых дефектов решетки.

Под усталостью понимают постепенное накопление повреждений из-за повторно-переменных напряжений, что в итоге вызывает растрескивание и механическое разрушение металла изделия.

Помимо усталости, существует и противоположное свойство – выносливость, то есть способность материала сопротивляться усталости.

Теоретический предел выносливости представляет собой наибольшее напряжение цикла, с которым металл справляется без последующих разрушений при бесконечно большом количестве циклов нагружения.

Предел выносливости определяют, исходя из заданного числа циклов нагружения N. Например, у стали этот показатель составляет 107, у цветных металлов N = 108. В большинстве случаев для выяснения предела выносливости проводят испытание образца на изгиб с вращением со знакопеременным симметричным циклом напряжений.

Данная характеристика во многом связана с качеством обработки поверхности металла. Так, при зачистке грубым напильником предел выносливости сокращается на 20 % по сравнению с аналогичным показателем полированного металла. А наличие коррозии приводит к его многократному снижению.

Химическая коррозия металлов

Такое разрушение металлов происходит в среде, неспособной передавать электрический ток. Например, данный процесс запускается при нагреве, что приводит к образованию сульфидов (химических соединений) и различных видов пленок. Сплошные пленки могут быть непроницаемыми.

Химическая коррозия металлов

В итоге коррозия и разрушение поверхности металла останавливается, так как материал оказывается законсервированным. Подобным слоем защищена поверхность алюминия, хрома, никеля, свинца. На стали и чугуне пленка непрочная и не может препятствовать разрушению более глубоких слоев изделия.

Выделяют два типа химической коррозии:

Газовая появляется на поверхности металла под действием агрессивной среды газа, пара при повышенной температуре. Особенность таких условий состоит в том, что в горячей среде на поверхности нет конденсата. Химическая коррозия может быть спровоцирована кислородом, диоксидом серы, водяным паром, сероводородом, пр. В результате наблюдается абсолютное разрушение активного металла, кроме ситуаций, когда он находится под защитой плотной пленки.

Для запуска жидкостной коррозии необходимы жидкостные среды, неспособные передавать электричество. Чаще всего такой эффект достигается при контакте металла с сырой нефтью, нефтепродуктами, смазочными материалами. Если в указанных веществах присутствует вода в небольших объемах, коррозия становится электрохимической.

При любом виде химической коррозии скорость разрушения металла зависит от химической реакции, при которой окислитель проникает сквозь поверхностную оксидную пленку.

Электрохимическая коррозия металлов

Для электрохимической коррозии необходима среда, передающая электрический ток. Подобный процесс приводит к изменению состава металла, ведь атомы покидают кристаллическую решетку на фоне анодного или катодного влияния. В первом случае ионы металла переходят в окружающую жидкость. Во втором – получаемые при анодном процессе электроны связываются с окислителем.

Электрохимическая коррозия металлов

Чаще всего встречается электрохимическая коррозия под действием водорода или кислорода, что важно учитывать при защите металлов от разрушений. Дело в том, что металлические изделия обычно испытывают на себе влияние влажной среды во время хранения и использования.

Электрохимическая коррозия может быть нескольких видов:

  • Электролитная. Обязательным условием для нее является контакт металла с растворами солей, кислотами, основаниями, обычной водой.
  • Атмосферная. Протекает под действием влажной атмосферы и является наиболее распространенной, так как ей подвержено подавляющее большинство предметов из металла.
  • Почвенная. Является результатом контакта металлического изделия с влажной почвой, в которой нередко присутствуют различные химические элементы, обеспечивающие более активное разрушение металла. Кислые почвы способствуют повышенной скорости протекания коррозии, а песчаные оказывают самое медленное влияние.
  • Аэрационная. Относится к самым редким видам коррозии – ее основным признаком является неравномерный доступ воздуха к разным поверхностям металла. Неоднородное воздействие приводит к разрушению линий переходов между разными участками.
  • Морская коррозия металлов. Это еще один из видов разрушения металлов под действием окружающей среды – процесс происходит из-за контакта с морской водой. Его выделяют как отдельный тип, так как речь идет о жидкости с большой долей солей и растворенных органических веществ в составе. Данные характеристики обеспечивают морской воде повышенную агрессивность.
  • Биокоррозия. Металл может разрушаться и под действием бактерий, ведь в процессе своей жизнедеятельности подобные живые существа вырабатывают углекислый газ и другие вещества.
  • Электрокоррозия. В данном случае разрушение металла объясняется воздействием на него блуждающих токов. Обычно подобные процессы протекают в подземных сооружениях, например, им подвержены рельсы метрополитена, стержни заземления, трамвайные линии, пр.

Рекомендуем статьи

На производстве в состав стали нередко добавляют легирующие компоненты, защищающие металл от образования очагов коррозии всех либо только некоторых типов. В качестве легирующего элемента может использоваться хром – он должен составлять не менее 13 % от общего объема сплава. Помимо этого, предотвратить появление коррозии на стали без применения легирующих добавок позволяют конструктивные, пассивные и активные методы антикоррозионной защиты.

Почему следует обращаться именно к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

Образование трещин при термической обработке стальных изделий

Малинкина Е.И. Образование трещин при термической обработке стальных изделий

Температура нагрева. Температура может оказать влияние на образование трещин в процессе нагрева и охлаждения, а также после окончания термической обработки.

Сталь по чувствительности к трещинам с исходной структу­рой перлитного строения (пластинчатый перлит, зернистый пер­лит, сорбит) отличается от сталей с исходной структурой мар­тенсита.

Сталь со структурой перлитного типа при комнатной тем­пературе обладает значительной пластичностью. При испытании, на растяжение углеродистая сталь У12 со структурой зернистый перлит при 20° С имеет следующие механические свойства: пре­дел прочности 59 · 10 7 н/м 2 (60 кГ/мм 2 ), удлинение 24%, суже­ние поперечного сечения 40%. Хрупкое разрушение такой стали возможно при создании трехсторонних растягивающих напря­жений. Поэтому необходимые условия для образования трещин при нагреве могут возникнуть в крупных заготовках, покрвках, прокате, слитках, поскольку в них возникает значительная раз­ность температур по сечению, а в соответствии с этим и высо­кие временные внутренние растягивающие напряжения. Для предупреждения образования трещин ограничивают скорость нагрева. Допустимый перепад температур по сечению и скорость нагрева зависят от величины и формы нагреваемого тела и ме­ханических свойств стали. Слитки, благодаря пониженной пла­стичности стали, более подвержены образованию трещин, чем поковки, быстрорежущая сталь — более, чем углеродистая.

Подсчитано, что в процессе нагрева до 650° С слитков среднеуглеродистой конструкционной стали с исходной структурой перлит допустима разность температур по сечению до 230° С [47]. Поэтому скорость нагрева слитков регулируют менее интенсив­ным подводом тепла в первую (загрузочную) зону.

При температуре 600—650° С большинство сталей приобре­тает значительную пластичность; способность стали к удлинению при растяжении увеличивается в 2—2,5 раза. Например, при нагреве от 20 до 600° С удлинение углеродистой стали У12 воз­растает от 24 до 56%, а быстрорежущей стали — от 14 до 28%. Для большинства крупных изделий из разных сталей скорость нагрева ограничивается только до температур 600—650° С.

Перед фазовыми превращениями слитки или поковки выдерживают с целью выравнивания температур по сечению для обе­спечения одновременного превращения α -фазы в γ -фазу в объе­ме изделия. При большом перепаде температур по сечению пре­вращение α>γΒ поверхностной части изделия, в связи с умень­шением удельного объема, вызовет растягивающие напряжения, обусловливающие образование трещин.

Предупредить трещины технически нетрудно, поскольку за­медленный нагрев или выдержка легко осуществимы. Вопрос о допустимых скоростях нагрева имеет преимущественно эконо­мическое значение как фактор, определяющий производитель­ность.

Скорость нагрева изделий со структурой перлит ограничи­вается на практике только для слитков, крупных поковок, штам­пов; нагрев изделий среднего машиностроения ведется с дости­жимой скоростью в печах или соляных ваннах. Даже в изде­лиях из быстрорежущей стали при ускоренном нагреве в соля­ных ваннах с температурой 1280—1300° С трещин не бывает.

Ступенчатый нагрев, применяемый для инструментов, изго­товленных из легированной и быстрорежущей стали со структу­рой перлитного строения, диктуется не столько предупреждени­ем образования трещин в процессе нагрева, сколько другими технологическими соображениями. Предварительный подогрев перед окончательным нагревом сокращает время пребывания ин­струмента при высоких температурах и тем самым устраняет или уменьшает обезуглероживание режущих кромок инструмен­та. Он необходим также для полного и одновременного завер­шения структурных превращений по сечению в процессе крат­ковременного окончательного нагрева. Чем крупнее по габари­там инструмент, тем большее значение приобретает предвари­тельный подогрев для уменьшения времени пребывания инстру­мента при высоких температурах. Неоднократно приходилось отмечать, что ступенчатый нагрев с достаточным временем вы­держки имеет существенное значение для предупреждений тре­щин уже в процессе охлаждения крупногабаритного (диаметром 100—200 мм) сложного инструмента из быстрорежущей стали, особенно если охлаждение производится в масле, а не в рас­плавленной селитре.

Закаленная сталь менее теплопроводна и пластична по сравнению с отожженной. Эти особенности повышают чувстви­тельность стали к трещинам при нагреве. В отличие от отож­женной, в закаленной стали при нагреве до температуры Асх протекают процессы отпуска мартенсита. Суммарное изменение объема под влиянием расширения от воздействия температуры и сжатия в результате отпуска мартенсита зависит главным об­разом от содержания углерода в стали и степени развития процессов выделения углерода из мартенсита. При нагреве до тем­пературы фазовых превращений на поверхности закаленных изделий могут быть не только сжимающие, но и растягивающие напряжения. Закаленные изделия в отличие от отожженных в процессе нагрева до 600—650° С подвержены образованию глу­боких трещин первого типа.

В качестве примеров можно привести случаи образования трещин первого типа в инструменте из быстрорежущей стали, когда после обработки холодом при —80° С его вновь нагревают для отпуска в электропечи с температурой 560° С. Во избежание трещин при отпуске после обработки холодом инструмент диаметром 40—50 мм из холодильника выгружают на пол (или в тару), выдерживают до температуры окружающего воздуха в цехе и после этого загружают для отпуска в печь, нагретую до 500—600° С. Наблюдается также появление трещин в крупнога­ баритном сложном инструменте из быстрорежущей стали после закалки и отпуска при нагреве его в соляных ваннах с темпе­ ратурой 560° С для цианирования. Во избежание трещин круп­ ногабаритный инструмент необходимо подогревать до 200— 300° С перед загрузкой в цианистую ванну.

Как правило, закаленные изделия нагреваются для отпуска до температуры 200—680° С, поэтому скорость нагрева, дости­жимая в печах и соляных ваннах, небольшая. Практически для закаленных изделий малых размеров, отпускаемых при 200— 680° С, скорость нагрева не оговаривается. Исключение состав­ляет закаленный инструмент из быстрорежущей стали.

В процессе охлаждения и после его окончания при закалке склонность стали к образованию трещин определяется темпера­турой нагрева. В противоположность операции нагрева, при ох­лаждении трещины могут появляться на изделиях весьма мало­го размера. Это объясняется прежде всего тем, что закалка изделий, как правило, предусматривает большие скорости ох­лаждения, вызывающие значительный перепад температур по сечению и высокие внутренние напряжения. Кроме того, сталь с мартенситной структурой малопластична. Высокоуглеродистая сталь, закаленная на мартенсит, при испытании растяжением разрушается хрупко без заметной макроскопической деформа­ции. Трещины в такой стали могут возникать даже при одноос­ном напряженном состоянии и при очень малых деформациях растяжения, не выводящих сталь из упругой области деформи­рования.

Внутренние напряжения (временные и остаточные), со­здаваемые закалкой, даже в образцах и изделиях сечением в несколько миллиметров бывают достаточными для хрупкого разрушения закаленной стали.

Вместе с тем влияние температуры нагрева на образование трещин находится в зависимости от размера изделий, их прока­ливаемое™ и формы. Поэтому влияние температуры нагрева целесообразно рассмотреть отдельно.

Образование продольных трещин (первого типа) наглядно характеризуется диаграммами, приведенными на фиг. 14 и 16, на которых отмечены температуры, ограничивающие область об­разования трещин. Температура, предопределяющая появление продольных трещин, зависит от размера закаливаемых образ­цов, причем она понижается с увеличением сечения вплоть до размеров критического образца, а затем вновь повышается. Объ­яснение этой зависимости будет дано позднее, а в данном случае отметим, что температурная область образования трещин пер­вого типа ограничивается только снизу, так как с повышением температуры нагрева склонность стали к растрескиванию уве­личивается.

Однако эта хорошо известная зависимость образования тре­щин от перегрева характерна только для определенной группы сталей.

Группа сталей Х05, XI2М (и другие этого типа), 90Х2Н4 (фиг. 39) характеризуется замкнутой областью образования трещин первого типа с ограничительной линией сверху. При на­греве образцов стали до температуры, лежащей выше верхней ограничительной линии, трещин не возникает. Здесь нарушается установленная зависимость влияния перегрева на образование трещин для сталей первой группы, и вместо повышения склон­ности к трещинам происходит ее снижение и даже потеря спо­собности к трещинообразованию. Зависимость трещинообразования от температуры нагрева на первый взгляд кажется не­обычной, но тем не менее она существует и характерна для ста­лей, в которых сохраняется значительная доля остаточного аустенита после закалки. Применительно к высокоуглеродистой стали количество остаточного аустенита должно превышать 25—35%.

Все высокоуглеродистые стали, в которых после закалки с перегревом до любой температуры сохраняется остаточного аустенита менее 25—35%, характеризуются диаграммами с открытой областью образования трещин первого типа, а стали, способные сохранять остаточный аустенит в большем количест­ве,— диаграммами с закрытой областью.

Для удобства рассмотрения закономерности образования трещин первого типа разделим область образования трещин на часть, относящуюся к образцам размером меньше критического, и часть, характеризующую образование трещин на образцах размером больше критического.

Склонность к образованию трещин образцов размером меньше критического, относящихся к диаграммам с открытой областью трещин, можно представить ρ виде кривых, показы-

Образование трещин при термической обработке стальных изделий

Поскольку макротрещины являются результатом воздействия напряжений первого рода, то очевидно, что их расположение и глубина распространения должны определяться распределением напряжений в объеме изделия.

Хрупкое разрушение чистых металлов и многих пластичных сплавов при комнатной температуре можно вызвать двухосным или трехосным приложением растягивающих внешних усилий; в случае сжимающих усилий металлы разрушаются от касатель­ных напряжений сдвигом, т. е. разрушаются вязко. Это справед­ливо для материалов и напряженного состояния, при котором проявляются пластические свойства материала. Хрупкие мате­риалы, к которым относится и закаленная сталь, могут разру­шаться не только от растягивающих, но и сжимающих напряже­ний, что хорошо выявляется при одноосном сжатии [50], при ко­тором разрушение происходит по направлению действующего усилия. В данном случае излом проходит перпендикулярно поперечным растягивающим деформациям, т. е. в направлении, в котором согласно понятиям теории упругости растягивающие напряжения отсутствуют. Поэтому целесообразно разрушение хрупких материалов рассматривать по отношению к деформациям растяжения.

В процессе механических испытаний при любом способе при­ложения внешних усилий, даже одноосном, образец деформи­руется в трех направлениях и, по существу, в нем всегда возни­кает объемное деформированное состояние. При одноосном ра­стяжении в направлении действующего усилия появляются де­формации растяжения, а в двух других направлениях — сжатия (фиг. 4, а). Хрупкие материалы при растяжении разрушаются перпендикулярно направлению усилия, т. е. перпендикулярно максимальной деформации растяжения.

Одноосное сжатие в направлении действующего усилия вы­зывает деформацию сжатия, но в двух остальных направле­ниях— деформации растяжения и перпендикулярно деформа­циям растяжения наступает разрушение (фиг. 4, б).

При двухосном и трехосном приложении сил растяжения или сжатия хрупкое разрушение также будет направлено перпенди­кулярно наибольшей деформации растяжения. Двухосное равно­мерное растяжение изотропных материалов может привести к одновременному разрушению образца в четырех направлениях Двухосное равномерное сжатие (фиг. 4, г) вызывает растягивание в одном направлении и разрушение возможно также в одном направлении, нормаль­ном к деформации.

Закалочные трещины могут образоваться в зоне, подвергну­той не только растягивающим, но и сжимающим напряжениям, при этом они направляются перпендикулярно максимальной де­формации растяжения.

При трехосном приложении усилий, когда в двух направле­ниях действуют растягивающие, а в одном — сжимающие напря­жения, последние должны способствовать хрупкому разруше­нию, поскольку они увеличивают деформацию растяжения (фиг. 4, д), вызываемую растягивающими усилиями.

Термическая обработка создает в изделиях объемно-напряженное состояние. В элементарном объеме очень часто возни­кает напряженное состояние, аналогичное описанному выше, когда в двух направлениях действуют растягивающие напря­жения и в одном — сжимающие. Такое напряженное состояние должно быть опасным для образования трещин.

Объемное напряженное состояние изделий характеризуется различным распределением напряжений по сечению. В одних случаях напряжения меняются по величине постепенно, в дру­гих случаях напряжения по величине и знаку изменяются резко (в пределах сотых долей миллиметра). Последнее часто наблю­дается в тонких поверхностных слоях изделия, в которых напря­жения сжатия или растяжения значительно превышают (до не­скольких раз) максимальные напряжения в сердцевине. В этом случае поверхностный тонкий слой можно рассматривать как самостоятельную зону, находящуюся в плосконапряженном со­стоянии

Макротрещины, возникающие в изделиях, должны распола­гаться в соответствии с напряженным состоянием: при напряженном состоянии во всем объеме изделия следует ожидать об­разования глубоких трещин, а при двухосном напряженном со­стоянии в поверхностном слое — образования поверхностных трещин. Многолетние наблюдения над образованием макротре­щин в изделиях, изготовляемых из высоко- и среднеуглеродистой легированной и нелегированной стали, а также низкоуглероди­стой цементуемой стали, привели к выводу, что трещины, воз­никающие в изделиях при термической обработке, также можно подразделить на две группы: глубокие и поверхностные. Каждая

группа трещин подразделяется на две разновидности: выходя­щих на поверхность изделия и внутренних. Классификация тре­щин приводится на фиг. 5, согласно которой макротрещийы, воз­никающие при термической обработке изделия, подразделяются на четыре типа. Пятым типом трещин являются микротрещины, позникающие от напряжений второго рода.

Первый тип трещин — трещины глубокие, раскрываю­щиеся от поверхности изделия (фиг. 6). Они могут быть про­дольными или изменять направление в зависимости от конфигу­рации изделия (концентраторов напряжений). Продольное на­правление трещин чаще наблюдается в тех изделиях, длина ко­торых превышает их диаметр или толщину, и даже в изделиях сложной формы. Например, на поверхности фрезы, изготовлен­ной из быстрорежущей стали (фиг. 6, а), трещины имеют раз­личные направления, но если эту фрезу сломать по трещинам, то обнаружится их преимущественное направление вдоль оси (фиг. 6,6).

Как показали наблюдения, трещины первого типа возникают в полностью прокаливающихся изделиях. В данном случае под прокаливаемостью понимается слой с мартёнситной структурой, когда твердость сердцевины изделия равна или ниже (не более чем на HRC 1—3) твердости поверхности. В этом случае в по­верхностном слое изделия возникают, как правило, растягиваю­щие напряжения, а распределение их по сечению соответствует схеме, приведенной на фиг. 5 для данного типа трещин.

Если исходить из общих представлений об образовании тре­щин, то следует предположить, что трещины первого типа могут появиться в любом слое стали, где деформация растяжения (в тангенциальном 'направлении) превосходит способность стали к удлинению при данном напряженном состоянии. Вместе с тем практически наблюдается, что наибольшая склонность к трещи­нам первого типа проявляется в образцах со сквозной прокали­ваемостью, когда на поверхности обнаруживаются преимущест­венно напряжения растяжения (фиг. 5, а). Такое напряженное состояние характерно для прокаливающихся образцов после охлаждения в воде. Очевидно, неодновременность структурных превращений, возникающая при резком охлаждении, вызывает напряжения растяжения в поверхностном слое. Логично предпо­ложить, что если под действием растягивающих напряжений в сердцевине возникают трещины, то должны встречаться хотя бы отдельные случаи, когда в изделиях обнаруживаются внутренние продольные трещины. Однако таких трещин пока не отмечалось. По-видимому, практически внутренние напряжения в сердцевине изделий, могущие вызвать деформацию растяжения в тангенци­альном направлении, достаточную для разрушения, образуются редко.

Известно, что в цилиндрических образцах после термической обработки осевые напряжения имеют, как правило, большую, а радиальные напряжения — меньшую величину. Казалось бы, и трещины должны возникать от наибольших осевых напряжений. Но в этом случае они располагались бы перпендикулярно оси, а в действительности трещины бывают направлены вдоль оси. Продольное расположение их вызывается тангенциальными на­пряжениями, хотя величина этих напряжений, как правило, не­сколько меньше осевых. Продольное расположение трещин в не­которой степени, очевидно, объясняется анизотропией свойств стали. Многие детали, а также и инструмент изготовляются из проката. Прокат, как известно, в продольном и поперечном на­правлениях имеет различные свойства. При испытании попереч­ных образцов по сравнению с продольными образцами ([50] обна­руживается понижение следующих механических свойств: пла­стичности, сопротивления отрыву, истинного сопротивления раз­рушению. В закаленной на мартенсит инструментальной стали сопротивление отрыву при разрушении поперечных образцов на 30—50% меньше, чем при разрушении продольных образцов.

Второй тип трещин — внутренние дугообразные, отли­чающиеся от трещин первого типа не только глубиной залегания, но и расположением (фиг. 5, б). Они располагаются главным образом внутри углов изделий. Если изделие имеет небольшую толщину, то трещины, располагаясь в углах, сливаются и при­нимают дугообразную форму (фиг. 7). Не исключена возмож­ность выхода внутренних трещин на поверхность изделий. Они называются внутренними потому, что берут начало из сердце­винных слоев и только вследствие перераспределения напряже­ний и повышенной хрупкости стали часто распространяются до поверхности. Внутренние трещины, не выходящие на поверх­ность после закалки, выявляются после сколов углов изделий или вершин зубьев (фиг. 7, г).

Трещины второго типа возникают в непрокаливающихся или цементованных изделиях. В таких изделиях поверхностный зака­ленный слой имеет большой удельный объем по сравнению с сердцевиной. Вследствие этого поверхностный слой стремится расшириться и подвергает сердцевину растяжению. Сам поверх­ностный слой в этом случае будет находиться под воздействием сжимающих напряжений. Распределение напряжений в цементо­ванных или непрокаливающихся образцах неоднократно исслеловалось различными авторами; оно соответствует напряженно му состоянию, схематически представленному на фиг. 5, б. Тре­щины возникают в зоне, подвергнутой растягивающим напря­жениям. Преимущественное образование внутренних трещин в

углах следует объяснить наличием в них объемных растягиваю­щих напряжений. Закаленный или цементованный слой в углах воздействует на сердцевину с трех сторон, создавая напряжен­ное состояние, затрудняющее пластическую деформацию стали и облегчающее образование трещин.

Третий тип трещин — поверхностные, проникающие ιι;ι глубину от 0,01 до 1,5—2 мм. На поверхности эти трещины имеют произвольное направление, не связанное с конфигурацией .изделия. В зависимости от глубины они по-разному выявляются на поверхности изделия.

Трещины, проникающие в глубину до нескольких сотых мил­лиметра, образуют на поверхности изделия мелкую сетку (фиг. 8, а) . При увеличении глубины трещин ячейки сетки укруп­няются, затем сетка становится слабо замкнутой (фиг. 8, б), и, наконец, при глубине около 1,0 мм на поверхности появляется несколько трещин произвольного (фиг. 8,- в) или продольного (фиг. 8, г) направления.

Трещины третьего типа образуются в том случае, когда по каким-либо причинам в поверхностных слоях возникают растя­гивающие напряжения, а способность металла этих слоев к де­формации оказывается недостаточной (см. фиг. 5, в).

Четвертый тип трещин — трещины отслаивания и сколов (см. фиг. 5, г). Для примера приведем многочисленные случаи отслаивания поверхностной корки после шлифования, а также отслаивания диффузионных слоев, полученных химико-термической обработкой. Но к тре­щинам отслаивания относится значительно более широкий круг встречающихся трещин, и расположение их вблизи поверхности изделия является частным случаем. Анализ многих изделий с трещинами отслаивания приводит к выводу, что трещины появ­ляются вследствие действия сжимающих напряжений и возни­кают от растягивающих поперечных деформаций.

Трещины отслаивания располагаются вдоль структурных зон, подвергнутых сжатию и отличающихся повышенной хрупкостью. Известна возможность такого разрушения в хрупких материалах при одноосном сжатии [50]. Однако трещины отслаивания возни­ кают только в том случае, когда напряжения от растягивающих к сжимающим переходят в очень узкой зоне, равной тысячным или сотым миллиметра, т. е. когда знак напряжений меняется в микрослоях (см. фиг. 5, г).

Обычно трещины отслаивания располагаются в структурной зоне малой толщины, напряженное состояние которой можно рассматривать как двухосное равномерное сжатие. Наглядно это можно показать следующим.

Если в зоне образования трещин четвертого типа возникает объемное напряженное состояние и, помимо напряжений двух­осного сжатия, появляются и растягивающие напряжения в тре­тьем направлении (радиальном), то они будут способствовать образованию этих трещин.

В изделии одновременно могут присутствовать глубокие и по­верхностные трещины. Пример наличия в изделии трещин пер­вого и третьего типов приведен на фиг. 12, где глубокие и боль­шие трещины появились от объемного напряженного состояния, а поверхностные и мелкие вызваны наличием дополнительного напряжения в поверхностном слое изделия. Поскольку глубокие трещины вызываются напряжениями, действующими во всем объеме изделия, то, очевидно, причину их образования следует искать в технологических условиях, влияющих на напряженное состояние объема (например, перепад температур по сечению из­делий при сквозном нагреве и охлаждении). Появление поверх­ностных трещин связано с явлениями, происходящими в поверх­ностных слоях (изменение состава стали вследствие химико-тер­мических процессов, протекающих в поверхностных слоях, рез­кий разогрев поверхности и др.).

На основании изучения причин, приводящих к образованию трещин при обработке конкретных изделий, по виду трещин можно определить технологические факторы, вызывающие тре­щины, и указать мероприятия по их устранению. Например, установлено, что в инструменте из быстрорежущей стали, нагревае­мом для закалки в соляных ваннах, поверхностные трещины вы­зываются наличием обезуглероженного слоя. Если трещины име­ют вид мелкой сетки (а следовательно, малую глубину) и рас­положены по всей поверхности изделия, то обезуглероживание произошло при нагреве в соляной ванне, а если поверхностные трещины располагаются с одной стороны (обычно на плоском инструменте), не образуют сетки, но расположены произвольно, то это указывает на неравномерное снятие припуска при меха­нической обработке. Конкретные причины образования трещин и технологические мероприятия по их предупреждению будут рассмотрены ниже.

Применяемые марки стали и условия обработки настолько разнообразны, что еще встречаются трещины, причины и техно­логические условия образования которых еще не изучены и они «не классифицируются». Например, еще не совсем ясно, к како­му типу можно отнести трещины, возникающие возле кромки изделия и направленные параллельно ей. Известны случаи об­разования подобных трещин в связи с обезуглероживанием и троститным превращением на .поверхности, и, очевидно, их сле­дует отнести к третьему типу, но для окончательной классифика­ции требуется накопление дополнительных данных.

В классификацию не включены трещины, возникающие при очень сильном перегреве стали (например, нагрев стали У12 до температуры 1200°С), когда трещины уже не имеют определен­ной ориентировки и иногда образуют сетку, видимую на поверх­ности. Образование таких трещин связано с понижением проч­ности границ зерен, и они сравнительно редко встречаются в практике. При классификации следует иметь в виду возможность появления сетки трещин вследствие сильного перегрева, в этом необходимо убедиться по структурному анализу или излому стали.

По мере изменения технологии термической обработки будут включаться новые технологические факторы и виды трещин, требующие специального изучения.

Подрезы (переходы сечений) увеличивают склонность изде­лий к образованию трещин, изменяют их направление (фиг. 13) „ но влияние технологических и металлургических факторов сохра­няется для всех четырех типов трещин. Поэтому все общие зако­номерности, относящиеся к образцам или изделиям простой формы без резких переходов в сечении или подрезов, в равной степени относятся к изделиям сложной формы.

Пятый тип трещин — микротрещины, в отличие от пе­речисленных выше трещин, возникающих от напряжений перво­го рода, образуются под действием микронапряжений или на­пряжений второго рода (см. фиг. 5, д).

Поскольку напряжения второго рода действуют в пределах микрообъемов и дезориентированы, они должны вызвать трещи­ны, также распространяющиеся на микрообъемы и тоже дезориентиро­ванные.

На возможность образования . микротрещин в стали указывается многими авторами. К этому типу от­носятся трещины, которые различи­мы под микроскопом и располагают­ся в пределах игл мартенсита или одного и нескольких зерен. В быстрорежущей стали, согласно данным.

Образование трещин в сталях

С точки зрения простого здравого смысла трещины в сварных соединениях невозможны: металл при выполнении сварного шва сначала жидкий, а затем при охлаждении - пластичный. Однако факторы (причины и следствия), обуславливающие образование сварного соединения являются также и факторами (условиями), образования трещин в нём, как-то: нагревание, плавление, кристаллизация, охлаждение в жёстком закреплении, структурные, фазовые превращения, внутренние напряжения, микро- и макро- неоднородности, и т.п. Появление (получение) сварного соединения без трещин скорее исключение, чем правило.

В любом сварном соединении (особенно при сварке плавлением), строго говоря, присутствуют трещины (хотя бы микро-), но в благоприятных условиях (в удачном случае) они схлопываются, а в неблагоприятных условиях - (в неудачном случае) - раскрываются - обнаруживают себя. Трещины в сварных соединениях классифицируют как показано на рисунке.

Классификация трещин

Способность материала сварного соединения воспринимать без разрушения деформации и напряжения, вызываемые термодеформационным циклом сварки, называется его технологической прочностью и является важнейшей характеристикой металла, подлежащего сварке.

Горячие трещины

Согласно теории технологической прочности сопротивляемость сварного соединения образованию горячих трещин определяется такими факторами:

а) пластичностью металла в температурном интервале хрупкости;
б) значением (величиной, протяженностью) температурного интервала хрупкости;
в) темпом температурной деформации сварного соединения.

Возникновение сварочных деформаций (и напряжений) обусловлено концентрированным местным нагревом при сварке и имеет место всегда. Это связано с тем, что нагреваемый объём металла при сварке всегда находится в закреплении соседними не нагреваемыми объёмами металла и вынужден претерпевать пластические деформации. Это, в свою очередь, при охлаждении приводит к возникновению силовых напряжений и дополнительных деформаций.

Деформации в твердом металле реализуются по известным механизмам: двойникования, внутризеренного скольжения (приводящего к появлению линий сдвига) и межзёренного проскальзывания, сопровождающегося появлением ступенек по границам зерен. В такой же последовательности возрастает роль этих составляющих деформаций при повышении температуры металла и уменьшении скорости деформации, причем с повышением температуры сопротивление деформации приграничных участков зерен падает более интенсивно, чем внутризеренных объемов, а запас межзеренной пластичности заметно ниже, чем внутризеренной. Поэтому при высоких температурах обычным является межзеренное разрушение при меньшей пластичности.

Горячие как кристаллизационные, так и подсолидусные трещины имеют межкристаллитный характер. Разрушение идет межзеренно, по границам зерен.

Режим сварки, определяющий температурное поле в свариваемом изделии, может привести к тому, что нерасплавленный металл, расположенный вне ванны, будет менять знак дополнительной деформации металла кристаллизующейся ванны (сжатия или растяжения) в различные моменты времени после прохождения рассматриваемого сечения сварочным источником тепла. Мягкие режимы сварки (с малой скоростью, при предварительном подогреве и пр.) с этой точки зрения являются более благоприятными, хотя на уровень пластичности кристаллизующегося металла они могут оказать как положительное, так и отрицательное воздействие.

Одним из наиболее надежных способов исключения горячих трещин в металле швов является выбор металла с повышенной стойкостью против таких разрушений. Это достигается либо повышением деформационной способности металла в области температур возможного возникновения трещин, либо обеспечением "залечивания" образующихся несплошностей подвижной жидкой фазой (легкоплавкими эвтектиками). Следует отметить, что увеличение содержания элемента в сплаве для повышения стойкости против образования трещин в шве (т.е. элемента, образующего легкоплавкую эвтектику) применимо далеко не всегда, так как такой сплав может обладать свойствами, недопустимыми с точки зрения эксплуатационных требований к конструкции. Например, при высоком содержании серы в стали можно исключить кристаллизационные трещины, но механические свойства таких швов окажутся весьма низкими.

Как технологический прием для исключения (ограничения) горячих трещин применяют предварительный подогрев (для низко и среднелегированных сталей), сварку на жестких режимах (для аустенитных сталей), а также выбирают режимы, обеспечивающие благоприятную форму шва, т.е. соотношение ширины и глубины шва (слоя шва). Так, при одном и том же составе металла швы с глубоким проплавлением при малой ширине (т.е. при малом значении b/h; рисунок а, более склонны к горячим трещинам, чем швы с отношением b/h = 1,5-3 – рисунок б).

Трещины в швах

Для оценки склонности металла швов к образованию горячих трещин существует ряд проб и методик. Технологические пробы основаны главным образом на установлении сравнительных характеристик по сопротивляемости металла швов, выполненных различными сварочными материалами в сопоставимых условиях (размеры и формы образца, режимы сварки и пр.). Количественные, методики основаны на получении при испытаниях сравнительных численных показателей сопротивляемости (или склонности) металла швов к образованию горячих трещин. Они осуществляются в виде серии испытаний с получением численного показателя стойкости, обычно скорости дополнительного принудительного деформирования свариваемого образца в период кристаллизации определенного участка сварочной ванны и последующего охлаждения.

Холодные трещины

В сварных соединениях как в металле сварных швов, так и в околошовных зонах ряда металлов образуются так называемые холодные трещины. Свое наименование они получили в связи с тем, что начало их появления фиксируется либо при относительно умеренных температурах (значительно более низких, чем температуры горячей обработки), либо при комнатной и более низкой температурах.

Наиболее типичными холодными трещинами в сварных соединениях являются поперечные трещины в металле швов, поперечные трещины вблизи границы сплавления в околошовной зоне, а также трещины, параллельные границе сплавления, так называемые отколы.

Обычно холодные трещины образуются в металле с недостаточно высокой деформационной способностью, особенно границ зерен, вызываемой закалкой и пластической деформацией при неравномерном охлаждении и фазовых превращениях. Холодные трещины образуются либо в процессе завершения охлаждения сварного соединения, либо через некоторое время после полного охлаждения (замедленное разрушение).

Образование холодных трещин в процессе продолжающегося охлаждения определяется накоплением пластических деформаций в связи с изменением размеров и формы неравномерно охлаждающегося свариваемого изделия.

Замедленные разрушения связаны с длительным действием поля собственных (сварочных) или создаваемых внешними силами напряжений такой величины, при которой продолжается процесс деформирования, хотя бы с весьма малыми скоростями. В случае наличия закаленного металла сопротивление деформации зерен (например, при мартенситной структуре) весьма значительно. Деформация в этом случае происходит только за счет менее упорядоченных границ зерен (зон металла, прилегающих к границам), главным образом за счет их сдвига. Сдвиги по границам, расположенным параллельно или под углом к направлению действия сил растяжения, приводят к концентрации напряжений (и стоку несовершенств кристаллического строения, дислокации) к границам зерен, расположенным перпендикулярно к растягивающим силам. Эта концентрация напряжений и ослабление таких границ скоплением несовершенств строения приводят к зарождению разрушения, наиболее вероятного в стыке границ этих зерен. Под действием напряжений эти микроразрушения развиваются в трещины, распространяющиеся уже в основном по телу зерен, хотя для некоторых сплавов, когда, например, этот процесс сопровождается и другими (старение и пр.), трещина и далее, после зарождения, распространяется в основном по границам зерен.

Наиболее характерными температурами возникновения холодных трещин при сварке закаливающихся сталей являются температуры, при которых уже произошел распад основной части аустенита, но может продолжаться распад остаточного аустенита. Обычно такими температурами являются 120°С и более низкие. Часто трещины образуются уже при комнатных температурах спустя некоторое время после окончания сварки (десятки минут, часы, а иногда и через более длительные промежутки времени).

В закаливающихся сталях образование ряда холодных трещин связано как с получением структур с низкими пластическими свойствами металла, так и с влиянием водорода, растворяющегося при сварке в жидком металле и затем поступающего и в околошовную зону.

Рассмотрим в этом отношении поведение водорода и его влияние на свойства стали при комнатной температуре. Водород, растворенный в металле либо в виде атомарного (Н), либо в виде протона (ТГ), имея весьма малую величину частицы, легко диффундирует в железе не только при высоких температурах, но и при комнатных. В связи с высокой концентрацией в металле шва, иногда значительно превышающей равновесную растворимость, водород диффузионно распространяется в области с его меньшей концентрацией. Такими областями являются наружная поверхность шва (с которой происходит удаление водорода в воздух), околошовная зона и далее основной металл, а также различные несплошности в металле (поры, пустоты и локальные несовершенства кристаллического строения металла). В результате такого перемещения водорода его общее количество в зоне термического влияния в определенных условиях может увеличиваться или уменьшаться в зависимости от соотношения количества водорода, поступающего в нее в заданный отрезок времени из шва и удаляющегося из этой зоны в более глубокие слои основного металла. Одновременно часть водорода, поступающая в несплошности, ассоциируется в молекулы и перестает быть диффузионно-подвижной. Постепенно в таких несплошностях давление молекулярного водорода растет в связи с дальнейшим поступлением атомарного водорода и образованием новых молекул.

Методами борьбы с образованием холодных трещин при сварке закаливающихся сталей являются:

- уменьшение степени закалки металла при сварке;
- снижение содержания водорода в металле шва и околошовной зоне;
- снижение содержания водорода в околошовной зоне при металле шва, не склонном к образованию трещин.

Основным методом уменьшения возможности закаливаемости металла в сварном соединении, главным образом в околошовной зоне, является снижение скорости охлаждения после сварки, достигаемое практически либо увеличением погонной энергии при сварке, либо предварительным подогревом изделия. Увеличение погонной энергии при сварке, допустимо только в ограниченных пределах. Поэтому основным способом, радикально влияющим на изменение (уменьшение) скорости охлаждения металла при сварке, является предварительный подогрев свариваемого изделия.

Читайте также: