Нанесение алюминиевого покрытия на металл

Обновлено: 22.01.2025

По данным различных исследований, алюминиевое покрытие примерно в б раз устойчивее цинкового при одинаковом весе и в 2,5 раза — при одинаковой толщине. Существует несколько методов нанесения алюминиевых покрытий на сталь: плакирование, термическое разложение алюминиевоорганических соединений, распыление, электроосаждение из органических электролитов, вакуумное напыление, погружение в расплавленный металл и в последнее время электрофорез. Из всех этих методов погружение в расплавленный металл получило в США промышленное применение в тридцатые годы текущего столетия и в настоящее время достигло внушительных размеров. Этот метод используют для покрытия листов достаточной ширины, а также для покрытия других изделий. Основные затруднения на пути развития горячего алюминирования — окисление стали и расплавленного алюминия, а также образование хрупкого соединения FeAl3 при повышенной температуре. И то, и другое препятствует адгезии покрытия к основному металлу (табл.35).

Температура алюминиевой ванны не должна значительно превышать температуру плавления алюминия. Оптимальной является температура 700—750° С.

При определенной температуре весь алюминий связывается в хрупкий интерметаллид FeAl3, резко снижающий механические свойства покрытых изделий; по этой причине время выдержки и температура расплава должны быть строго ограничены.

Кремний в количестве 0,3%, а также фосфор, титан, марганец, сурьма в стали приводят к языкоподобным образованиям в промежуточном сплаве. Большое количество фосфора и серы заметно повышают хрупкость промежуточного сплава.

Для ограничения скорости диффузии алюминия в железо вводят легирующие элементы, растворимые в твердом состояний в алюминии. Наиболее дешевым элементом является кремний; 2—6% Si существенно снижают температуру ванны, тем самым уменьшая скорость диффузии, а промежуточный слой делается ровным и равномерным, в то время как покрытие чистым алюминием имеет «разорванный» фронт.

При содержании в ванне 0,75—6% Si толщина промежуточного слоя уменьшается на 40—75%. При длительном воздействии атмосферы покрытия из сплава темнеют, но стойкость их против коррозии снижается мало.

Бериллий (0,6%) снижает толщину промежуточного -сплава на 80% и не ухудшает коррозионную стойкость покрытия. Пластичность при таком содержании бериллия существенно повышается (на 38%). На практике в ванну добавляют 2—6% Si, что позволяет получать алюминированное железо, способное деформироваться в значительно большей степени, чем покрытия из чистого алюминия. При введении 6% Si микротвердость снижается с 900 (без легирующих добавок) до 340 кгс/мм 2 .

Покрытие Al—Si (2—6% Si) стойко до температуры 480° С; при более высокой температуре оно постепенно приобретает темно-серый цвет, но сохраняет высокую стойкость против окисления. В присутствии кремния обычно получают покрытия толщиной 25 мкм; из чистого алюминия получают покрытие толщиной 50 мкм.

Особенности гальванического меднения алюминиевых сплавов Текст научной статьи по специальности «Технологии материалов»

МЕДНОЕ ГАЛЬВАНИЧЕСКОЕ ПОКРЫТИЕ / КАТОДНАЯ ПОЛЯРИЗАЦИЯ / АДГЕЗИЯ ПОКРЫТИЯ С ОСНОВОЙ / КАЧЕСТВО ПОКРЫТИЯ / ЭЛЕКТРОЛИТЫ МЕДНЕНИЯ / COPPER PLATING / CATHODIC POLARIZATION / ADHESION OF THE COVERING WITH BASE / THE QUALITY OF COVERING / COPPER PLATING ELECTROLYTES

Аннотация научной статьи по технологиям материалов, автор научной работы — Девяткина Т. И., Маркова Т. В., Рогожин В. В., Михаленко М. Г.

Разработана технология нанесения медного гальванического покрытия на анодированные алюминиевые сплавы. Установлено, что процесс катодного восстановления меди на анодированной поверхности протекает с высокой катодной поляризацией , локально и для прокрытия всей поверхности требуется значительное время. Предложены пути интенсификации данного процесса. Покрытие, полученное по данной технологии, обладает высокой адгезией к поверхности деталей без дополнительной термообработки.

Похожие темы научных работ по технологиям материалов , автор научной работы — Девяткина Т. И., Маркова Т. В., Рогожин В. В., Михаленко М. Г.

FEATURES OF GALVANIC COPPER PLATING OF ALUMINUM ALLOYS

Purpose: Development of applying copper plating on anodized aluminum alloys with a high adhesion. Design/methology/approach: Processing of aluminum alloys in a mixture of acidity and then copper plating in a sulfuric electrolyte are made. Findings: Found that the process of cathodic recovery copper on anodized surface proceeds with a high cathodic polarization , locally and to cover the entire surface requires a considerable time. Ways of intensification of the process are proposed. The coating obtained using this technology has a high adhesion to the surface of parts without further heat treatment.

Текст научной работы на тему «Особенности гальванического меднения алюминиевых сплавов»

Т.И. Девяткина, Т.В. Маркова, В.В. Рогожин, М.Г. Михаленко ОСОБЕННОСТИ ГАЛЬВАНИЧЕСКОГО МЕДНЕНИЯ АЛЮМИНИЕВЫХ СПЛАВОВ

Нижегородский государственный технический университет им. Р.Е. Алексеева

Разработана технология нанесения медного гальванического покрытия на анодированные алюминиевые сплавы. Установлено, что процесс катодного восстановления меди на анодированной поверхности протекает с высокой катодной поляризацией, локально и для прокрытия всей поверхности требуется значительное время. Предложены пути интенсификации данного процесса. Покрытие, полученное по данной технологии, обладает высокой адгезией к поверхности деталей без дополнительной термообработки.

Ключевые слова: медное гальваническое покрытие, катодная поляризация, адгезия покрытия с основой, качество покрытия, электролиты меднения.

Алюминиевые сплавы являются основным конструкционным материалом в авиации, автомобилестроении, электротехнической промышленности. Сейчас наблюдается тенденция к расширению области применения их и в других отраслях: жилищном строительстве, приборостроении, в производстве наземного транспорта и др. Этому способствует нанесение на алюминиевые изделия различных гальванических покрытий. Наиболее часто применяется процесс осаждения медного покрытия. Медь является относительно недорогим металлом, и благодаря ее физико-химическим свойствам медные покрытия могут применяться для различных целей.

Однако существуют специфические трудности нанесения гальванических покрытий на алюминий и его сплавы, связанные с наличием на их поверхности естественной оксидной пленки, препятствующей прочному сцеплению между основой и покрытием. Кроме того, сильно электроотрицательный потенциал алюминия (в особенности, после удаления с него оксидной пленки) приводит к контактному выделению металлов с более положительной величиной потенциала до начала прохождения тока через раствор электролита, что также ухудшает сцепление между покрытием и основой.

Преодоление указанных трудностей достигается специальными методами подготовки поверхности покрываемых изделий, обеспечивающих достаточно высокую адгезию покрытия с основой. Наиболее эффективным методом подготовки поверхности является анодирование. В работе [1] показано, что с целью получения качественного медного покрытия на алюминиевых сплавах с высокой адгезией и заданными функциональными свойствами подготовку поверхности алюминиевых изделий рекомендуется проводить в смеси кислот (серной и орто-фосфорной).

Согласно [2] последующее меднение рекомендуется проводить в пирофосфатных электролитах. Известен способ нанесения медного гальванического покрытия на алюминий и его сплавы без анодирования из электролита, имеющего следующий состав (г/л):

CuSO4 • 5H2O - 45-55; Na4P2O7 -10H2O- 200-240; KNO2 - 10-15;

рабочая температура, оС - 55-65.

Данный способ отличается тем, что предварительно проводят выдержку деталей в данном электролите в течение 1-3 мин, на первой стадии электролиза слой меди наносят при плотности тока 0,2-0,4 А/дм2, а на второй стадии при плотности тока 0,3-1 А/дм2 [3]. Применение данного метода не представляется возможным, так как отсутствуют данные об адгезии медного покрытия с основой детали и о прокрытии всей поверхности, кроме того, его применение в производстве сопряжено со значительными техническими трудностями.

© Девяткина Т.И., Маркова Т.В., Рогожин В.В., Михаленко М.Г., 2013.

Известен электролит [4], позволяющий непосредственно получать медные покрытия на алюминии и его сплавах с меньшей пористостью и обладающие большей прокрываемо-стью сложнопрофилированных деталей. В своем составе он содержит (г/л):

СиБ04 • 5Н20 - 45-120; Ка4?20? •1ОН2О- 200-550; продукт конденсации щавелевой кислоты и этиленгликоля - 15-25 мл/л;

рабочая температура, оС - 60; рН -7,8; рабочая плотность тока 0,05-4,0 А/дм2'

Однако такой электролит достаточно сложен в приготовлении, требует точного поддержания рН раствора и температуры, а также не приводятся сведения об адгезии покрытия с поверхностью деталей.

Однако все щелочные электролиты, к которым относятся и пирофосфатные, несмотря на хорошее качество получаемых медных покрытий, обладают существенным недостатком -многокомпонентность и, соответственно, большей стоимостью процесса. Кроме того, щелочные электролиты имеют сравнительно низкие катодные выхода по току по сравнению с кислыми электролитами. Это приводит к значительному увеличению времени осаждения медного покрытия на деталь. Наряду с этим, в данных электролитах в значительной мере анодированный алюминий и его сплавы подвергаются существенному коррозионному растворению.

Среди кислых электролитов (сернокислые, борфтористоводородные, кремнефтористо-водородные) наиболее широкое распространение получили сернокислые электролиты, отличающиеся простотой состава, устойчивостью и высоким выходом по току (до 100%). Недостатком этих электролитов является невозможность непосредственного покрытия деталей из стали, алюминия, цинка вследствие контактного выделения меди, имеющей плохое сцепление с основным металлом [5]. В простейшем своем виде он состоит всего из двух компонентов. Для него приняты следующие состав (г/л) и режим осаждения:

рабочая температура, оС - 15-25; плотность тока]к, А/дм2 - 1-2; выход по току Втк, % - 95-98.

При перемешивании электролита сжатым воздухом или его циркуляции с непрерывным фильтрованием катодную плотность тока можно повысить до 6-8А/дм . Наличие серной кислоты и спирта в этом электролите имеет весьма важное значение для нормального ведения процесса электролиза. Они предотвращают гидролиз медных закисных солей, снижая омическое сопротивление электролита. Наличие кислоты в электролите уменьшает активную концентрацию ионов меди, что способствует мелкозернистости покрытия и дает возможность применять высокие плотности тока. К достоинствам этого электролита можно отнести и простоту анализа его состава. Главными недостатками других электролитов являются многоком-понентность и достаточно высокая стоимость.

Анализируя изложенное, делаем вывод, что для нанесения медного покрытия целесообразно использовать стандартный сернокислый электролит меднения. Покрытия, полученные из этого электролита, обладают следующими достоинствами: высокая прочность, высокая твердость, низкое электрическое сопротивление, низкие внутренние напряжения, хороший блеск, высокая термопрочность [6].

Установлено, что качество гальванопокрытия, в частности его адгезия с основой детали, зависит от предварительной подготовки поверхности основы. Ранее было выявлено [1], что оптимальной подготовкой поверхности является процесс анодирования алюминия и его сплавов в смеси ортофосфорной и серной кислот, позволяющий получить пористую плёнку необходимой толщины. После тщательной промывки образцы подвергались меднению в стандартном сернокислом электролите. Первые слои осаждающегося металла имеют темный и даже чёрный цвет. Это объясняется тем, что в порах пленки осаждаются тонкодисперсные волокна, которые далее срастаются между собой, перебрасывая мостки через плёнку. То об-

стоятельство, что сама плёнка прочно сцеплена с основой, также обеспечивает прочное сцепление гальванического покрытия [2].

При нанесении медного покрытия были получены следующие результаты (табл. 1).

Визуальная оценка качества медного покрытия

№ Электролит Электролит Режим Качество

анодирования и меднения меднения покрытия

1 сернокислый Ук=1.5А/дм2, ¿=комн., т=27мин Непрокрытия по всей поверхности детали

2 15%Н2804 + +15%Н3РО4 сернокислый /к=0.8А/дм2, Матовое покрытие,

¿=комн., т=52 мин частичное непрокрытие в труднодоступных местах

3 .¡а=2 A/дм2, t=комн., 1.^04+^ 1/к=1.5А/дм2 ¿=комн.,

т=5 мин 2.сернокислый т=3мин. 2/к=1.5А/дм2 ¿=комн., т=24 мин Полублестящее мелкокристаллическое покрытие, непрокрытий нет

Для нанесения покрытий требуемой толщины 9 мкм при такой плотности тока необходимое время процесса составляет 52 мин. Столь длительное время связано со значительными затруднениями при осаждении меди на оксидную пленку. Этот процесс характеризуется высокой поляризацией. На катодах с анодносформированными пленками весь процесс восстановления меди можно подразделить на два периода: начальный, когда медь осаждается по поверхности оксид, и основной, когда медь осаждается на образовавшемся слое меди. В начальный момент времени (1-25 мин) осаждение меди на анодированную поверхность носит локальный характер (протекает только в порах пленки, где толщина оксидного слоя минимальна), и только к 30-й минуте она практически покрыта полностью. Спустя 30-35 минут начинается второй этап - осаждение меди на медь, которое протекает без особых затруднений. Установлено, что в значительной мере уменьшить время меднения можно нанесением подслоя меди, создающего на поверхности анодированного катода сплошную пленку. Наличие такой пленки позволяет сократить время начального периода осаждения меди.

Известен способ меднения алюминия, позволяющий создать такую пленку. Авторами [7] был предложен модифицированный сернокислый электролит, содержащий в своем составе помимо основных компонентов, фтористый аммоний в количестве 1,2-11 г/л, введение которого предусмотрено непосредственно только в процессе покрытия. Положительный эффект от введения этой добавки заключается в более равномерном покрытии поверхности детали. Такой подслой можно получить и из электролита, содержащего фтористоводородную кислоту, которая, по нашему мнению, является одновременно и активатором оксидной пленки, при этом данный электролит

имеет более высокую рассеивающую способность (табл. 2). Преимущество этого электролита состоит и в том, что он не требует постоянной корректировки. Такая технология применяется при меднении титана и его сплавов [5]. Состав этого электролита следующий:

СиБО^ 5Н20 - 250 г/л; ^04 - 50 г/л; ОТ - 50 г/л; - 1-2 А/дм2; т - 2-3мин; температура комнатная.

Рис. 1. Осадки меди, осажденные на оксидной пленке при катодной плотности тока 0.8А/дм сформированной в смеси кислот при комнатной температуре в различное время:

а - 5 мин; б - 13 мин; в - 26мин; г - 39 мин; д - 52 мин

Однако использование такого стандартного электролита в качестве подслоя привело к тому, что при отжиге алюминиевых деталей в вакуумной печи произошло отслаивание покрытия от основы. Это объясняется высокой концентрацией плавиковой кислоты в электролите и может быть устранено снижением ее до 10-15 г/л [8]. Применение данного электролита в качестве подслоя позволило получить равномерное покрытие по всей поверхности детали, так как его рассеивающая способность превышает примерно в три раза РС сернокислого электролита (табл. 2). Как показали исследования, создать сплошную катодную пленку в присутствии плавиковой кислоты можно за 3 мин по сравнению с меднением в стандартном сернокислом электролите (рис. 2).

Рассеивающая способность электролитов меднения

Режимы анодной обработки и составы электролитов Состав электролитов меднения Катодная плотность тока, А/дм2 РС, %

15%Н2SO4+15%Н3РО4 )а=2 A/дм2, 1= комн, т=5 мин CuSO4• 5H2O - 200-250 г/л; H2SO4 - 50 г/л; ОТ - 10-15 г/л; 1.5 19.76

CuSO4• 5H2O - 200-250 г/л; H2SO4 -50-70 г/л; C2H5OH - 7-10 мл/л 1.5 9.27

Рис. 2. Осадки меди, полученные в различных электролитах на оксидной пленке, сформированной в смеси кислот за 3 минуты при катодной плотности тока 1,5 А/дм2:

а - сернокислый электролит; б - сернокислый электролит с добавлением HF

Исследование влияния плавиковой кислоты на процесс меднения производилось снятием потенциодинамических кривых. На рис. 3 представлены катодные поляризационные кривые электродов из алюминиевых сплавов, анодированных в смеси кислот и пере-

считанные на геометрическую площадь поверхности образцов. Показано, что начальный этап меднения в стандартном сернокислом электролите имеет затруднения, связанные с высоким перенапряжением осаждения меди на данную поверхность. Такой недостаток устраняется в значительной мере при использовании электролита, содержащего плавиковую кислоту. В присутствии плавиковой кислоты в растворе меднения наблюдается быстрый рост тока, что свидетельствует об образовании сплошной катодной пленки на всей поверхности анодированного алюминия. Это предположение согласуется с экспериментальными данными. Очевидно, что низкие плотности тока при меднении анодированного алюминия в сернокислом электролите объясняются затруднением процесса образования центров кристаллизации вследствие плотной оксидной пленки и ее низкой активности. В случае применения ИБ в электролите меднения количество этих центров значительно возрастает (рис. 2), т.е. образуется сплошная катодная пленка из осажденной меди. По нашему мнению, это связано с равномерным активированием ионами фтора всей поверхности анодированного алюминия.

Рис. 3. Поляризационные кривые для алюминиевого катода в сернокислом электролите меднения:

1 - сернокислый электролит с добавлением ИБ; 2 - стандартный сернокислый электролит

Выявлено (рис. 4), что в начальный момент времени, при погружении оксидированных образцов в стандартный сернокислый электролит, на поверхности деталей наблюдается незначительное снижение потенциала (примерно на 0,5В) вследствие изменения состава пленки из-за контактного обмена. Далее величина потенциала остается почти постоянной. Аналогичная зависимость наблюдается и в электролите с добавкой плавиковой кислоты. Однако в этом случае величина потенциала снижается примерно на 2.5 вольта, что подтверждается образованием сплошной медной пленки на поверхности детали. Использование электролита с добавкой плавиковой кислоты в качестве подслоя оказало положительное влияние на весь процесс меднения. Покрытие, полученное по данной методике, обладает мелкокристаллической структурой, гладкостью и равномерностью.

Рис. 4. Изменение во времени потенциала алюминиевого катода с анодными пленками при осаждении меди из сернокислого электролита меднения и в электролите с добавкой НЕ приуй=1,5 А/дм2:

Полученное по предложенной технологической схеме гальваническое медное покрытие было исследовано на адгезию тремя методами: методом крацевания, методом сеток и отжигом в вакуумной печи при температуре 2000С. У всех 15 образцов при этом отслоения покрытий не наблюдалось. Таким образом, использование двухстадийного меднения позволяет получить медное покрытие на алюминиевые детали, имеющее требуемые характеристики при эксплуатации и высокую степень адгезии с поверхностью без дополнительной термообработки, что в значительной мере позволяет сократить время технологического процесса.

1. Девяткина, Т.И. Нанесение медного гальванического покрытия на детали из алюминия и его сплавов / Т.И. Девяткина [и др.] // Будущее технической науки: сб. мат. XI Междунар. научно-техн. конф. 2012. С. 297.

2. Лайнер, В.И. Гальванические покрытия легких сплавов / В.И. Лайнер. — М.: Металлургиздат, 1959. —138 с.

3. Пат. № 2214483 от 20.07.2003 Способ меднения алюминия / Лукомский Ю.Я., Румянцев Е.М., Зеленюк Ю.И., Манукян А.С., Невский О.И., Колодько Г.Н., Грибков М.А.; заявка от 30.01.2002.

4. Заявка № 94027801/02 от 25.07.1994 Электролит для меднения алюминия и его сплавов / Кольчугин А.В., Ополовников В.Р., Прияткин Г.М., Васильев В.В.

5. Ямпольский, А.М. Меднение и никелирование. / А.М. Ямпольский.— Л.: Машиностроение, 1977. — 102с.

6. Гальванические покрытия в машиностроении: справочник / под ред. М.А. Шлугера. Т. 1,2. — М.: Машиностроение. 1985. - 246 с.

7. Заявка № 95115302/02 от 27.07.1997 Электролит контактного меднения алюминия / Уварова Г.А., Свечина Н.Н., Цветков В.В.

8. Попилов, Л.Я. Советы заводскому технологу / Л.Я. Попилов. — Л.: Лениздат, 1975. - 264 с.

Дата поступления в редакцию 26.04.2013

T.I. Devyatkina, T.V. Markova, V.V. Rogozhin, M.G. Mikhalenko FEATURES OF GALVANIC COPPER PLATING OF ALUMINUM ALLOYS

Nizhny Novgorod State technical university n.a. R.Y. Alexeev

Purpose: Development of applying copper plating on anodized aluminum alloys with a high adhesion. Design/methology/approach: Processing of aluminum alloys in a mixture of acidity and then copper plating in a sulfuric electrolyte are made.

Findings: Found that the process of cathodic recovery copper on anodized surface proceeds with a high cathodic polarization, locally and to cover the entire surface requires a considerable time. Ways of intensification of the process are proposed.

The coating obtained using this technology has a high adhesion to the surface of parts without further heat treatment.

Key words: copper plating, cathodic polarization, adhesion of the covering with base, the quality of covering, copper plating electrolytes.

Защита алюминия покрытиями

Ранее алюминиевые сплавы в зависимости от их способности подвергаться коррозионному растрескиванию и расслаивающей коррозии, были разделены на три основные группы. В зависимости от особенностей сплавов, входящих в ту или иную группу, системы покрытий также следует разделять на три группы.

Первая группа, включающая наиболее универсальную схему защиты, может быть применена для стойких сплавов (первая группа) и некоторых состояний сплавов третьей группы, имеющих повышенные коррозионные свойства в тех случаях, когда нет значительных циклических нагрузок. В данном случае можно применять защитно-декоративное анодное оксидирование (анодирование), лакокрасочные покрытия, а также комплексные покрытия, состоящие из анодно-оксидной пленки с последующим нанесением на нее лаковых или эмалевых покрытий. Одной из самых простых схем в этом случае является защитно-декоративное анодирование как бесцветное, так и цветное. В первом случае долговечность покрытия определяется главным образом сопротивлением коррозии, во втором еще и светостойкостью. При отсутствии воздействия ультрафиолетовых лучей, т. е. для внутренней отделки (поверхности внутри помещений), может быть использована обычная система адсорбционного окрашивания анодно-оксидной пленки органическими красителями. Гамма цветов при этом достаточно широка.

В настоящее время существуют компании, которые специализируются на нанесении защитных покрытий, так например анодирование алюминия в Москве с неизменным качеством осуществляет компания "Гальваника".

Для конструкций, эксплуатирующихся в открытой атмосфере, использование даже лучших органических цветных красителей в сочетании с прогрессивными технологическими процессами анодирования не позволяет получить долговечность более десяти лет. Для современных конструкций, например строительных, необходимо обеспечить по крайней мере 20-30 лет эксплуатации без полного обновления облицовки. В этих случаях следует применять анодирование с самоокрашиванием, анодирование с электролитическим окрашиванием и частично с окрашиванием красителями. Из красителей, обеспечивающих требуемую светостойкость, получили распространение неорганические для окраски в бронзовый и золотые тона и органический краситель черный светопрочный. Цвет защитно-декоративных анодно-оксидных пленок, полученных по методу самоокрашивания, зависит от толщины пленки. Для тонких пленок, т. е. для пленок светлых тонов (в интервале цветов золотистый - темно-бронзовый) иногда требуется дополнительная защита полимерными лаками, в то время как для пленок темных тонов дополнительная защита не обязательна. Используя сочетание обычных методов бесцветного анодирования с процессами самоокрашивания можно получить и оксидные пленки светлых тонов достаточной толщины с высокой коррозионной стойкостью.

Покрытия второй группы используют для деталей, подвергаемых значительным циклическим нагрузкам. Они распространяются на стойкие сплавы первой и третьей групп, а также на те состояния сплавов второй группы, которые обеспечивают высокое сопротивление как коррозионному растрескиванию, так и расслаивающей корозии. Для этого класса применяют лакокрасочные и полимерные покрытия; во многих случаях целесообразно полностью исключить подготовку поверхности обычными методами анодного оксидирования, когда толщина пленки превышает 3 мкм. Это связано с тем, что на поверхности образцов, анодированных в сернокислотном электролите, на толщину 10 мкм, трещины появляются при угле загиба всего лишь 4°; при уменьшении толщины сернокислотной пленки до 5 мкм трещины образуются при угле загиба 30°. В этих же условиях возникают трещины и в пленке, полученной в хромовокислом электролите, но их число меньше. На поверхности материалов с конверсионными хроматно-фосфатными пленками, особенно при толщине 0,1-0,3 мкм, и с анодно-оксидной толщиной 0,05-0,15 мкм трещины не наблюдаются даже при загибе на 180°. Как видно из табл. 78, анодное оксидирование заметно снижает усталостную выносливость.


Для пленки, полученной в хромовокислом электролите, этот эффект несколько меньше при малых значениях механических напряжений. Имеются сведения о положительном влиянии анодно-оксидных пленок на предел выносливости сплавов. При этом авторы исходили из того, что в анодно-оксидной пленке возникают сжимающие напряжения. Поэтому, если уменьшить величину напряжений (например, путем добавок в раствор анодирования или другими технологическими приемами), то проявляется положительный эффект, аналогичный эффекту поверхностной пластической деформации при обкатке роликами или дробеструйной обработке.

Эксперименты, однако, показали, что наибольшее влияние оказывает неоднородный рельеф пленки, способствующий концентрации напряжений. Поэтому и предел выносливости, хотя и в меньшей степени, чем сопротивление усталости при повышенных значениях напряжений на ограниченной базе, но понижается. Примером могут служить результаты испытаний анодированных образцов сплава В95Т1, изготовленные из прессованного полуфабриката (рис. 98).


Как видно из рис. 98, травление в щелочи снижает предел выносливости на 40%. Если теперь за исходное взять значение предела выносливости травленого образца, то анодирование на 3; 5; 10 мкм уменьшает его на 10, 30, 40 % соответственно. Отрицательное влияние анодно-оксидной пленки толщиной более 3 мкм проявляется и при нанесении лакокрасочного покрытия. Возникновение трещин в оксидной пленке снижает адгезию лакокрасочного покрытия и коррозионную стойкость в этих местах.

Трещины в анодно-оксидной пленке появляются в результате преобразования ее структуры под влиянием нагревов. Такие трещины также приводят к образованию коррозионных точек вследствие нарушения адгезии.

Тонкослойные методы подготовки поверхности под лакокрасочное покрытие имеют преимущество перед обычными анодно-оксидными. Они позволяют не только устранить понижение усталостной прочности, но и повысить адгезию - один из главных показателей, определяющих коррозионную стойкость. Ниже приведены значения адгезии для различных видов обработки поверхности, г/см:


Третью группу покрытий целесообразно применять для второй и третьей групп сплавов, если последние обладают чувствительностью к расслаивающей коррозии или коррозионному растрескиванию. От этих видов коррозионного поражения не удается защитить алюминиевые сплавы лакокрасочными и полимерными пленками. Необходимо использовать металлические покрытия в виде плакирующих или термодиффузионных слоев, обеспечивающих электрохимическую защиту. Еще более эффективна комплексная защита, в которой металлическое покрытие дополнительно защищено лакокрасочным слоем. Из табл.79 видно, что в агрессивной среде для сплава системы А1-Сu-Мп (1201) даже плакирование алюминием с добавкой цинка (АЦпл) не обеспечивает полной защиты от межкристаллитного питтинга.


Технический алюминий в качестве плакирования мало эффективен. Ненамного отличается от него алюминий высокой чистоты. Однако специальный сплав АЦ2 практически полностью защищает основу, при этом он и сам подвергается коррозии заметно меньше, чем другие сплавы, указанные в табл. 83. Это обусловлено изменением (вследствие специального легирования) электрофизических свойств поверхностной пленки, резко снижающим процесс саморастворения плакирующего слоя.

Эффект анодной защиты проявляется заметнее в том случае, когда покрытия третьей группы используют в целях предупреждения сквозной питтинговой коррозии тонкостенных оболочек. Это связано с тем, что при сдвиге потенциала в пассивную область питтинг на алюминиевых сплавах не возникает (табл. 80).


Если контактную пару металл - покрытие подобрать таким образом, чтобы ее потенциал был в пассивной области для обоих контактирующих материалов, вероятность образования и развития питтинга существенно снижается.

Для защиты от расслаивающей коррозии и коррозионного растрескивания недостаточно контролировать только электродный потенциал, поскольку при определенной степени пассивации чувствительность к этим видам коррозии усиливается. В этих случаях, согласно кинетике электрохимических реакций, металлическое покрытие на алюминиевых сплавах для достаточной защиты должно в контакте с основой обеспечивать ток, несколько превышающий по значению предельный диффузионный ток (рис. 99).

Оценка эффективности плакирования по электрохимическим характеристикам совпадает с результатами испытаний на расслаивающую коррозию и коррозионное растрескивание. Например, испытания тонкого листа из сплава Д16 со снятой плакировкой показали, что образцы в виде «петель» в среднем разрушаются за 20 дней, а в четырехточечном приспособлении - за 50 дней. Плакированные образцы не разрушаются в течение года и более.


Аналогичная картина наблюдается и для сплавов; АК4-1 и 1201 при плакировании сплавом АЦпл. В то же время при плакировании алюминием АД1 образцы разрушаются, хотя и за более значительное время, чем без плакирования. Плакирование сплавами АД1, АЦпл, АЦ2 хотя и обеспечивает заметный защитный эффект, но понижает механическую и особенно усталостную прочность. Однако применение сплава П35-3 позволяет одновременно повышать предел усталости (практически без снижения уровня временного сопротивления) и достигать более значительной эффективности электрохимической защиты по сравнению со сплавом АЦпл. В США аналогичные сплавы 7008, 7011 также используются для защиты проката из сплава В95 (7075) с целью увеличения сопротивления усталости.

Метод электрохимической защиты металлическим покрытием оказался пригодным и для сварных соединений. Так, сварные соединения из сплава 1201, выполненные из листов со снятым плакирующим слоем, в испытаниях с заданной растягивающей нагрузкой при переменном погружении в 3 %-ный раствор NaCl интенсивно разрушались при напряжениии выше 140 МПа. Разрушение плакированных образцов в тех же условиях наблюдалось только при напряжениях выше 240 МПа.

Представляет большой интерес электрохимическая защита сварных соединений из сплавов системы А1- Zn-Mg. Образцы сплава (4,2 % Zn; 1,8 % Mg; 0,3 % Mn; 0,15 % Cr; 0,18 % Zr), защищенные как плакированием, так и напылением сплава П35-3, при испытании в течение 6 мес в морской тропической атмосфере не проявили чувствительности к расслаивающей коррозии. Они также не разрушались при испытании на коррозионное растрескивание в течение года в 3 %-ном растворе NaCl (табл. 81).

Автор: Администрация

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Алюминирование

Защитные покрытия из алюминия наносят различными способами на углеродистую и коррозионностойкую сталь, на чугунное литье, а также на медь, титан и латунь. Алюминием покрывают полосы, листы, проволоку, трубы и штучные изделия преимущественно из стали. По масштабам применения важнейшим способом является покрытие погружением малоуглеродистой стальной полосы. В последние годы этот способ получил очень широкое распространение в отдельных странах благодаря пуску современных агрегатов горячего алюминирования (объем производства 1 млн. т в год, толщина полосы 0,4— 2,0 мм, ширина до 1500 мм).

Благодаря особым свойствам горячеалюминированных листов такой способ является ценным дополнением горячего цинкования. Очевидно, что народнохозяйственное значение горячеалюминированной стали еще не полностью выявлено.

Горячеалюминированная сталь обладает более высокой коррозионной стойкостью по сравнению с горячеоцинкованной сталью в очень многих средах (рис. 4.41), характеризуется значительно лучшей жаростойкостью и окалиностойкостью, высокой отражательной способностью при отводе тепла излучением, безвредна для человека; термически обработанные детали имеют хорошую износостойкость.

Горячеалюминированные листы применяют в строительстве, при сооружении топочных устройств, в автомобилестроении, судостроении, химическом аппаратостроении, пищевой промышленности и сельском хозяйстве. В числе наиболее распространенных изделий можно назвать: глушители для автомобильных двигателей, обшивку стен, печи, трубопроводы, теплообменники.

4.4.1. ФОРМИРОВАНИЕ СЛОЯ ПРИ ГОРЯЧЕМ АЛЮМИНИРОВАНИИ СТАЛИ

Для горячего алюминирования справедливы те же зависимости. Поэтому имеется большое сходство с процессами и агрегатами, применяемыми для горячего цинкования.

При погружении стали в жидкий алюминий на ее поверхности в результате диффузионных процессов образуются соединения железо — алюминий в твердом состоянии. Этот слой сплава может состоять из фаз, перечисленных в табл. 4.8 (см. также диаграмму состояния системы Fe — А1), рост и расположение которых зависят от температуры и времени. Преобладающей составляющей является фаза Fe2Al5, скорость роста которой довольно велика (коэффициент диффузии D для алюминия в этой фазе в диапазоне температур 630—730 °С составляет от 0,15- 10 -5 до 2,7-10 -5 см 2 /с ). Поэтому температура ванны и полосы, а также

а — с чисто алюминиевым покрытием (температура ванны на 30 °С выше точки плавления, температура полосы 750 °С, продолжительность погружения 4,5 с); б — с покрытием типа AlSi8 (А1 + 8 % Si, температура ванны на 80 °С выше температуры ликвидуса сплава AlSi8; температура полосы 650 °С; продолжительность погружения 4 с); 1 — основной металл (железо): 2 — слой сплава; 3 — верхний слой покрытия

продолжительность погружения должны соответствовать нижнему технически возможному пределу. Уменьшение толщины возникшего диффузионного слоя уже невозможно (если не считать процессов деформации, при которых слой сплава разрывается.

Верхний алюминиевый слой возникает над слоем сплава при выходе стальной полосы из жидкой ванны алюминирования. Суммарный состав этого покрытия соответствует химическому составу ванны. В зависимости от легирования ванны и наличия в ней загрязнений могут появляться различные фазы.

После извлечения из ванны слой сплава может продолжать расти в зависимости от температуры и энтальпии покрываемого предмета, а также от интенсивности охлаждения.

4.4.2. ЗАВИСИМОСТИ ОТ ТЕМПЕРАТУРЫ И ВРЕМЕНИ

С увеличением температуры ванны толщина слоя сплава растет по степенному закону с показателем степени т > 1, а с увеличением продолжительности

погружения — по параболическому закону в зависимости от времени.

4.4.3. ВЛИЯНИЕ ЛЕГИРУЮЩИХ ДОБАВОК В ВАННУ АЛЮМИНИРОВАНИЯ

При большинстве способов алюминирования методом погружения в алюминиевый сплав кинетика диффузии, а следовательно, химический состав, морфология и рост фаз и слоев сплава существенно зависят от легирующих добавок, введенных в ванну. При горячем алюминировании большое промышленное значение имеет кремний, который добавляют в жидкий алюминий в количестве до 10%. Этим достигается резкое уменьшение роста слоя сплава и подавляется образование слоя сплава в виде язычков. С увеличением содержания кремния до 11,6 % температура солидуса ванны алюминирования снижается. Верхний слой покрытия состоит из фаз а-А1, А1—Fe — Si и Si, а слой сплава — из фаз Fe2Al5, FeAl3 и А1—Fe—Si.

4.4.4. МЕТОДЫ АЛЮМИНИРОВАНИЯ

Горячее алюминирование осуществляется с помощью периодических и непрерывных процессов. Если проводить классификацию процессов по требуемой предварительной обработке, то можно назвать следующие способы:

с нанесением и сушкой растворов флюса;

с применением расплавленных флюсов;

с предварительной обработкой в реакционном газе;

с предварительным нанесением какого-либо металлического покрытия, например кобальта, меди, олова, цинка (данные о промышленном применении таких процессов пока отсутствуют).

Горячеалюминированную стальную полосу получают по аналогии с процессом на современных агрегатах непрерывного действия с предварительной обработкой реакционным газом и с устройством для регулирования покрытия (воздушный нож). Пассивирование поверхности алюминия может быть обеспечено последующим хроматированием.

4.4.5. СВОЙСТВА ГОРЯЧЕАЛЮМИНИРОВАННОГО СТАЛЬНОГО ЛИСТА

Свойства горячеалюминированных стальных листов зависят от состава и структуры покрытия и марки стали полосы.

Слой покрытия на малоуглеродистой стальной полосе доходит до 100 мкм. Слой сплава имеет толщину до 60 мкм. Поэтому последующая обработка давлением возможна лишь в ограниченных пределах ввиду опасности отслоения покрытия. Однако коррозионная стойкость получается весьма высокой, равно как и окалиностойкость и жаростойкость, благодаря наличию проросшего слоя сплава железо — алюминий.

В ваннах алюминий — кремний (содержание кремния до 10 %, температура ванны около 680 °С, время погружения до 5 с) покрытие на малоуглеродистой стальной полосе, б) имеет толщину 25—40 мкм, а слой сплава — около 10 мкм. Ввиду меньшей толщины и твердости покрытия возможно проведение обычных операций обработки листа давлением.

Важнейшими процессами переработки горячеалюминированных стальных листов являются резка, вырубка, гибка, фальцовка, тиснение, профилирование, вытяжка и глубокая вытяжка, причем должны применяться листы из соответствующих сталей. Кроме того, возможно эмалирование. Способами соединения могут быть: соединение болтами, заклепочное, фальцовка, склеивание, сварка (точечная, рельефная, роликошовная, высокочастотная, неплавящимся вольфрамовым электродом в среде инертного газа И - плазменная).

5. осаждение покрытий из паровой фазы в вакууме

К способам нанесения покрытий из паровой фазы в вакууме относятся: катодное напыление; термическое напыление и ионное плакирование.

При катодном напылении скорость осаждения невелика. Способ применим только при нанесении покрытий на небольшую площадь в условиях периодического процесса. Ионное плакирование как сравнительно новый способ вакуумного нанесения покрытий находится пока на стадии разработки.

Важнейшим способом вакуумного нанесения покрытий является осаждение из паровой фазы в вакууме, при котором материал покрытия испаряется в вакууме и осаждается на материал подложки (имеющий гораздо более низкую температуру по сравнению с испаряемым материалом), где конденсируется и затвердевает. Материалы покрытий и подложек и возможности применения процессов осаждения из паровой фазы в вакууме (вакуумного напыления) могут быть весьма разнообразными.

Элементы, в первую очередь металлы: А1 (преобладает), Си, Ag, Cr, Ge, Se, Cd, Zn, Si, Ti, Rh, Pd, Ir, Pt, Mo, Та, W. Сплавы с учетом различного давления паров их компонентов, например Fe — Сг, Ni — Cr, Ni — Сг — Fe, латунь. Соединения, не подвергающиеся термической диссоциации, например А1203, SiO, Si02, фториды, различные полимеры и т. д.

Подложки (покрываемые материалы)

Листовая продукция (полоса) и фасонные изделия из металла (в первую очередь из стали), стекла, бумаги, ткани, пластмассы и керамика (подложки с высоким собственным давлением паров подвергаются предварительной обработке).

Оптика: зеркала и светофильтры.

Электроника: конструктивные элементы контактов, селеновые выпрямители, интегральные печатные схемы, изоляционные покрытия, проводящие покрытия в нагревателях, тонкие слои в блоках памяти, фольговые конденсаторы и т. д. Стекольная промышленность: стекло с теплоотражающими покрытиями. Упаковочная промышленность: напыление покрытий на фольгу с декоративными и упаковочными целями.

Ювелирная промышленность: декоративная отделка поверхности. Металлургия: нанесение покрытий на стальную полосу.

Наиболее производительным по скорости нанесения покрытия (толщине слоя за единицу времени) и по покрываемой площади является процесс непрерывного нанесения металлического покрытия на полосу, например осаждение алюминия из паровой фазы на стальную полосу. В последнее десятилетие этот процесс находит промышленное применение. Разработка крупнопромышленных процессов напыления алюминия на стальную полосу была ускорена все более широкой заменой белой жести другими упаковочными материалами, не содержащими олова; сравнительной простотой осаждения из газовой фазы таких металлов, как алюминий и титан, которые при гальванических способах нанесения или при погружении в расплав образуют слой толщиной 0,5—15 мкм, не пригодный для использования в качестве защитного; значительно меньшим загрязнением окружающей среды при способах нанесения покрытий из паровой фазы, чем при электролитических процессах (при которых требуются большие затраты на обработку сточных вод, образующихся в значительных количествах); возможностью достижения высокой скорости осаждения, например 50 мкм/с, на установках небольшой рабочей длины; разработкой высокопроизводительных и надежных в эксплуатации электронных пушек (генераторов электронного луча) для испарения трудно испаряющихся металлов.

С начала 60-х гг. в , СССР, США, Западной Европе и Японии ведутся проектно-конструкторские работы по напылению алюминия на стальную полосу; был пущен в эксплуатацию ряд лабораторных » опытных установок.

С 1971 г. стальная полоса с алюминиевым покрытием, нанесенным из паровой фазы, изготовляется в в промышленных масштабах и применяется в металлоперерабатывающей промышленности как заменитель белой жести .

Читайте также: