Наиболее часто применяемыми металлами высокой проводимости являются

Обновлено: 05.01.2025

Серебро применяется для изготовления неокисляющихся проводников электрических контактов ответственных приборов. Специальными методами из серебра изготовляют покрытия на меди, латуни и непроводящих материалах: керамике, стекле, полимерах.

Медь имеет широкое применение благодаря высокой проводимости, хорошим механическим характеристикам, более низкой по сравнению с серебром стоимости. Для защиты меди от окисления токоведущие элементы серебрят.

В отожженном виде медь (марки ММ) имеет более высокую проводимость, в нагартованном (марки МТ) — высокую прочность. Мягкую медь (марки МО, M1) при­меняют для изготовления жил обмоточных проводов. Медь марок М2, МЗ и М4 используют преимущественно для получения сплавов.

В изделиях с повышенными механическими характеристиками используют латуни, кадмиевые и бериллиевые бронзы.

Кадмиевую бронзу используют для изготовления троллей, скользящих контактов, мембран.

Латуни применяют для изготовления различных токопроводящих деталей.

Алюминий характеризуется достаточно высокой электропроводностью в сочетании с пластичностью и малой плотностью. Он более распространен в природе, чем медь, более стоек к коррозии. Промышленность выпускает сверхчистый алюминий марок А 999 и А 995, алюминий высокой чистоты марок А 99 и А 95. Их используют для изготовления электролитических конденсаторов, защитных кабельных оболочек. Из алюминия технических марок А85 и А7 изготавливают кабели, токопроводящие шины.

Для соединения алюминиевых проводов применяют специальные припои, разрушающие в месте контакта пленку окислов с высоким электрическим сопротивлением. В ряде случаев используют биметаллическую проволоку, состоящую из стальной сердцевины и медной или алюминиевой оболочки. Покрытие наносят гальваническим способом или плакированием.

Полупроводниковые материалы – это класс материалов с электронной проводимостью, характеризующихся большей удельной электропроводностью, чем металлы, но меньшей, чем диэлектрики. Для получения полупроводников с заданными удельными электросопротивлени-ем и типом проводимости осуществляют их легирование.

Согласно химической классификации полупроводниковых материалов, их разделяют на два класса:

— простые полупроводники, имеющие в своем составе один элемент (В, С, Si, Ge, Sn, Р, As, Sb, S, Se, Те, I);

— сложные полупроводники, являющиеся химическими соединениями и сплавами.

Германий (Ge) является одним из наиболее широко применяемых полупроводников, его используют для изготовления выпрямителей, транзисторов, диодов и др.

Полупроводниковые приборы на основе кремния работоспособны при более высоких температурах (120— 150°С), чем германиевые (70—85°С). Нелегированный кремний применяют при создании силовых выпрямителей, стабилизаторов напряжения и др.

Широко используются в электронной промышленности селен, теллур и их соединения.

ПРОВОДНИКОВЫЕ И ПОЛУПРОВОДНИКОВЫЕ МЕТАЛЛЫ И СПЛАВЫ

Проводниковые металлы и сплавыдолжны обладать:

- возможно более высокой электропроводностью;

- достаточно высокими механическими свойствами;

- сопротивляемостью к атмосферной коррозии;

- способностью поддаваться обработке давлением в горячем и холодном состоянии.

Наилучшей проводимостью после серебра обладают медь и алюминий, они и являются наиболее распространенными проводниковыми материалами. Проводимость отожженного проводникового алюминия составляет приблизительно 62% проводимости стандартной меди, но плотность алюминия мала, поэтому проводимость 1 кг алюминия составляет 214% проводимости 1 кг меди. Следовательно, алюминий более экономически выгоден для использования в качестве проводникового материала.

Проводниковые материалы, применяемые в настоящее время, можно разделить на следующие группы: проводниковая медь, проводниковый алюминий, проводниковые сплавы, проводниковое железо.

Проводниковая медь.Для изготовления электрических проводов применяют электролитическую (катодную) медь, содержащую не более 0,05% суммы примесей. Катоды переплавляются в слитки, при этом содержание примесей в меди повышается. Согласно ГОСТ проводниковая медь Ml должна содержать в сумме не более 0,1% примесей (содержание кислорода не более 0,08%). Проводниковая медь имеет в отожженном состоянии σв = 270 МПа. Предел прочности может быть повышен до 480 МПа путем холодной деформации, но при снижении электрической проводимости.

Проводниковый алюминий.Недостатком алюминия является его сравнительно низкая прочность. Отожженный алюминий почти в три раза менее прочен на разрыв, чем медь. Поэтому для проводов его применяют в упрочненном состоянии (путем холодной деформации). В этом случае предел прочности составляет 250 МПа, что является недостаточным для сопротивления сильному натяжению, которое испытывают провода в линиях электропередач. Поэтому для линий электропередач применяют провода со стальной сердцевиной.

Проводниковый алюминий обычно содержит десятые доли процента примесей (в сумме не более 0,5%), из которых основными являются железо и кремний.

Для кабельных и токопроводящих изделий применяют алюминий марок А00, А0, Al, A2. Термическая обработка проводникового алюминия для снижения его сопротивления обычно не применяется. Холодная обработка алюминия мало снижает его электропроводность. Так при обжатии до 95 - 98% электропроводность уменьшается не более чем на 1,2% электропроводности стандартной меди.

Проводниковые сплавы. В тех случаях, когда требуется повышенная прочность или специальные свойства (например, повышенное сопротивление истиранию), применяют сплавы на алюминиевой и медной основе. Композицию сплавов подбирают таким образом, чтобы легирующий металл не растворялся в основном металле, а упрочнение сплавов достигалось за счет интерметалличе­ских фаз.

Проводниковое железо. Удельное электросопротивление железа в 7 - 8 раз выше, чем у меди. Тем не менее, железо применяют в промышленности, т.к. оно является недефицитным материалом и имеет повышенную механическую прочность. При использовании железа в качестве проводникового материала оно должно быть достаточно чистым. Обычно для этих целей применяют армко-железо.

Железо используют при изготовлении биметаллических проводов, в этом случае сердцевину провода изготовляют из железа, а поверхностный слой из материала, имеющего более высокую электрическую проводимость (медь, алюминий).

Сверхпроводники.Особую группу материалов с высокой электрической проводимостью представляют сверхпроводники.

С понижением температуры электрическое сопротивление всех металлов монотонно падает (рис. 2.4). Однако есть металлы и сплавы, у которых электрическое сопротивление при критической температуре резко падает до нуля - материал становится сверхпроводником. Сверхпроводимость обнаружена у 30 элементов и около 1000 сплавов. Сверхпроводящие свойства обнаруживают многие сплавы со структурой упорядоченных твердых растворов и промежуточных фаз.


При обычных температурах эти вещества не обладают высокой проводимостью. Переход металла в сверхпроводящее состояние связывают с фазовым превращением. Новое фазовое состояние характеризуется тем, что свободные электроны перестают взаимодействовать с ионами кристаллической решетки, но вступают во взаимодействие между собой. В результате этого электроны с противоположно направленными спинами спариваются. Результирующий спиновый момент становится равным нулю, и сверхпроводник превращается в диамагнетик. Все электронные пары располагаются на низких энергетических уровнях, где они перестают испытывать тепловые рассеяния, т.к. энергия, которую пара может получить от взаимодействия с ионами решетки, слишком мала, чтобы вызвать это рассеяние.

Сверхпроводящее состояние разрушается не только в результате нагрева, но также и в сильных магнитных полях и при пропускании электрического тока большой силы.

Из всех элементов способных переходить в сверхпроводящее состояние, ниобий имеет самую высокую критическую температуру перехода (-263,83°С). Практическое использование нашли сверх­проводящие сплавы с высоким содержанием ниобия: 65БТ и 35БТ (ГОСТ 10994-74). Сплав 65БТ содержит 22 - 26% Ti, 63 - 68% Nb, 8,5 - 11,5% Zr. Проволоку из сплава 35БТ состава 60 - 64% Ti, 33,5 -36,5% Nb, 1,7 - 4,3% Zr из-за повышенной хрупкости заливают в медную матрицу.

Оба сплава применяют для обмоток мощных генераторов, магнитов большой мощности, туннельных диодов для ЭВМ.

Полупроводниковые материалы.Полупроводниковые материалы по электрическим свойствам занимают промежуточное положение между металлами и изоляторами. Подобно металлам для полупроводников характерна проводимость электронным переносом и дырками (вакантное место, оставленное электроном, наделен­ное свойствами положительного заряда).

Диапазон изменения электросопротивления у полупроводниковых материалов весьма широк; однако эти материалы характеризуются некоторыми другими специфическими свойствами, отличающими их от металлов и изоляторов. Например, если электросопротивление металлов возрастает с повышением температуры, то у полупроводниковых материалов оно падает; примеси уменьшают

В авиационной технике полупроводниковые материалы используют в приборах для генерации и усиления электрических сигналов и выпрямления переменного тока (диоды) и в качестве фотосопротивления и фотодиодов. Магнитные свойства полупроводниковых материалов позволяют применять их при изготовлении малогабаритных антенн, трансформаторов, катушек индуктивности и т.д.

Полупроводниковые материалы могут быть разделены на три группы:

1. Полупроводниковые элементы - В, С, Se, Si, Ge, Sn, Те, Sb, P, As, S;

2. Полупроводниковые химические соединения и сплавы -(SiC, ZnSb, InSb, ZnAs, AlSb, Cu2О, NiO и др.);

3. Органические вещества - полиацены, керамические материалы и др.

Из простых полупроводников наиболее распространенными являются германий и кремний. Качество полупроводниковых материалов зависит от чистоты и совершенства строения исходного материала (монокристалла). Содержание примесей в полупроводниках не должно превышать 10 -4 -10 -9 %. Особенно нежелательны примеси А1, В, W, V, Fe, Co, Мn и др. Степень чистоты большинства чистых элементов составляет 99,99%. Дальнейшее очищение монокристаллов и сплавов осуществляется зонной плавкой. Монокристаллы изготовляют тремя методами: направленной кристаллизацией, из растворов, методом газовой фазы.

Ge и Si маркируют по буквенно-цифровой системе. Так Ge электронный, легированный Sb, обозначают ГЭЛС; дырочный, легированный Ga - ГДЛГ. Цифры означают удельное электросопротивление (ом·м) в числителе и диффузионную длину неосновного носителя заряда в знаменателе. Например, ГЭЛС 0,3/0,2.

Si монокристаллический дырочный маркируется КМД - 2 (где цифра означает удельное электросопротивление), a Si монокристаллический электронный - КМЭ - 2.

СПЛАВЫ С ЗАДАННЫМ ТЕМПЕРАТУРНЫМ КОЭФФИЦИЕНТОМ ЛИНЕЙНОГО РАСШИРЕНИЯ

Сплавы с заданным температурным коэффициентом линейного расширения широко применяются в машиностроении и приборостроении. Наиболее распространены сплавы Fe - Ni, у которых коэффициент линейного расширения а при температурах от -100 до 100°С с увеличением содержания Ni до 36% резко уменьшается, а при более высоком содержании никеля вновь возрастает. При температуре 600 - 700°С такого явления не наблюдается и коэффициент линейного расширения в зависимости от состава изменяется плавно, что объясняется переходом сплавов в парамагнитное состояние. Таким образом, низкое значение температурного коэффициента линейного расширения связано с влиянием ферромагнитных эффектов.

Это свойство сплавов Fe - Ni широко используется в технике. Так, детали машин и приборов, которые должны сохранять постоянство размеров при нагреве до 100°С и охлаждении до - 100°С (штриховые меры в метрологии, детали геодезических мерных приборов), изготовляют из ферромагнитного сплава 36Н (~ 0,05% С, 36% Ni, остальное Fe), получившего название инвар. Сплав 36Н имеет минимальное значение коэффициента линейного расширения в системе Fe - Ni, a = 1,5 . 10 -6 °С -1 .

Для впаев в стеклянные или керамические корпуса или детали вакуумных приборов проводников применяют сплавы Fe-Ni, добавочно легированные кобальтом или медью, имеющие равный со стеклом коэффициент линейного расширения и близкую температурную зависимость. Для вакуумных впаев в молибденовые стекла применяют сплав 29НIK, называемый коваром ( 29% Ni, 18% Со, остальное Fe). При нагреве при впаивании сплава 29НК на его поверхности образуется пленка оксидов, взаимодействующая со стеклом. Это приводит к образованию плотного сцепления (адгезии между стеклом и сплавом).

СПЛАВЫ С ЭФФЕКТОМ "ПАМЯТИ ФОРМЫ"

При напряжении выше предела упругости после снятия нагрузки металл не воспроизводит начальные размеры и форму. Сравнительно недавно (40-е года XX века) открыты сплавы, обладающие эффектом "памяти формы". Эти сплавы после пластической деформации восстанавливают свою первоначальную геометрическую форму или в результате нагрева (эффект "памяти формы"), или непосредственно после снятия нагрузки (сверхупругость). Так, если проволоку закрутить в спираль при высокой температуре и выпрямить при низкой температуре, то при повторном нагреве проволока вновь самопроизвольно закручивается в спираль.

Механизмом, определяющим свойства "памяти формы", является кристаллографическое обратимое термоупругое мартенситное превращение - эффект Курдюмова. Термоупругое мартенситное превращение сопровождается изменением объема, которое носит обратный характер, обеспечивая "память". В сплавах с эффектом "памяти формы" при охлаждении происходит рост термоупругих кристаллов мартенсита, а при нагреве их уменьшение или исчезновение. Эффект "памяти формы" наиболее хорошо проявляется, когда мартенситное превращение происходит при низких температурах и в узком интервале температур, иногда порядка нескольких градусов. Схематическая интерпретация эффекта "памяти формы" может быть представлена в виде схемы, приведенной на рис. 2.5.

В настоящее время эффект "памяти формы" (часто его называют механической и мартенситной памятью) обнаружен у широкого круга сплавов, принадлежащих к различным системам, в частно­сти у сплавов систем Ti - Ni, Fe - Ni, Сu - Al, Сu - Mn, Au - Cd, Сu -Al - Ni, Сu - Zn - Al и многих других.


Рис. 2.5 - Схематическая интерпретация эффекта памяти формы

Мн, Мк - температуры начала и конца прямого мартенситного превращения; Ан, Ак - температуры начала и конца обратного мартенситного превращения; Тд - температура деформации.

Некоторые исследователи полагают, что эффект принципиально возможен у любых материалов, претерпевающих мартенситное превращение, и в том числе у таких чистых металлов, как Ti, Zr, Co.

Наиболее широко применяют сплавы на основе мононикелида титана NiTi (~ 50 % Ni), получившие название нитинол. Эффект "памяти формы" в соединении NiTi может повторяться в течении многих тысяч циклов. Нитинол обладает высокой прочностью (σв=770 - 1100 МПа, σт = 300 - 500 МПа), пластичностью (δ=10 -15%), коррозионной и кавитационной стойкостью и демпфирующей способностью (хорошо поглощает шум и вибрацию). Его применяют как магнитный высокодемпфирующий материал во многих ответственных конструкциях. Нитинол широко используется в автоматических прерывателях тока, запоминающих устройствах, для изготовления деталей машин и вычислительной техники, в температурно-чувствительных датчиках.

Наиболее перспективными областями техники, где материалы с эффектом "памяти формы" могут найти применение и уже применяются, являются космическая и авиационная техника, радиоэлектронная и электротехническая, машиностроительная и медицинская техника.

В машиностроении эти сплавы могут применяться для создания качественных клепанных и болтовых соединений и т.д. В космической и авиационной технике из металлов с "памятью формы" можно изготовлять различные самосрабатывающие элементы конструкций. Их применение, особенно в космической технике, эконо­мически выгодно благодаря тому, что они позволяют снизить массу

В перспективе возможно использование данных сплавов для создания композиционных материалов.

ТУГОПЛАВКИЕ МЕТАЛЛЫ И ИХ СПЛАВЫ

Наибольшее значение в технике имеют следующие тугоплавкие металлы: Nb, Mo, Cr, Та, W соответственно с температурой плавления 2468, 2625, 1875, 2996 и 3410°С.

Интерес к тугоплавким металлам и сплавам на их основе (табл. 2.6) резко возрос в связи со строительством ракет, космических кораблей, ядерных реакторов и развитием энергетических установок, отдельные детали и узлы которых работают при температуре до 1500 - 2000°С.

Тугоплавкие металлы и сплавы используют главным образом как жаропрочные.

Молибден, вольфрам и хром обладают высокой жаропрочностью, однако они склонны к хрупкому разрушению в результате высокой температуры порога хладноломкости, которую особенно сильно повышают примеси внедрения С, N, Н, О. После деформации ниже температуры рекристаллизации (1100 - 1300°С) порог хладноломкости молибдена и вольфрама понижается. Ниобий и тантал в отличие от вольфрама и молибдена - высокопластичные металлы и хорошо свариваются. Следует указать, что ниобий имеет более низкий порог хладноломкости и менее чувствителен к примесям внедрения. Указанные металлы обладают высокой коррозионной стойкостью, в том числе в кислотах и щелочах.

Наиболее часто применяемыми металлами высокой проводимости являются


  • Введение
  • 1 Общие сведения об электроматериалах
    • 1.2 Особенности строения твердых тел
    • 1.3 Элементы зонной теории твердого тела
    • 2.1 Виды электропроводности проводниковых материалов
    • 2.2 Основные свойства металлических проводников
    • 2.3 Металлы высокой проводимости
    • 2.4 Тугоплавкие металлы
    • 2.5 Благородные металлы
    • 2.6 Коррозионно-стойкие металлы
    • 2.7 Некоторые другие металлы
    • 2.8 Сплавы высокого сопротивления
    • 2.9 Сплавы для термопар
    • 2.10 Тензометрические сплавы
    • 2.11 Контактные материалы
    • 2.12 Припои и флюсы
    • 2.13 Неметаллические проводящие материалы
    • 3.1 Электропроводность полупроводников
    • 3.2 Влияние внешних факторов на электропроводность полупроводников
    • 3.3 Термоэлектрические и электротермические эффекты в полупроводниках
    • 3.4 Гальваномагнитные эффекты в полупроводниках
    • 3.5 Оптические и фотоэлектрические эффекты в полупроводниках
    • 3.6 Электрические переходы
    • 3.7 Основные полупроводниковые материалы
    • 4.1 Поляризация диэлектриков
      • 4.1.1 Полярные и неполярные диэлектрики
      • 4.1.2 Механизмы поляризации
      • 4.1.3 Влияние различных факторов на относительную диэлектрическую проницаемость
      • 4.2.1 Электропроводность твердых диэлектриков
      • 4.2.2 Электропроводность жидких диэлектриков
      • 4.2.3 Электропроводность газов
      • 4.3.1 Потери на электропроводность
      • 4.3.2 Релаксационные потери
      • 4.3.3 Резонансные потери
      • 4.3.4 Миграционные и ионизационные потери (потери от неоднородности структуры)
      • 4.4.1 Пробой газов
      • 4.4.2 Пробой жидкостей
      • 4.4.3 Пробой твердых диэлектриков
      • 4.5.1 Газообразные диэлектрики
      • 4.5.2 Жидкие диэлектрики
      • 4.5.3 Твердые диэлектрики
      • 4.6.1 Сегнетоэлектрики
      • 4.6.2 Пьезоэлектрики
      • 4.6.3 Пироэлектрики
      • 4.6.4 Электреты
      • 4.6.5 Жидкие кристаллы
      • 5.1 Общие сведения о магнитных свойствах вещества
      • 5.2 Классификация веществ по магнитным свойствам
      • 5.3 Физическая сущность ферромагнетизма
        • 5.3.1 Доменное строение как основа ферромагнетизма
        • 5.3.2 Намагничивание ферромагнетиков
        • 5.5.1 Магнитострикция и магнитоупругость
        • 5.5.2 Влияние температуры на магнитные свойства
        • 5.5.3 Магнитные потери
        • 5.6.1 Постоянные магниты
        • 5.6.2 Пермаллои
        • 6.1 Общие сведения о компонентах радиоэлектроаппаратуры
        • 6.2 Резисторы: классификация, основные параметры
          • 6.2.1 Классификация резисторов
          • 6.2.2 Основные параметры и свойства резисторов
          • 6.2.3 Основные виды проводящих элементов резисторов
          • 6.2.4 Магниторезисторы
          • 6.2.5 Фоторезисторы
          • 6.3.1 Классификация конденсаторов
          • 6.3.2 Основные характеристики конденсаторов
          • 6.3.3 Нелинейные конденсаторы
          • 6.4.1 Общие сведения и основные параметры
          • 6.4.2 Классификация диодов
          • 6.4.3 Условное графическое обозначение диодов в схемах
          • 6.4.4 Надежность и причины отказов полупроводниковых диодов
          • 7.1 Краткие сведения о датчиках
          • 7.2 Термоэлектрический эффект Зеебека
          • 7.3 Электротермический эффект Пельтье
          • 7.4 Эффект Холла
          • 7.5 Магниторезистивный эффект (эффект Гаусса)
          • 7.6 Магнитоупругий эффект
          • 7.7 Фотоэффект
          • 7.8 Терморезистивный эффект
          • 7.9 Тензорезистивный эффект
          • 7.10 Пьезоэлектрический эффект
          • 7.11 Пироэлектрический эффект

          2.3 Металлы высокой проводимости

          В эту группу входят материалы с удельным электрическим сопротивлением до 0,1 мкОм*м – медь, алюминий, железо и некоторые сплавы.

          ► Медь


          Медь занимает III место в мире по производству и потреблению. Как ЭТМ, она обладает целым рядом ценных свойств:

          1. малое удельное сопротивление (из всех металлов только серебро обладает несколько меньшим ρ);
          2. достаточно высокая механическая прочность;
          3. удовлетворительная коррозионная стойкость – на воздухе даже в условиях повышенной влажности медь окисляется значительно медленнее, чем, например, железо; интенсивное окисление меди происходит только при повышенных температурах;
          4. хорошая обрабатываемость – медь прокатывается в листы и ленты толщиной до 0,005 мм и протягивается в проволоку;
          5. легкость пайки и сварки.

          Медь встречается в природе в самородном состоянии, а также в виде медных руд. Ее содержание в земной коре составляет 3*10 -3 %, поэтому медь относится к сравнительно дорогим и дефицитным материалам. Медь выпускается в виде слитков, прутков, труб и трубок катанки, листов и лент, проволоки и проводов различных видов, катодов, профилей для коллекторных пластин и других фасонных изделий. Производство меди основано на переработке сульфидных и оксидных соединений. После обогащения медной руды флотационным способом и получения медного концентрата он плавится, после чего медь, предназначенная для электротехнических целей, обязательно подвергается электролитической очистке – так называемому рафинированию. Полученные в результате электролиза катодные пластины меди переплавляют в болванки массой 80 – 90 кг, которые прокатывают и протягивают, создавая изделия требуемого поперечного сечения (рисунок 2.12).


          Рисунок 2.13 – Технологические стадии производства электротехнической меди

          В качестве проводникового материала используется медь марок М1 и М0, отличающихся степенью чистоты, т.е. содержания Cu. Медь марки М1 содержит 99,9% Cu, а в общем количестве примесей (0,1%) регламентируется доля кислорода – она не должна превышать 0,08% (кислород ухудшает механические свойства меди). Лучшими механическими свойствами обладает медь марки М0, в которой содержание Cu составляет 99,95%, а кислорода – не более 0,02%. Из меди марки М0 может быть изготовлена особо тонкая проволока (диаметром 0,01 мм).

          При холодной протяжке получают твердую (твердотянутую) медь (МТ), которая благодаря наклепу имеет высокий предел прочности при растяжении и малое относительное удлинения перед разрывом, а также твердость и упругость; при изгибе проволока из твердой меди несколько пружинит.

          Если же медь подвергнуть отжигу, т.е. нагреву до нескольких сотен градусов без доступа воздуха с последующим медленным охлаждением, то получается мягкая (отожженная) медь (ММ), которая сравнительно пластична, имеет пониженную твердость и небольшую прочность, но весьма большое удлинение при разрыве и более высокую удельную проводимость (на 3 – 5% больше, чем у марки МТ).

          Твердую медь марки МТ используют там, где надо обеспечить особо высокую механическую прочность, твердость и сопротивляемость истиранию: для контактных проводов, шин распределительных устройств, коллекторных пластин электрических машин. Мягкую медь применяют главным образом в качестве токопроводящих элементов (жил кабелей, проводов и т.п.), т.е. там, где важны хорошая электропроводность, гибкость и пластичность, а прочность не имеет существенного значения. Ленточная мягкая медь используется для экранирования радиочастотных кабелей и т.п. изделий.

          Кроме того, несмотря на большой коэффициент линейного расширения по сравнению с коэффициентом расширения стекол, медь применяется в спаях с ними благодаря следующим своим свойствам: низкому пределу текучести, мягкости и высокому коэффициенту теплопроводности. Для впаивания в стекло медному электроду придается специальная форма в виде тонкого рантика (т.н. рантовые спаи).

          Удельное сопротивление меди существенно зависит от примесей, причем не только от их содержания, но и от вида примеси: например, примесь цинка, кадмия, серебра в количестве 0,5% изменяет удельное сопротивление на 5% (по сравнению с чистой медью), а аналогичное количество бериллия или фосфора – больше чем на 55%.

          В тех случаях, когда проводник должен обладать повышенными механическими характеристиками и не предъявляются высокие требования к его электропроводности, используются сплавы меди с другими металлами.

          Сплавы меди с цинком называются латуни. Они маркируются буквой Л и числами, характеризующими среднее значение основного и легирующих элементов, – например, латунь Л80 содержит 80% меди и 20% цинка. Если латунь легирована, помимо цинка, другими элементами, после буквы Л указывается условное обозначение этих элементов: С – свинец; О – олово; Ж – железо; А – алюминий; К – кремний; Мц – марганец; Н – никель. Цифры после букв указывают среднее содержание каждого легирующего элемента в латуни, кроме цинка, – его содержание определяется по разности от 100%. Например, в латуни ЛАН-59-3-2 содержится 59% Cu, 3% Al, 2% Ni и 36% Zn. Латуни обладают большим коэффициентом линейного удлинения при разрыве и большим значением σр, что обеспечивает технологические преимущества при производстве деталей штамповкой.

          Медно-никелевыми называются сплавы на основе меди, в которых основным легирующим элементом является никель, образующий с медью непрерывный ряд твёрдых растворов. При добавлении никеля к меди возрастают её прочность и электросопротивление, снижается температурный коэффициент электросопротивления, сильно повышается стойкость против коррозии. Медно-никелевые сплавы хорошо обрабатываются давлением в горячем и холодном состоянии – из них получают листы, ленты, проволоку, прутки, трубы, штампуют различные изделия. Медно-никелевые сплавы подразделяются на конструкционные и электротехнические. Конструкционные медно-никелевые сплавы отличаются высокой коррозионной стойкостью и красивым серебристым цветом, к ним относятся мельхиор и нейзильбер. Электротехнические медно-никелевые сплавы имеют высокое электросопротивление и значительную термоЭДС в паре с другими металлами. Их применяют для изготовления резисторов, реостатов, термопар. К электротехническим медно-никелевым сплавам относятся константан, копель и другие сплавы.

          Сплавы меди со всеми остальными элементами (оловом, алюминием, кремнием, бериллием и т.д.) называются бронзами. При правильно подобранном составе бронзы имеют значительно более высокие механические свойства по сравнению с чистой медью; σр бронз может доходить до 800 – 1350 МПа (бериллиевая бронза). Электропроводимость бронз составляет 10 – 30% от значения для чистой меди (за исключением кадмиевой бронзы, у которой удельная электропроводимость снижается сравнительно мало). Бронзы маркируются Бр, а затем, также как у латуней, указываются основные легирующие элементы и их среднее содержание в сплаве. При этом цинк обозначается Ц, фосфор – Ф, бериллий – Б, хром – Х. Например, бронза БрО10 – сплав 90% Cu и 10% Sn.

          Подпись: Немного истории Медь входит в семерку металлов, известных людям с древнейших времен (к ним относятся также золото, серебро, железо, олово, свинец и ртуть) и используется приблизительно 10 тысячелетий. Она стала первым металлом, оказавшимся в руках человека. Это связано с тем, что из перечисленных «доисторических» металлов только три – медь, золото и серебро - встречаются в самородном состоянии. Медь достаточно распространена в природе, обладает хорошей ковкостью, сравнительно легко обрабатывается и поэтому быстро приобрела популярность. Добыча меди из руды началась на медных рудниках острова Кипр, от которого она и получила свое латинское название «купрум». Русское название металла «медь», по всей видимости, произошло от слова «смида», которое на языке древних славян означало вообще «металл». Позднее был получен первый сплав меди с оловом, и на смену медному веку пришел бронзовый, - целая эпоха в развитии мировой культуры. Долгое время из бронзы изготовляли только предметы роскоши и украшения (бронзовое зеркало было лучшим подарком женщине!), скульптуры, орудия различного калибра. Само слово «бронза» произошло от названия небольшого итальянского городка Бриндизи на берегу Адриатического моря, который славился своими бронзовыми изделиями. Латинское словосочетание «Эс Брундуси» («медь из Бриндизи») легло в основу названия целой группы сплавов.

          ► Алюминий


          Алюминий – важнейший представитель так называемых легких металлов, к которым относятся металлы с плотностью до 5000 кг/м 3 ; его плотность составляет 2600 – 2700 кг/м 3 , т.е. он примерно в 3,5 раза легче меди. Алюминий является вторым по значению (после меди) проводниковым материалом с высокой электро- и теплопроводностью. По значению удельного сопротивления алюминий занимает третье место. Поэтому замена меди алюминием не всегда возможна, особенно в радиоэлектронике. Что же касается проводов, то, если сравнить отрезки алюминиевого и медного провода одинаковой длины и сопротивления, то окажется, что алюминиевый провод, хоть и толще медного примерно в 1,3 раза, будет, тем не менее, легче в 2 раза.

          Алюминий дешевле и доступнее меди, т.к. он является самым распространенным в природе металлом. Его содержание в земной коре – не менее 8%. Технология получения алюминия схожа с технологией производства меди: его получают путем электролиза глинозема и электролитического рафинирования, с помощью которого можно довести его чистоту до 99,99%. Из слитков алюминия изготавливают алюминиевую проволоку и катанку диаметром 9 – 23 мм. При этом, хотя температура плавления алюминия почти в 2 раза меньше, чем у меди, для его расплавления требуется большая затрата тепла. Это связано с тем, что алюминий имеет более высокие значения температурного коэффициента расширения, удельной теплоемкости и теплоты плавления. В результате холодной прокатки получают твердый алюминий (АТ), который имеет повышенную механическую прочность, твердость и удельное сопротивление; относительное удлинение перед разрывом составляет для него 12 – 14%. После отжига получают мягкий (отожженный) алюминий (АМ), для которого относительное удлинение составляет 30 – 33%.

          Маркировка алюминия состоит из буквы А и цифры, обозначающей сотые или тысячные доли процента (после 99%) содержания алюминия. Например, особо чистый алюминий А999 содержит не менее 99,999% алюминия, остальное – примеси. Для электротехнических целей используются также марки А1 (содержание примесей менее 0,5%), АВ00 (≤ 0,03%) – для изготовления тонкой фольги (до 6 – 7 мкм), применяемой в качестве обкладок в бумажных и пленочных конденсаторах, и АВ0000
          (≤ 0,004%) – специального назначения.

          Алюминий весьма активно окисляется на воздухе и покрывается тонкой (порядка 0,0001 мм) оксидной пленкой Al2O3 с большим электрическим сопротивлением (порядка 10 14 Ом*м), предохраняющей алюминий от дальнейшей коррозии. С одной стороны, эта пленка создает большое переходное сопротивление в местах контакта алюминиевых проводов и делает невозможной пайку алюминия обычными методами (используются ультразвуковые паяльники и специальные пасты – припои); с другой стороны, она служит естественной межвитковой изоляцией (при небольших напряжениях) и используется в этом качестве в производстве электролитических конденсаторов и микросхем.

          В местах контакта алюминия и меди, особенно на открытом воздухе в присутствии влаги, возникает довольно значительная гальваническая ЭДС, вызывающая коррозию металла. На поверхности контакта ток идет от алюминия к меди, и алюминий сильно разрушается коррозией. Поэтому в местах соединения алюминиевых и медных проводников устанавливаются стальные шайбы.

          Алюминиевые сплавы, также как и медные, обладают повышенной механической прочностью и твердостью, и тоже делятся на электротехнические и конструкционные. Из электротехнических сплавов наиболее известен альдрей, в который, кроме алюминия, входят 0,3 – 0,5% Mg, 0,4 – 0,7% Si и 0,2 – 0,3% Fe. Выпускается в виде проволоки, которая сохраняет легкость алюминия при небольшом увеличении удельной проводимости. А по механической прочности этот сплав близок к твердотянутой меди.

          Еще одним изделием из алюминия, получившим широкое применение в качестве ЭТМ, является сталеалюминиевый провод. Он представляет собой сердечник, свитый из стальных оцинкованных жил и обвитый снаружи алюминиевой проволокой. Прочность этого провода определяется стальным сердечником, а электрическая проводимость – алюминием.


          ► Железо


          Железо (в виде стали) является наиболее дешевым и доступным металлом (содержание в земной коре около 5%), поэтому оно часто используется в качестве проводникового и конструкционного материала. Основные рудные минералы железа – магнетит, гематит, бурый железняк. Чистое железо имеет значительно более высокое по сравнению с медью и алюминием удельное сопротивление; значение ρ стали, т.е. сплава железа с углеродом и другими элементами, еще выше, но зато эти сплавы обладают высокой механической прочностью.

          Поскольку сталь является хорошим ферромагнетиком, то на переменном токе в ней сильно проявляется поверхностный эффект, из-за чего активное сопротивление стальных проводников переменному току больше, чем постоянному. Кроме того, на переменном токе возникают дополнительные потери на гистерезис.

          В качестве проводникового материала обычно используется мягкая сталь с содержанием углерода 0,1 – 0,15%.

          Недостатком стали является малая коррозионная стойкость.

          В промышленности широко используется так называемый проводниковый биметалл – стальной провод, покрытый снаружи слоем меди или алюминия. Для его производства используется два способа – горячий и холодный. При горячем способе стальную болванку помещают в форму, промежуток заливают расплавленной медью, затем прокатывают и протягивают до нужного диаметра. Холодный способ – электролитический: стальная проволока пропускается через ванну с медным купоросом. В этом случае получается более равномерное покрытие, но менее прочное сцепление; этот способ более дорогой.

          Наиболее широко железо используется в сплавах высокого сопротивления.


          © ФГБОУ ВПО «Уфимский государственный нефтяной технический университет»
          Редакционно-издательский центр
          Отдел допечатной подготовки и программно-методического обеспечения
          Уфа 2014

          2.3.1. Металлы и сплавы высокой проводимости

          К металлам и сплавам высокой проводимости предъявляют следую­щие требования:

          · минимальное значение ρv;

          · достаточно высокие механиче­ские свойства, главным образом предел прочности при растяжении (σр) и относительное удлинение при разрыве (Δl/l);

          · хорошая технологичность (способность к пластическим деформациям, пайке, сварке);

          · достаточно высокая стойкость к действию агрессивных сред.

          Материалы высокой про­водимости применяют для изготовления обмоточных и монтажных прово­дов, различного вида токоведущих частей. Наиболее распространенными материалами высокой проводимости в электротехнике являются: медь, алюминий, серебро и сплавы на их основе, а также железо и сплавы на его основе; в электронной технике также ис­пользуют золото, платину, палладий.

          Проводниковая медь является лучшим после серебра проводниковым материалом высокой проводимости. Широкое применение меди в качестве проводникового материала обусловлено рядом ценных свойств этого мета­ла:

          1. малым удельным электрическим сопротивлением (ρv = 0,017241 мкОм·м при 20 °С, что является электротехническим стандартом, по отношению к которому выражают ρv других проводниковых материалов);

          2. высокой механической прочностью;

          3. удовлетворительной коррозионной стойкостью;

          4. хорошей технологичностью.

          Примеси других металлов (включая и серебро) резко снижают прово­димость меди. Поэтому для основных марок проводниковой меди допуска­ется содержание примесей не более 0,1 % для марки М1 и 0,05 % для марки МО.

          Кроме того, содержание кислорода, существенно ухудшающего меха­нические свойства меди, допускается не более 0,08 % и 0,02 % для соответ­ствующих марок.

          В электровакуумной технике применяют более чистую медь, не со­держащую кислорода и летучих примесей (Zп, Рb, Вi); бескислородную медь марки МО. Она содержит не более 0,03 % примесей. Еще более чистой является вакуумная медь марки МВ с содержанием примесей не более 0,01 %.

          Как проводниковый материал используют твердую медь марки МТ и мягкую медь марки ММ. При холодной прокатке (волочении) у твердой (твердотянутой) меди повышаются твердость, упругость, предел прочности при растяжении, сопротивление ρv,. По­сле отжига при температуре в несколько сотен градусов получают мягкую (отожженную) медь, которая пластична, имеет проводимость на 3…5 % вы­ше, чем у твердой меди, характеризуется большим удлинением при разры­ве. К недостаткам отожженной меди следует отнести небольшую прочность и пониженную твердость.

          Применение твердой и мягкой меди различно. Твердую медь приме­няют там, где требуется обеспечить высокую механическую прочность, твердость и сопротивляемость к истиранию: для изготовления коллектор­ных узлов электрических машин, кон

          тактных проводов, шин распредели­тельных устройств и т.д. Мягкую медь используют для изготовления обмоточных и монтажных проводов, токоведущих жил кабелей, где важны гибкость и пластичность, а прочность не имеет существенного значения.

          Из специальных электровакуумных сортов меди изготавливают аноды мощных генераторных ламп, детали СВЧ-устройств. Медь достаточно до­рогой и дефицитный материал.

          В отдельных случаях помимо чистой меди в качестве проводниковых материалов используют ее сплавы: бронзы и латуни.

          Бронзы – это медь с небольшим (до 10 %) содержанием легирующих примесей: Sп, Si, Р, Ве, Сr, Мg, Са и др. Она имеет более высокие механи­ческие свойства. Бронзы применяют при изготовлении токопроводящих пружинящих контактов и пружин точных приборов.

          Латуни – это сплавы меди с цинком. Они обладают достаточно высоким относительным удлинением при повышенном пределе прочности на рас­тяжение по сравнению с чистой медью. Латунь применяют для изготовле­ния различных токоведущих частей.

          Проводниковый алюминий имеет удельное электрическое сопротивле­ние 0,026мкОм·м, т.е. оно в 1,63 раза выше ρv меди. Но алюминий при­мерно в 3,5 раза легче меди. Следовательно, если сравнить по массе два отрезка алюминиевого и медного проводников одной и той же электропроводности, то окажется, что алюминиевый провод окажется легче медного примерно в два раза.


          Кроме того, преимущество алюминиевых проводов состоит в том, что они дешевые. Для электротехнических целей использу­ют алюминий марки АЕ содержащий не более 0,5 % примесей. Еще более чистый алюминий марки АВОО (содержит не более 0,03 % примесей) приме­няют для изготовления алюминиевой фольги, электродов и корпусов элек­тролитических конденсаторов. Алюминий наивысшей чистоты АВООО, ис­пользуемый в полупроводниковом производстве содержит не более 0,001% примесей. Из алюминия прокатывается тонкая фольга (до 6…7 мкм), приме­няемая в качестве обкладок конденсаторов. Алюминий на воздухе активно окисляется и покрывается тонкой, плотной оксидной пленкой А12Оз с большим электрическим сопротивлением. Эта пленка предохраняет алю­миний от дальнейшей коррозии, но создает большое переходное сопротив­ление в местах контакта.

          Из сплавов алюминия следует отметить сплавы, содержащие маг­ний (до 0,5 %), кремний (до 0,7 %) и железо (до 0,3 %).

          Серебро в нормальных условиях имеет самое малое удельное элек­трическое сопротивление (ρv = 0,016 мкОм·м) устойчиво к окислению. Вы­сокие механические свойства серебра позволяют промышленно изготовить из него проводники различного диаметра вплоть до 15 мкм. Как проводник серебро используется в виде гальванических покрытий в проводниковых элементах ВЧ- и СВЧ-устройств. Особенностью серебра является его спо­собность образовывать при выжигании или напылении прочные покрытия на диэлектрических материалах. Это свойство серебра широко использует­ся при производстве малогабаритных конденсаторов. Однако необходимо учитывать, что при повышенных температурах и влажности атомы серебра способны мигрировать по поверхности и в объем диэлектрика, что может вызвать нарушение работы устройств. В чистом виде и в сплавах серебро широко используется как материал для изготовления кон­тактов различного рода.

          Железо (сталь) – наиболее дешевый и доступный материал, обла­дающий высокой механической прочностью, в ряде случаев используется в качестве проводникового материала. Даже чистое железо имеет более вы­сокое по сравнению с медью и алюминием удельное электрическое сопро­тивление (ρv = 0,098 мкОм·м). Значение ρv стали за счет наличия примесей еще выше. В переменных электрических полях в железе, как магнитном материале, сильно проявляется поверхностный эффект. Железо имеет вы­

          сокий температурный коэффициент сопротивления (ТKρv = 6·10 -3 К -1 ). В свя­зи с этим тонкая железная проволока, помещенная для защиты от окисле­ния в баллон, заполненный водородом, применяется в барретерах (стабилизаторах тока).

          Для изготовления проводников используют и благородные металлы. Материалы этой группы (золо­то, платина, палладий) относятся к числу материалов с наибольшей хими­ческой стойкостью к агрессивным средам.

          Золото обладает достаточно высокой электрической проводимостью (ρv = 0,024 мкОм·м) и исключительно высокой пластичностью, что позволя­ет получить фольгу толщиной 0,08 мкм. Это в 250 раз тоньше человеческо­го волоса. В электротехнике и электронной технике золото используют для изготовления электро­дов фотоэлементов, для вакуумного напыления пленочных микросхем, как контактный, коррозионно-устойчивый материал,

          Платина – светло-серый металл практически не взаимодействующий с кислородом и весьма стойкий к возникновению химически активных реа­гентов. Высокая пластичность платины позволяет получать из нее микропровод диаметром до 1 мкм и весьма тонкую фольгу. Сочетание ряда цен­ных свойств платины с ее сравнительно низким удельным электрическим сопротивлением (ρv = 0,105 мкОм·м) определяет ее широкое применение в электронной технике и приборостроении.

          Платину в виде тонких нитей применяют для изготовления подвесок подвижных систем особо чувствительных приборов. Платину и особенно ее сплавы повышенной твердости используют как контактный материал. Платиносодержащие вещества применяют для вжигания контактных пло­щадок, электродов, на керамических изделиях различного назначения. Платина дает вакуумно-плотные слои в точных измерительных и электро­вакуумных приборах.

          Палладий по многим свойствам близок к платине и в ряде случаев служит ее заменителем. Его электрическое сопротивление ρv = 0,11 мкОм·м.

          Материалы высокой проводимости

          К наиболее широкораспрстраненным материалам высокой проводимости следует отнести медь и алюминий.

          Медь Преимущества меди, обеспечивающие ей широкое применение в качестве проводникового материала, следующие:

          1.малое удельное сопротивление;

          2.достаточно высокая механическая прочность;

          3.удовлетворительная в большинстве случаев применения стойкость по отношению к коррозии;

          4.хорошая обрабатываемость: медь прокатывается в листы, ленты и протягивается в проволоку, толщина которой может быть доведена до тысячных долей миллиметра;

          5.относительная легкость пайки и сварки.

          Медь получают чаще всего путем переработки сульфидных руд. После ряда плавок руды и обжигов с интенсивным дутьем медь, предназначенная для электротехнических целей, обязательно проходит процесс электролитической очистки.

          В качестве проводникового материала чаще всего используется медь марок М1 и М0. Медь марки М1 содержит 99.9% Cu, а в общем количестве примесей (0.1%) кислорода должно быть не более 0,08%. Присутствие в меди кислорода ухудшает ее механические свойства. Лучшими механическими свойствами обладает медь марки М0, в которой содержится не более 0.05% примесей, в том числе не свыше 0.02% кислорода.

          Медь является сравнительно дорогим и дефицитным материалом, поэтому она все шире заменяется другими металлами, особенно алюминием.

          В отдельных случаях применяются сплавы меди с оловом, кремнием, фосфором, бериллием, хромом, магнием, кадмием. Такие сплавы, носящие название бронз, при правильно подобранном составе имеют значительно более высокие механические свойства, чем чистая медь.

          Алюминий Алюминий является вторым по значению после меди проводниковым материалом. Это важнейший представитель так называемых легких металлов: плотность литого алюминия около 2.6, а прокатанного – 2.7 Мг/м 3 . Т.о., алюминий примерно в 3.5 раза легче меди. Температурный коэффициент расширения, удельная теплоемкость и теплота плавления алюминия больше, чем меди. Вследствие высоких значений удельной теплоемкости и теплоты плавления для нагрева алюминия до температуры плавления и перевода в расплавленное состояние требуется большая затрата тепла, чем для нагрева и расплавления такого же количества меди, хотя температура плавления алюминия ниже, чем меди.

          Алюминий обладает пониженными по сравнению с медью свойствами – как механическими, так и электрическими. При одинаковом сечении и длине электрическое сопротивление алюминиевого провода в 1.63 раза больше, чем медного. Весьма важно, что алюминий менее дефицитен, чем медь.

          Для электротехнических целей используют алюминий, содержащий не более 0.5% примесей, марки А1. Еще более чистый алюминий марки АВ00 (не более 0.03% примесей) применяют для изготовления алюминиевой фольги, электродов и корпусов электролитических конденсаторов. Алюминий наивысшей чистоты АВ0000 имеет содержание примесей не более 0ю004%. Добавки Ni, Si, Zn или Fe при содержании их 0.5% снижают γ отожженного алюминия не более, чем на 2-3%. Более заметное действие оказывают примеси Cu, Ag и Mg, при том же массовом содержании снижающие γ алюминия на 5-10%. Очень сильно снижают электропроводность алюминия Ti и Mn.

          Алюминий весьма активно окисляется и покрывается тонкой оксидной пленкой с большим электрическим сопротивлением. Эта пленка предохраняет металл от дальнейшей коррозии.

          Алюминиевые сплавы обладают повышенной механической прочностью. Примером такого сплава является альдрей, содержащий 0.3-0.5% Mg, 0.4-0.7% Si и 0.2-0.3% Fe. В альдрее образуется соединение Mg2Si, которое сообщает высокие механические свойства сплаву.

          Железо Железо (сталь) как наиболее дешевый и доступный металл, обладающий к тому же высокой механической прочностью, представляет большой интерес для использования в качестве проводникового материала. Однако даже чистое железо имеет значительно более высокое сравнительно с медью и алюминием удельное сопротивление; ρ стали, т.е. железа с примесью углерода и других элементов, еще выше. Обычная сталь обладает малой стойкостью коррозии: даже при нормальной температуре, особенно в условиях повышенной влажности, она быстро ржавеет; при повышении температуры скорость коррозии резко возрастает. Поэтому поверхность стальных проводов должна быть защищена слоем более стойкого материала. Обычно для этой цели применяют покрытие цинком.

          В ряде случаев для уменьшения расхода цветных металлов применяют так называемый биметалл. Это сталь, покрытая снаружи слоем меди, причем оба металла соединены друг с другом прочно и непрерывно.

          Натрий Весьма перспективным проводниковым материалом является металлический натрий. Натрий может быть получен электролизом расплавленного хлористого натрия NaCl в практически неограниченных количествах. Из сравнения свойств натрия со свойствами других проводниковых металлов видно, что удельное сопротивление натрия примерно в 2.8 раза больше ρ меди и в 1.7 раз больше ρ алюминия, но благодаря чрезвычайно малой плотности натрия (плотность его почти в 9 раз меньше плотности меди), провод из натрия при данной проводимости на единицу длины должен быть значительно легче, чем провод из любого другого металла. Однако натрий чрезвычайно активен химически (он интенсивно окисляется на воздухе, бурно реагирует с водой), почему натриевый провод должен быть защищен герметизирующей оболочкой. Оболочка должна придавать проводу необходимую механическую прочность, так как натрий весьма мягок и имеет малый предел прочности при деформациях.

          Металлы высокой электропроводности широкого применения

          У металлов высокой электропроводности удельное электрическое сопротивление в нормальных условиях не превышает 100 нОм·м. Наиболее распространёнными среди них являются медь, алюминий и железо. Высокой электропроводностью обладают также многие тугоплавкие металлы, большинство драгоценных и ряд других металлов, а также некоторые сплавы, в частности сплавы меди – бронзы и латуни. Температура плавления t,°С, плотность Мг/м 3 и удельное электрическое сопротивление ρ, нОм·м) основных металлов электротехники приведены в таблице 2.1.

          Таблица 2.1 – Температура плавления, плотность и удельное электрическое сопротивление основных металлов электротехники

          Металл t, °С Плотность, Мг/м 3 ρ, нОм·м Металл t, °С Плотность, Мг/м 3 ρ, нОм·м
          Алюминий 657 2,70 28 Никель 1455 8,90 73
          Вольфрам 3380 19,30 55 Олово 232 7,29 120
          Железо 1539 7,87 98 Палладий 1554 12,02 110
          Золото 1063 19,30 24 Платина 1769 21,43 105
          Индий 157 7,31 90 Ртуть – 38,9 13,55 958
          Иридий 2447 22,65 54 Свинец 327 11,40 210
          Кадмий 321 8,65 76 Серебро 962 10,49 16
          Медь 1083 8,94 17 Хром 1890 7,19 210
          Молибден 2623 10,20 57 Цинк 420 7,13 59

          Медь

          Медь является первым и основным проводниковым материалом. Удельное электрическое сопротивление стандартной меди при комнатной температуре 17,241 нОм·м, что соответствует удельной электропроводности 58 МСм/м. Электропроводность других металлов и сплавов часто оценивают в процентах от электропроводности стандартной меди. Только серебро имеет электропроводность выше, чем медь, однако, оно тяжелее, а главное гораздо дороже. Плотность меди 8,94 · 10 3 кг/м 3 , она достаточно прочна; предел прочности мягкой (отожжённой) меди от 260 до 280, а твёрдой – от 360 до 390 МПа.

          Медь плавится при температуре 1083 °С, а кипит при 2567 °С.

          Химическая стойкость меди достаточно высока. Даже в условиях высокой влажности медь окисляется на воздухе значительно медленнее, чем, например, железо; интенсивное окисление меди происходит только при повышенных температурах.

          Медь удобно обрабатывать, она легко прокатывается в листы, ленты и протягивается в проволоку, толщина которой может быть доведена до нескольких микрон (мкм). Медь удобно паять, слабая оксидная плёнка на поверхности меди легко разрушается флюсами, для пайки можно использовать как мягкие, так и твёрдые припои.

          Получение меди. Медь получают путём переработки сульфидных руд. После ряда плавок руды и обжигов с интенсивным дутьём медь, предназначенная для электротехнических целей, обязательно проходит электролитическую очистку. Побочный продукт электролиза – шлам – представляет собой ценное сырье, т. к. содержит драгоценные и редкие металлы. Полученные в процессе электролиза катодные пластины переплавляют в болванки, из которых прокатывают листы или протягивают проволоку.

          При холодной протяжке получают твёрдую (твёрдотянутую) медь, которая маркируется МТ. Благодаря влиянию наклёпа твёрдая медь имеет высокий предел прочности при растяжении и малое относительное удлинение при разрыве, а также твёрдость и упругость при изгибе; проволока из твёрдой меди несколько пружинит. Если же медь подвергнуть отжигу, т. е. нагреву до нескольких сот градусов с последующим охлаждением, то получится мягкая (отожжённая) медь, которая маркируется ММ. Мягкая медь сравнительно пластична, обладает малой твёрдостью и небольшой прочностью, но большим относительным удлинением при разрыве и малым удельным сопротивлением. Отжиг меди производят в специальных печах без доступа воздуха, чтобы избежать окисления.

          Марки меди. В качестве проводникового материала используют медь М1 и М0. Маркировка произведена по содержанию примесей в основном металле (соответственно не более 0,1 % и не более 0,05 %).

          Специальныеэлектровакуумныесорта меди не содержат кислорода. Их получают из электролитической меди, переплавленной в вакууме или в защитной атмосфере восстановительного газа СО. Значительное ухудшение механических свойств меди вызывает водород. При взаимодействии водорода с кислородом, присутствующим в технической меди в виде закиси Cu2O,образуется вода,разрушительно действующая на медь. После водородного отжига прочность меди может уменьшиться в несколько раз.

          Недостатком меди является её подверженность атмосферной коррозии с образованием оксидных и сульфидных плёнок, которые являются полупроводниками и в контакте с медью образуют выпрямительныеэлементы. Вследствие односторонней проводимости окисленная медь непригодна для слаботочных контактов. Скорость окисления быстро возрастает при нагревании, однако прочность сцепления оксидной плёнки с металлом невелика. При высокой температуре в электрической дуге оксид меди разлагается, обнажая металлическую поверхность. Механическое отслаивание и термическое разложение оксидной плёнки вызывает повышенный износ медных контактов при сильных токах.

          Применение меди. Медь применяют в силовой электротехнике для изготовления проводов, кабелей, шин распределительных устройств, обмоток трансформаторов, электрических машин, токоведущих деталей приборов и аппаратов, анодов гальванических ванн; медные проволоки и ленты используют в качестве экранов кабелей. Твёрдую медь употребляют в тех случаях, когда нужна особенно высокая механическая прочность, твёрдость и сопротивляемость истиранию, например, для изготовления контактных проводов, коллекторных пластин. Если же требуется хорошая гибкость и пластичность, а прочность не имеет особого значения, то предпочтительнее мягкая медь (например, для гибких шнуров и монтажных проводов).

          Из специальных электровакуумных сортов меди изготавливают детали магнетронов и других приборов СВЧ, аноды мощных генераторных ламп, некоторые типы волноводов и резонаторов. Кроме того, медь используют для покрытия тонкой плёнкой (фольгирования) гетинакса и текстолита, а также применяют в микроэлектронике в виде осаждённых на подложки плёнок, играющих роль проводящих соединений между функциональными элементами схемы.

          Сплавы меди. Кроме чистой меди в качестве проводниковых материалов применяют сплавы меди с цинком (латуни), а также бронзы – сплавы меди с другими металлами – оловом, фосфором, бериллием, кадмием и т. д., здесь может присутствовать и цинк. Электропроводность медных сплавов несколько ниже, а механическая прочность и химическая стойкость значительно выше, чем у чистой меди.

          В наименовании бронзы присутствует название того металла, добавка которого в основном определяет её свойства. Фосфористую бронзу применяют как припой для пайки меди; бериллиевую бронзу особой прочности (до 1350 МПа) применяют для изготовления пружин и пружинящих контактов. Из кадмиевойбронзы, электропроводность некоторых марок которой достигает до 95 % от электропроводности меди, изготавливают коллекторные пластины электродвигателей и генераторов, контактные провода электротранспорта и детали других скользящих контактов.

          Латуни содержат до 43 % цинка по массе и маркируются по количеству содержащейся в них меди; Л68 и т. п. Латуни прочнее, чем медь, и устойчивее к коррозии, поэтому широко применяются для изготовления штырей и гнёзд разъёмных контактов, а также в качестве твёрдого припоя для пайки меди – ПМЦ (припой медно-цинковый).

          Алюминий

          Алюминий является вторым по значению проводниковым материалом электротехники, важнейшим из лёгких металлов (его плотность 2,7·10 3 кг/м 3 ). Удельное сопротивление электротехни-ческого алюминия 28 нОм·м, что в 1,63 раза больше, чем у меди. Однако, если сделать из 1 кг алюминия и из 1 кг меди провода одинаковой длины, площадь сечения алюминиевого провода будет в 3,3 раза больше, а сопротивление в 2 раза меньше, чем у медного. Это позволяет считать, что электропроводность у килограмма алюминия в 2 раза выше, чем у меди. Стоит алюминий гораздо дешевле меди, это делает его самым выгодным проводниковым материалом и стимулирует замену меди алюминием, несмотря на его недостатки – малую прочность (предел прочности мягкого алюминия достигает 80, а твёрдого – до 160 МПа), а также ломкость и химическую активность.

          Алюминий – металл серебристо-белого цвета, его поверхность покрыта прочной плёнкой оксидаAl2О3, которая является полупроводником n-типа, а по удельному сопротивлению близка к диэлектрикам. Эта плёнка предохраняет алюминий от коррозии, но создаёт большое переходное сопротивление в местах контакта алюминиевых проводов, а также делает невозможной пайку алюминия обычными методами. Для разрушения оксидной плёнки при пайке алюминия применяют специальные припои и флюсы, а также вибрацию жала паяльника с частотой ультразвука под слоем расплавленного припоя.

          Оксидная изоляция прочна механически и нагревостойка. Температура плавления алюминия равна 657 °С, а оксидной плёнки – около 2050 °С. Слой оксида толщиной 0,03 мм имеет пробивное напряжение около 100 В. Плотные оксидные слои на поверхности алюминиевой фольги или провода получают с помощью электрохимической обработки (анодирования). Такая изоляция широко применяется в оксидных (электролитических) конденсаторах. Из анодированных алюминиевых проводов и шин, без применения дополнительной межвитковой изоляции, изготавливают различные обмотки, отличающиеся высокой нагревостойкостью.

          Важнейшее значение имеет контакт алюминия и меди. Если область контакта подвергается воздействию влаги, то возникает местная гальваническая пара с довольно высоким значением ЭДС, вследствие чего алюминиевый проводник разрушается, превращаясь в белый порошок оксида. Поэтому места соединения медных проводников с алюминиевыми должны быть тщательно защищены от увлажнения (их покрывают изолентой и пропитывают лаком, и т. п.).

          Алюминий широко распространён в природе. Его получают электролизом глинозёма Al2О3 в расплаве криолита Na3AlF6 при 950 °С. Прокатку, протяжку и отжиг алюминия производят по технологиям, аналогичным соответствующим операциям для меди. Из алюминия высокой чистоты можно прокатать очень тонкую (6–7 мкм) фольгу.

          Марки алюминия. Для электротехнических целей используют алюминий технической чистоты АЕ, содержащий не более 0,5 % примесей. Проволока из алюминия АЕ, отожжённая при температуре 350 ± 20 °С, обладает при 20 °С удельным сопротивлением не более 0,029 мкОм·м при прочности 90 МПа. Алюминий высокой чистоты А97 (не более 0,03 % примесей) применяют для изготовления алюминиевой фольги, используемой в качестве обкладок и для изготовления корпусов электролитических конденсаторов. У алюминия особой чистоты А999 примеси не превышают 0,001 %, его используют для плакирования (покрытия тонким слоем) проводов из алюминия марки АЕ с целью придать им особую стойкость к коррозии.

          С целью упрочнения в алюминий добавляют до 0,5 % магния, до 0,7 % кремния и до 0,3 % железа, при этом получают сплав под названием альдрей. За счёт образования мелкодисперсного соединения Mg2Si прочность альдрея достигает 350 МПа при ρ = 31,7 нОм·м.

          Читайте также: