На металлическую пластину с работой выхода

Обновлено: 07.01.2025

Тип 26 № 7640

Поток фотонов падает на металлическую пластину с работой выхода 2,6 эВ и выбивает из пластины фотоэлектроны, которые попадают в замедляющее однородное электрическое поле с модулем напряжённости 1 В/м. Какое время проходит от момента начала замедления фотоэлектронов до их полной остановки, если энергия падающего фотона 11,5 эВ? Считайте, что все фотоэлектроны при вылете из пластины имеют одинаковую скорость. Ответ дайте в мкс, округлив до целого.

Энергия фотоэлектрона Отсюда находим начальную скорость фотоэлектрона:

После вылета движение равнозамедленное, т. е.

Находим время до полной остановки из условия :

Тип 24 № 7959

На металлической пластинке, которая лежит на земле, лежит металлический шарик. Над ним параллельно земле расположена другая пластинка, подключённая к клеммам высоковольтного выпрямителя, на который подают отрицательный заряд. Опираясь на законы механики и электростатики, объясните, как будет двигаться шарик.

Так как пластина и шарик металлические, они имеет свободные носители заряда — электроны. Под действием заряда верхней пластины шарик и нижняя пластина зарядятся положительно, как показано на рисунке, отрицательный заряд «утечёт» в землю (явление электростатической индукции).

Под действием силы Кулона шарик притянется к верхней пластинке и при касании приобретёт отрицательный заряд (электризация касанием). Заряженный шарик будет отталкиваться от одноимённо заряженной пластины и упадёт на нижнюю пластинку, где снова станет положительным, а отрицательный заряд «утечёт» в землю.

Процесс будет повторяться бесконечно, то есть шарик будет колебаться между пластинками, пока на верхнюю пластину подаётся отрицательный заряд.

Если быть точными, то такой ответ может быть не всегда. Из условия НЕ очевидно, какой этот шарик. Я бы добавила или в условие, или в решение, что шарик должен быть маленьким, иначе сила тяжести может не позволить ему совершать описанное движение.

«Шарик» маленький, иначе был бы «массивный шар».

Задания Д21 № 19738

Установите соответствие между физическими опытами и физическими явлениями, которые наблюдаются в этих опытах. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

А) При освещении ярким светом металлической пластины конденсатора из неё вылетают электроны — это можно зарегистрировать, включив конденсатор в электрическую цепь.

1) давление света

2) преломление света

4) интерференция света

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

А. При освещении светом металлической пластины наблюдается явление фотоэффекта.

Б. Крыльчатка вращается в результате давления, которое оказывает свет.

Тип 24 № 29731

На металлической пластинке, которая лежит на земле, лежит очень маленький металлический шарик. Над ним параллельно земле расположена другая пластинка, подключённая к клеммам высоковольтного выпрямителя, на который подают отрицательный заряд. Опираясь на законы механики и электростатики, объясните, как будет двигаться шарик.

1. Вокруг верхней отрицательно заряженной пластины создается электрическое поле. В результате электростатической индукции пластина, лежащая на земле, и металлический шарик приобретают положительный заряд.

2. Между двумя пластинами возникает электростатическое поле, вектор напряженности которого направлен вертикально вверх. Данное поле действует на шарик электрической силой направленной вертикально вверх.

3. Так как источник имеет высокое напряжение, можно предположить, что сила действия электрического поля больше силы тяжести, действующей на шарик. Поэтому равнодействующая данных сил будет направлена вверх. Тогда шарик начнет двигаться вверх до соприкосновения с верхней пластиной.

4. При касании произойдет изменение заряда шарика с положительного на отрицательный. Тогда сила действия электрического поля на шарик станет направленной вниз. Равнодействующая сил также будет направлена вниз, что приведет к падению шарика.

5. При касании шарика о нижнюю пластину, заряд у шарика снова сменится с отрицательного на положительный. Таким образом, шарик будет совершать колебания между двумя пластинами.

Ответ: шарик совершает колебательное движение между пластинами.

Тип 24 № 19854

Две параллельные металлические пластины, расположенные горизонтально, подключены к электрической схеме, приведённой на рисунке. Между пластинами находится в равновесии маленькое заряженное тело массой m и зарядом q. Электростатическое поле между пластинами считать однородным. Опираясь на законы механики и электродинамики, объясните, как и в какую сторону начнёт двигаться тело, если сдвинуть ползунок реостата влево.

1. Поскольку пластины подключены к источнику ЭДС, то между ними имеется разность потенциалов, в пространстве между ними создаётся однородное электростатическое поле. Согласно электрической схеме, нижняя пластина имеет положительный заряд, а верхняя — отрицательный; следовательно, вектор напряжённости поля направлен вертикально вверх. По условию задачи заряженное тело находится в равновесии; следовательно, сила тяжести скомпенсирована силой Кулона, направленной вертикально вверх. Отсюда делаем вывод, что тело имеет положительный заряд.

2. Если сдвинуть ползунок реостата влево, то сопротивление реостата уменьшится. Поскольку реостат соединён с резистором R последовательно, то и общее сопротивление цепи также уменьшится.

3. Согласно закону Ома для полной цепи — при уменьшении сопротивления внешней цепи сила тока в ней увеличится. Таким образом, по закону Ома для участка цепи цепи — напряжение на резисторе R также увеличится. Поскольку пластины соединены с резистором R параллельно, то, соответственно, напряжение между ними увеличится. Следовательно, увеличится и напряжённость поля между пластинами:

4. Увеличение напряжённости поля приведёт к увеличению силы Кулона, действующей на тело: Равновесие нарушится, сила Кулона станет больше силы тяжести, и тело начнёт двигаться вверх с ускорением.

Тип 28 № 19862

Две параллельные металлические пластины, расположенные горизонтально, подключены к электрической схеме, приведённой на рисунке. Между пластинами находится в равновесии маленькое заряженное тело массой m и зарядом q. Электростатическое поле между пластинами считать однородным. Опираясь на законы механики и электродинамики, объясните, как и в какую сторону начнёт двигаться тело, если сдвинуть ползунок реостата вправо.

1. Поскольку пластины подключены к источнику ЭДС, то между ними имеется разность потенциалов, в пространстве между ними создаётся однородное электростатическое поле. Согласно электрической схеме, верхняя пластина имеет положительный заряд, а нижняя — отрицательный; следовательно, вектор напряжённости поля направлен вертикально вниз. По условию задачи заряженное тело находится в равновесии; следовательно, сила тяжести скомпенсирована силой Кулона, направленной вертикально вверх. Отсюда делаем вывод, что тело имеет отрицательный заряд.

2. Если сдвинуть ползунок реостата вправо, то сопротивление реостата возрастёт. Поскольку реостат соединён с резистором R последовательно, то и общее сопротивление цепи также возрастёт.

3. Согласно закону Ома для полной цепи: — при увеличении сопротивления внешней цепи сила тока в ней уменьшится. Таким образом, по закону Ома для участка цепи: — напряжение на резисторе R также уменьшится. Поскольку пластины соединены с резистором R параллельно, то, соответственно, напряжение между ними уменьшится. Следовательно, U уменьшится и напряженность поля между пластинами:

4. Уменьшение напряжённости поля приведёт к уменьшению силы Кулона, действующей на тело: Равновесие нарушится, сила тяжести станет больше силы Кулона, и тело начнёт двигаться вниз с ускорением.

На металлическую пластину с работой выхода

На металлическую пластинку с работой выхода А = 2, 0 эВ падает излучение, имеющее три частоты различной интенсивности (см?

На металлическую пластинку с работой выхода А = 2, 0 эВ падает излучение, имеющее три частоты различной интенсивности (см.

Определите максимальную кинетическую энергию фотоэлектронов.

1) 0, 06 эВ 2) 0, 9 эВ 3) 1, 7 эВ 4) 6, 7 эВ.


Кинетическая энергия фотоэлектронов определяется только частотой излучения.

Выбираем v = 9 * 10 ^ 14 Гц

Ek = h * v - A = 6, 63 * 10 ^ - 34 * 9 * 10 ^ 14 - 3, 2 * 10 ^ - 19 = 2, 7 * 10 ^ - 19 Дж = 1, 7 эВ

При уменьшении в 2 раза длины волны света, падающего на металлическую пластинку, максимальная кинетическая энергия электронов увеличилась в 3 раза?

При уменьшении в 2 раза длины волны света, падающего на металлическую пластинку, максимальная кинетическая энергия электронов увеличилась в 3 раза.

Определите работу выхода электронов, если первоначальная энергия фотонов равнялась 10 эВ.


В опытах по фотоэффекту взяли пластинки из металла с работой выхода 3, 5 эВ и стали освещать ее светом частотой 3 * 10 ^ 14 Гц?

В опытах по фотоэффекту взяли пластинки из металла с работой выхода 3, 5 эВ и стали освещать ее светом частотой 3 * 10 ^ 14 Гц.

Затем интенсивность падающей на пластину световой волны уменьшили в 2 раза, оставив неизменной ее частоту.

Как при этом изменилась максимальная кинетическая энергия фотоэлектронов?


Фототок прекращается при задерживающей разности потенциалов 0, 95 В?

Фототок прекращается при задерживающей разности потенциалов 0, 95 В.

Начальная энергия фотона равна 10эВ.

Определить работу выхода электронов с поверхности пластинки и максимальную кинетическую энергию фотоэлектронов.


На поверхность метана падают фотоны с энергией 3, 5 эВ?

На поверхность метана падают фотоны с энергией 3, 5 эВ.

Какова максимальня кинетическая энергия фотоэлектронов , если работа выхода электронов из метана равна 1, 5 эВ.


При какой частоте света падающего на металл с работой выхода 1, 89 эВ ФОТОЭЛЕКТРОНЫ ПОЛУЧАЮТ КИНЕТИЧЕСКУЮ ЭНЕРГИЮ 1, 41 Эв?

При какой частоте света падающего на металл с работой выхода 1, 89 эВ ФОТОЭЛЕКТРОНЫ ПОЛУЧАЮТ КИНЕТИЧЕСКУЮ ЭНЕРГИЮ 1, 41 Эв.

Максимально кинетическая энергия фотоэлектронов от частоты падающего света?

Максимально кинетическая энергия фотоэлектронов от частоты падающего света.


При увеличении в 2 раза энергии фотонов, падающих на металлическую пластинку, максимальная кинетическая энергия вылетающих электронов увеличилась в 3 раза?

При увеличении в 2 раза энергии фотонов, падающих на металлическую пластинку, максимальная кинетическая энергия вылетающих электронов увеличилась в 3 раза.

Определить в электронвольтах работу выхода электронов, если первоначальная энергия фотонов 10 эВ.

От чего зависит максимальная кинетическая энергия фотоэлектронов, выбиваемых из металла при фотоэффекте?

От чего зависит максимальная кинетическая энергия фотоэлектронов, выбиваемых из металла при фотоэффекте?

А - от частоты падающего света Б - от интенсивности падающего света В - от работы выхода электронов из металла.

ОЧЕНЬ ОЧЕНЬ СРОЧНО?

ОЧЕНЬ ОЧЕНЬ СРОЧНО!

Укажите неверное утверждение.

1) максимальная кинетическая энергия фотоэлектронов линейно возрастает с частотой падающего света ; 2) максимальная кинетическая энергия фотоэлектронов не зависит от интенсивности падающего света ; 3) фототок насыщения прямо пропорционален интенсивности света, падающего на катод ; 4) красная граница фотоэффекта зависит от интенсивности света, падающего на катод.


Работа выхода электронов из пластины 2эВ?

Работа выхода электронов из пластины 2эВ.

Пластина освещается монохроматическим светом.

Какова энергия фотонов падающего света, если максимальная кинетическая энергия фотоэлектронов равна 1, 5эВ.

В опытах по фотоэффекту взяли пластину из металла с работой выхода 3, 5 эВ и стали освещать её светом частотой 3×10 15 Гц?

В опытах по фотоэффекту взяли пластину из металла с работой выхода 3, 5 эВ и стали освещать её светом частотой 3×10 15 Гц.

Затем интенсивность падающего на пластину света уменьшили в 2 раза, оставив неизменной частоту.

Как изменилась результате этого максимальная кинетическая энергия фотоэлектронов?

Интенсивность определяется отношением мощности ко времени.

Так как мощность непосредственно связана с энергией, то и энергия фотонов уменьшится в два раза, запишем два уравнения фотоэффекта :

Выразим из каждого уравнения энергию электронов и Разделим первое на второе :

E1 / E2 = (20 * 10 ^ - 19 - 5.

Энергия уменьшаться в 3.


Металлическую пластину освещают светом с энергией фотонов 6, 2 эВ?

Металлическую пластину освещают светом с энергией фотонов 6, 2 эВ.

Работа выхода для металла пластины равна 2, 5эВ.

Скольким равна мах кинетическая энергия фотоэлектронав.


Как изменится максимальная кинетическая энергия фотоэлектронов при фотоэффекте, если уменьшить частоту облучающего света в 4 раза, не изменяя интенсивность падающего света?

Как изменится максимальная кинетическая энергия фотоэлектронов при фотоэффекте, если уменьшить частоту облучающего света в 4 раза, не изменяя интенсивность падающего света?

A. Увеличится в 2 раза.

Б. Уменьшится в 2 раза.

B. Уменьшится в 4 раза.

В опытах по фотоэффекту взяли пластину из металла с работой выхода 3, 4×10– 19 Дж и стали освещать ее светом частоты 6×1014 Гц?

В опытах по фотоэффекту взяли пластину из металла с работой выхода 3, 4×10– 19 Дж и стали освещать ее светом частоты 6×1014 Гц.

Затем частоту уменьшили в 2 раза, одновременно увеличив в 1, 5 раза число фотонов, падающих на пластину за 1 с.

В результате этого максимальная кинетическая энергия фотоэлектронов

С обьяснением пожалуйста.

Работа выхода для материала пластины равно 4эВ?

Работа выхода для материала пластины равно 4эВ.

Пластина освещается монохраматическим светом.

Какова энергия фотонов падающего света, если максимальная кинетическая энергия фотоэлектронов равна 2, 5эВ?

Поверхность тела с работой выхода А вых?

Поверхность тела с работой выхода А вых.

Освещается монохроматическим светом с частотой v , и вырываются фотоэлектроны .

Какую величину определяет разность (hv - Aвых)?

А)Максимальную скорость фотоэлектронов б)Среднею кинетическую энегрию фотоэлектронов в)среднюю скорость фотоэлектронов г)максимальную кинетическую энергию фотоэлектронов.

В опытах по фотоэффекту взяли пластинку из металла с работой выхода А = 3, 5 эВ и стали освещать её светом частоты ν1 = 3∙105 Гц?

В опытах по фотоэффекту взяли пластинку из металла с работой выхода А = 3, 5 эВ и стали освещать её светом частоты ν1 = 3∙105 Гц.

Затем частоту падающей световой волны уменьшили в 4 раза, увеличив в 2 раза интенсивность светового пучка.

В результате этого число фотоэлектронов, покидающих пластину за 1 с : a.

Уменьшилось в 2 раза б.

Уменьшилась в 4 раза в.

Осталось приблизительно таким же г.

Оказалась равной нулю.

В опытах по фотэфекту взяли пластину из металла с работой выхода 3?

В опытах по фотэфекту взяли пластину из металла с работой выхода 3.

4 * 0, 00000000000000001Дж и стали освещать ее светом частоты 6 * 100000000000000Гц.

Затем частоту уменьшели в 1, 5 раза, одновременно увеличели в 2 раза число фотонов, падающих на пластину за 1 секунду.

В результате этого число фотоэлектронов покидающих пластину за 1 секунду?

При освещении поверхности металла светом частотой 5 * 10 ^ 14 Гц вылетают фотоэлектроны?

При освещении поверхности металла светом частотой 5 * 10 ^ 14 Гц вылетают фотоэлектроны.

Какова работа выхода электрона из металла, если максимальная кинетическая энергия фотоэлектронов 1.

Частоту падающего света уменьшили в 2 раза?

Частоту падающего света уменьшили в 2 раза.

Можно ли утверждать, что максимальная кинетическая энергия вырванных этим светом электронов уменьшилась тоже в 2 раза?

Обоснуйте ваш ответ.

В опытах по фотоэффекту взяли пластину из металла с работой выхода 5, 4 * 10 ^ - 19 Дж и стали освещать ее светом частотой 3 * 10 ^ 14 Гц?

В опытах по фотоэффекту взяли пластину из металла с работой выхода 5, 4 * 10 ^ - 19 Дж и стали освещать ее светом частотой 3 * 10 ^ 14 Гц.

Затем частоту света увеличили в 2 раза, одновременно увеличив в 1, 5 раза число фотонов.

Падающих на пластину за 1 с.

При этом максимальная кинетическая энергия фотоэлектронов 1) увеличилась в 1.

5 раза 2)увеличилась в 3 раза 3)увеличилась в 2 раза 4) не определена, так как фотоэффекта не будет.

Для начала ищем красную границу фотоэффекта

тк в редакторе формул нет буквы "ню", частоту обозначим$V$

$A=hVmin$ работа выхода

это означает, что искомая частота , при которой идет фотоэффект.

Должна быть больше или равна минимальной

частота в начале$V=3*10 ^$ Гц

при увеличении частоты в 2 раза, получаем$V=6*10 ^$ Гц, что меньше минимальной, те фотоэффекта нет


4. В вакууме находятся две покрытые кальцием пластинки, к которым подключен конденсатор емкостью с = 8000 пФ?

4. В вакууме находятся две покрытые кальцием пластинки, к которым подключен конденсатор емкостью с = 8000 пФ.

При длительном освещении одной из пластинок светом фоток, возникший вначале, прекращается, а на конденсаторе появляется заряд q = 11 * 10 ^ - 9Кл.

Работа выхода электронов из кальция А = 4, 42 * 10 ^ - 19 Дж.

Определите длину света, освещающего пластинку.

5. В опытах по фотоэффекту пластину из металла с работой выхода 4, 3 эВ освещали светом частотой 2 * 10 ^ 15 Гц.

Затем частоту света уменьшились в 3 раза, одновременно увеличив в 2 раза интенсивность светового пучка.

В результате этого как изменилось число фотоэлектронов, покидающих пластину за 1 с?

8. Меньшую энергию имеют фотоны : А) красного света?

8. Меньшую энергию имеют фотоны : А) красного света.

Б) фиолетового света.

9. Энергия фотонов при уменьшении длины световой волны в 2 раза : А) уменьшится в 2 раза.

Б) уменьшится в 4 раза, В) увеличится в 2 раза, Г) увеличится в 4 раза.

4. В результате фотоэффекта при освещении электрической дугой отрицательно заряженная металлическая пластина по¬степенно теряет свой заряд.

Если на пути света поставить фильтр, задерживающий только инфракрасные лучи, то ско¬рость потери электрического заряда пластиной : А) увеличится.

2. На незаряженную металлическую пластину падают рент¬геновские лучи.

При этом пластина А) заряжается положительно, Б) заряжается отрицательно, В) не заряжается.

При увеличении частоты падающего света в 4 раза скорость фотоэлектронов?

При увеличении частоты падающего света в 4 раза скорость фотоэлектронов.

1)увеличится в 2 раза

2) уменьшится в 2 раза

3) увеличится более чем в 2 раза

4) увеличится менее чем в 2 раза.

При увеличении длины волны поглощенного света в 3 раза длина волны, соответствующая красной границе фотоэффекта для данного металла : А) увеличится в 3 раза В) не изменится С) увеличится в √3 раз D) у?

При увеличении длины волны поглощенного света в 3 раза длина волны, соответствующая красной границе фотоэффекта для данного металла : А) увеличится в 3 раза В) не изменится С) увеличится в √3 раз D) уменьшится в 3 раза Е) уменьшится в √3 раза.

На этой странице находится вопрос В опытах по фотоэффекту взяли пластину из металла с работой выхода 5, 4 * 10 ^ - 19 Дж и стали освещать ее светом частотой 3 * 10 ^ 14 Гц?, относящийся к категории Физика. По уровню сложности данный вопрос соответствует знаниям учащихся 10 - 11 классов. Здесь вы найдете правильный ответ, сможете обсудить и сверить свой вариант ответа с мнениями пользователями сайта. С помощью автоматического поиска на этой же странице можно найти похожие вопросы и ответы на них в категории Физика. Если ответы вызывают сомнение, сформулируйте вопрос иначе. Для этого нажмите кнопку вверху.

Читайте также: