На металлическую пластинку направили пучок света от лазера

Обновлено: 08.01.2025

Тип 24 № 5488

В установке по наблюдению фотоэффекта свет от точечного источника S, пройдя через собирающую линзу, падает на фотокатод параллельным пучком. В схему внесли изменение: на место первоначальной линзы поставили собирающую линзу того же диаметра, но с меньшим фокусным расстоянием. Источник света переместили вдоль главной оптической оси линзы так, что на фотокатод свет снова стал падать параллельным пучком. Как изменился при этом (уменьшился или увеличился) фототок насыщения? Объясните, почему изменяется фототок насыщения, и укажите, какие физические закономерности вы использовали для объяснения.

По первому закону Столетова фототок насыщения зависит от интенсивности падающего света, то есть от количества фотонов, падающих на фотокатод в единицу времени. При использовании линзы такого же диаметра, но с меньшим фокусным расстоянием, телесный угол, под которым из источника видно линзу, увеличивается, поскольку источник теперь расположен ближе к ней (для получения параллельного пучка источник нужно разместить в фокусе линзы). Фотоны летят от источника во все стороны равномерно, поэтому результирующий поток фотонов, попадающих на фотокатод в результате замены линзы, увеличивается. А значит, увеличивается и ток насыщения.

Тип 24 № 5558

В установке по наблюдению фотоэффекта свет от точечного источника S, пройдя через собирающую линзу, падает на фотокатод параллельным пучком. В схему внесли изменение: на место первоначальной линзы поставили другую того же диаметра, но с большим фокусным расстоянием. Источник света переместили вдоль главной оптической оси линзы так, что на фотокатод свет снова стал падать параллельным пучком. Как изменился при этом (уменьшился или увеличился) фототок насыщения? Объясните, почему изменяется фототок насыщения, и укажите, какие физические закономерности Вы использовали для объяснения.

По первому закону Столетова фототок насыщения зависит от интенсивности падающего света, то есть от количества фотонов, падающих на фотокатод в единицу времени. При использовании линзы такого же диаметра, но с большим фокусным расстоянием, телесный угол, под которым из источника видно линзу, уменьшается. Фотоны летят от источника во все стороны равномерно, поэтому результирующий поток фотонов, попадающих на фотокатод в результате замены линзы, уменьшается. А значит, уменьшается и ток насыщения.

Тип 18 № 3641

В опыте по изучению фотоэффекта одну из пластин плоского конденсатора облучают светом с энергией фотона 6 эВ. Напряжение между пластинами изменяют с помощью реостата, силу фототока в цепи измеряют амперметром. На графике приведена зависимость фототока I от напряжения U между пластинами. Какова работа выхода электрона с поверхности металла, из которого сделаны пластины конденсатора? (Ответ дать в электрон-вольтах.)

Из графика видно, что фототок пропадает, если подать на пластины конденсатора обратное напряжение в 4 В. Это так называемое запирающее напряжение, когда все вылетающие фотоэлектроны, не успев долететь до противоположной пластины, возвращаются назад под действием электрического поля пластин. Согласно уравнению фотоэффекта Эйнштейна, энергия фотонов связана с работой выхода и запирающим напряжением соотношением: Следовательно, работа выхода для пластины конденсатора равна:

Тип 19 № 25037

При исследовании зависимости кинетической энергии фотоэлектронов от длины волны падающего света фотоэлемент освещался через различные светофильтры. В первой серии опытов использовался светофильтр, пропускающий только красный свет, а во второй — пропускающий только зелёный свет. В каждом опыте наблюдали явление фотоэффекта и измеряли запирающее напряжение. Как изменяются модуль запирающего напряжения и максимальная скорость фотоэлектронов при переходе от первой серии опытов ко второй? Для каждой величины определите соответствующий характер её изменения:

3) не изменяется

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

Уравнение Эйнштейна для фотоэффекта E = Aвых + Ek, причем энергия фотона равна E = hυ, , а максимальная кинетическая энергия фотоэлектронов В опытах металл не менялся, следовательно, работа выхода оставалась неизменной. Светофильтры пропускают свет только одной длины волны. Частота красного света меньше частоты зеленого света. Поэтому фотоны красного света имеют меньшую энергию, а, значит, задерживающее напряжение и максимальная кинетическая энергия фотоэлектронов при освещении красным светом меньше, чем при освещении зеленым светом. Таким образом, при замене красного светофильтра на зеленый, задерживающее напряжение и максимальная кинетическая энергия фотоэлектронов увеличивались.

Задания Д21 № 3158

Квант света выбивает электрон из металла. Как изменятся при увеличении энергии фотона в этом опыте следующие три величины: работа выхода электрона из металла, максимальная возможная скорость фотоэлектрона, его максимальная кинетическая энергия?

Для каждой величины определите соответствующий характер изменения:

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Тип 19 № 11563

В первом опыте по изучению фотоэффекта металлическую пластинку освещают белым светом через синий светофильтр (пропускает только синий цвет), а во втором — через зеленый (пропускает только зеленый цвет). Как изменяются следующие величины при переходе от первого опыта ко второму?

3. не изменилась

Частота падающего на пластинку светаРабота выхода электронов из металла

Из формулы можно сделать вывод, что частота падающего на пластинку света уменьшилась, а работа выхода электронов из металла не изменилась.

Тип 26 № 9163

Чему равна длина волны красной границы фотоэффекта для цезия? Работа выхода для цезия Aвых = 0,29 · 10 –18 Дж. Ответ дайте в нанометрах и округлите до целого числа. (Постоянную Планка примите равной )

Из формулы для работы выхода найдём длину волны красной границы фотоэффекта:

Задания Д21 № 19738

Установите соответствие между физическими опытами и физическими явлениями, которые наблюдаются в этих опытах. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

А) При освещении ярким светом металлической пластины конденсатора из неё вылетают электроны — это можно зарегистрировать, включив конденсатор в электрическую цепь.

1) давление света

2) преломление света

4) интерференция света

А. При освещении светом металлической пластины наблюдается явление фотоэффекта.

Б. Крыльчатка вращается в результате давления, которое оказывает свет.

Тип 19 № 26039

При исследовании зависимости кинетической энергии фотоэлектронов от частоты падающего света фотоэлемент освещался через светофильтры. В первой серии опытов использовался синий светофильтр, а во второй — жёлтый. В каждом опыте измеряли запирающее напряжение.

Как изменяются длина световой волны и напряжение запирания?

Для каждой физической величины определите соответствующий характер изменения.

3) не изменилась

Длина световой волныЗапирающее напряжение

Использование светофильтра позволяет вырезать из спектра определенный участок длин волн. Смена синего светофильтра на жёлтый приводит к увеличению длины световой волны (так как длина волны синего излучения меньше чем жёлтого).

При фотоэффекте энергия падающего излучения расходуется на работу выхода электрона (которая постоянна для вещества из которого выбиваются электроны) и остаток переходит в кинетическую энергию электрона: Энергия падающего излучения уменьшается при увеличении длины волны, следовательно, кинетическая энергия фотоэлектронов также уменьшается

Запирающее напряжение — это напряжение, при котором прекращается фототок. Оно прямо пропорционально кинетической энергии фотоэлектронов, и, значит, тоже будет уменьшаться.

Тип 18 № 2309

Фотоэффект наблюдают, освещая поверхность металла светом с частотой При этом задерживающая разность потенциалов равна U. Частота света увеличилась на Каково изменение задерживающей разности потенциалов? (Ответ выразите в вольтах, округлив до сотых.) Заряд электрона принять равным 1,6·10 −19 Кл, а постоянную Планка — 6,6·10 −34 Дж·с.

Запишем уравнение Эйнштейна для фотоэффекта для начальной частоты света и для измененной частоты Вычтя из второго равенства первое, получим соотношение:

Тип 18 № 2314

Фотоэффект наблюдают, освещая поверхность металла светом с частотой При этом задерживающая разность потенциалов равна U. После изменения частоты света задерживающая разность потенциалов увеличилась на Каково изменение частоты падающего света? (Ответ дайте в 10 14 Гц, округлив до десятых.) Заряд электрона принять равным 1,6·10 −19 Кл, а постоянную Планка — 6,6·10 −34 Дж·с.

Тип 24 № 7933

В опыте по изучению фотоэффекта катод освещается жёлтым светом, в результате чего в цепи возникает ток (рисунок 1). Зависимость показаний амперметра I от напряжения U между анодом и катодом приведена на рисунке 2. Используя законы фотоэффекта и предполагая, что отношение числа фотоэлектронов к числу поглощённых фотонов не зависит от частоты света, объясните, как изменится представленная зависимость I(U), если освещать катод зелёным светом, оставив мощность поглощённого катодом света неизменной.

1. При изменении света с жёлтого на зелёный его длина волны уменьшится, частота увеличится (νз > νж).

2. Работа выхода электронов из материала не зависит от частоты падающего света, поэтому в соответствии с уравнением Эйнштейна для фотоэффекта: hυ = Aвых + Emax — увеличится максимальная кинетическая энергия фотоэлектронов Emax. Так как то увеличится и модуль запирающего напряжения Uз.

3. Мощность поглощённого света связана с частотой волны ν соотношением P = NφEφ = Nφhν, где Nφ — число фотонов, падающих на катод за 1 с, Eφ= hν — энергия одного фотона (соотношение Планка). Так как мощность света не изменилась, а энергия фотонов Eφ увеличилась, то уменьшится число фотонов, падающих на катод за 1 с.

4. Сила тока насыщения Iнас определяется числом выбитых светом за 1 с электронов Ne, которое пропорционально числу падающих на катод за 1 с фотонов, поэтому сила тока насыщения уменьшится.

Ответ: точка отрыва графика от горизонтальной оси U сдвинется влево, горизонтальная асимптота графика Iнас сдвинется вниз.

21. Квантовая физика (изменение физических величин в процессах, установление соответствия)

На металлическую пластинку направили пучок света от лазера, вызвав фотоэффект. Интенсивность лазерного излучения плавно увеличивают, не меняя его частоты. Как меняются в результате этого число вылетающих в единицу времени фотоэлектронов и их максимальная кинетическая энергия?
Для каждой величины определите соответствующий характер изменения:
1) увеличится
2) уменьшится
3) не изменится
Запишите в ответ выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.


При увеличении интенсивности увеличивается количество фотонов, следовательно, увеличивается количество вылетающих электронов.
Максимальная кинетическая энергия зависит от частоты падающего света и не зависит от его интенсивности
Уравнение Энштейна (фотоэффект): \[h\nu=A_>+E_k\]

При освещении металлической пластины светом длиной волны \(\lambda\) наблюдается явление фотоэлектрического эффекта. Установите соответствие между физическими величинами, характеризующими процесс фотоэффекта, перечисленными в первом столбце, и их изменениями во втором столбце при уменьшении в 2 раза длины волны падающего на пластину света. \[\begin <|c|c|>\hline \text < ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ>& \text< ИХ ИЗМЕНЕНИЯ>\\ \hline \text< А) частота световой волны>& \text< 1) остается неизменной>\\ \text < Б) энергия фотона>& \text< 2) увеличивается в 2 раза>\\ \text < В) работа выхода>& \text< 3) уменьшается в 2 раза>\\ \text< Г) максимальная кинетическая энергия фотоэлектрон>а& \text < 4) увеличивается более чем в 2 раза>\\ & \text < 5) увеличивается менее чем в 2 раза>\\ \hline \end\]


При уменьшении длины волны частота света увеличивается \[\nu=\frac<\lambda>\] A) 2
Энергия фотона: \[E=h\nu=\frac<\lambda>\] Б) 2
Работа выхода – это характеристика материала
В) 1
Уравнение Энштейна (фотоэффект): \[h\nu=A_>+E_k\] Г) 4

На дифракционную решётку с периодом \(d\) перпендикулярно её поверхности падает параллельный пучок света с длиной волны \(\lambda\) . Определите, как изменятся число наблюдаемых главных дифракционных максимумов и расстояние от центра дифракционной картины до первого главного дифракционного максимума, если увеличить длину волны падающего света.
Для каждой величины определите соответствующий характер изменения:
1) увеличится;
2) уменьшится;
3) не изменится.
Запишите в ответ цифры, расположив их в порядке, соответствующем таблице:


Дифракционная решетка: \[dsin\varphi=m\lambda\] Число наблюдаемых максимумов определяется, когда \(sin\varphi=1\)
При увеличении длины волны число наблюдаемых максимумов уменьшается.
Из формулы дифракционной решетки при увеличении длины волны угол, под которым наблюдается максимум увеличивается, следовательно, расстояние между максимумами увеличивается.

На металлическую пластинку падает пучок монохроматического света. При этом наблюдается явление фотоэффекта. На графиках в первом столбце представлены зависимости энергии от длины волны \(\lambda\) и частоты света \(\nu\) . Установите соответствие между графиком и той энергией, для которой он может определять представленную зависимость. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

ВИД ЗАВИСИМОСТИ
1) зависимость максимальной кинетической энергии фотоэлектронов от частоты падающего света
2) зависимость энергии падающих фотонов от частоты падающего света
3) зависимость энергии падающих фотонов от длины волны света
4) зависимость потенциальной энергии взаимодействия
фотоэлектронов с ионами металла от длины волны падающего света


А) График представляет собой часть гиперболы, следовательно, это энергия падающих фотонов от длины волны: \[E=\dfrac<\lambda>\] т.к. длина волны находится в знаменателе.
Б) Рассмотрим уравнение Энштейна: \[h\nu =A+E_\] если \(h \nu < A\) , то кинетическая энергия равна 0, а если \(h\nu>A\) , то кинетическая энергия больше 0, следовательно под Б номер 1

На металлическую пластинку падает пучок монохроматического света. При этом наблюдается явление фотоэффекта. На графике А представлена зависимость энергии фотонов, падающих на катод, от физической величины \(x_1\) , а на графике Б – зависимость максимальной кинетической энергии фотоэлектронов от физической величины \(x_2\) . Какая из физических величин отложена на горизонтальной оси на графике А и какая – на графике Б?
К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.


ФИЗИЧЕСКАЯ ВЕЛИЧИНА x
1) длина волны
2) массовое число
3) заряд ядра
4) частота


А) График представляет собой часть гиперболы, следовательно, это энергия падающих фотонов от длины волны: \[E=\dfrac<\lambda>\] т.к. длина волны находится в знаменателе.
Б) Рассмотрим уравнение Энштейна: \[h\nu =A+E_\] если \(h \nu < A\) , то кинетическая энергия равна 0, а если \(h\nu>A\) , то кинетическая энергия больше 0, следовательно под Б номер 4

Интенсивность монохроматического светового пучка плавно увеличивают, не меняя длину волны света. Как изменяются при этом запирающее напряжение и скорость каждого фотона? Для каждой величины определите соответствующий характер изменения:

Для каждой величины определите соответствующий характер изменения:
1) увеличится
2) уменьшится
3) не изменится
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

“Досрочная волна 2019 вариант 1”


От интенсивности не зависит ни скорость, ни запирающее напряжение: \[h\nu = A+ eU=A+\dfrac\]

Презентация по физике "Решение задач повышенной сложности" 10-11 класс

После того как вы поделитесь материалом внизу появится ссылка для скачивания.

Подписи к слайдам:

Презентация занятия кружка по физике для учащихся 10-11 классов (решение задач повышенной сложности) Тема занятия: «Фотоэффект» Длительность занятия: 80 минут Составила: Брехова В.Н Учитель МОУ СШ №102 Дзержинского района Волгограда 2015-2016 учебный год

При изучении явления фотоэффекта исследовалась зависимость энергии Ефэ вылетающих из освещенной пластины фотоэлектронов от частоты падающего света. Погрешности измерения частоты света и энергии фотоэлектронов составляли соответственно 5×1013 Гц и 4×10–19 Дж. Результаты измерений с учетом их погрешности представлены на рисунке. Согласно этим измерениям, постоянная Планка приблизительно равна

Четырёх учеников попросили нарисовать общий вид графика зависимости фототока насыщения I от интенсивности J падающего света. Какой из приведённых рисунков выполнен правильно?

Какой график соответствует зависимости максимальной кинетической энергии фотоэлектронов Е от частоты v падающих на вещество фотонов при фотоэффекте?

Слой оксида кальция облучается светом и испускает электроны. На рисунке показан график изменения максимальной энергии фотоэлектронов в зависимости от частоты падающего света. Какова работа выхода фотоэлектронов из оксида кальция?

На металлическую пластинку падает электромагнитное излучение, выбивающее из неё электроны, кинетическая энергия которых принимает значения от 0 до 3 эВ. Работа выхода электронов из металла равна 5 эВ. Чему равна энергия фотонов, падающих на пластинку?

В опытах по фотоэффекту взяли пластину из металла с работой выхода 3,4×10–19 Дж и стали освещать ее светом частоты 6×1014Гц. Затем частоту уменьшили в 2 раза, одновременно увеличив в 1,5 раза число фотонов, падающих на пластину за 1 с. В результате этого число фотоэлектронов, покидающих пластину за 1 с

1) увеличилось в 1,5 раза

2) стало равным нулю

3) уменьшилось в 2 раза

4) уменьшилось более чем в 2 раза

В опытах по фотоэффекту взяли пластину из металла с работой выхода 3,4×10–19 Дж и стали освещать ее светом частоты 3×1014Гц. Затем частоту увеличили в 2 раза, оставив неизменным число фотонов, падающих на пластину за 1 с. В результате этого число фотоэлектронов, покидающих пластину за 1 с

В опытах по фотоэффекту взяли пластину из металла с работой выхода 3,4×10– 19 Дж и стали освещать ее светом частоты 6×1014Гц. Затем частоту уменьшили в 2 раза, одновременно увеличив в 1,5 раза число фотонов, падающих на пластину за 1 с. В результате этого максимальная кинетическая энергия фотоэлектронов

Металлическую пластину освещают светом с энергией фотонов 6,2 эВ. Работа выхода для металла пластины равна 2,5 эВ. Какова максимальная кинетическая энергия образовавшихся фотоэлектронов?

Найдите задерживающую разность потенциалов U, при которой прекращается фототок в вакуумном фотоэлементе при облучении светом катода с работой выхода Aвых=2 эВ, если энергия фотонов равна 4,1 эВ.

Найдите задерживающую разность потенциалов U, при которой прекращается фототок в вакуумном фотоэлементе при облучении светом катода с работой выхода Aвых=2 эВ, если энергия фотонов равна 8,1 эВ.

При исследовании зависимости кинетической энергии фотоэлектронов от длины волны падающего света фотоэлемент освещался через различные светофильтры. В первой серии опытов использовался светофильтр, пропускающий только зелёный свет, а во второй – пропускающий только фиолетовый свет. В каждом опыте наблюдали явление фотоэффекта и измеряли запирающее напряжение. Как изменяются длина световой волны и запирающее напряжение при переходе от первой серии опытов ко второй?

Для каждой величины определите соответствующий характер её изменения:

На металлическую пластинку направили пучок света от лазера, вызвав фотоэффект. Интенсивность лазерного излучения плавно увеличивают, не меняя его частоты. Как меняются в результате этого число вылетающих в единицу времени фотоэлектронов и их максимальная кинетическая энергия?

Кванты света с длиной волны 660 нм вырывают с поверхности металла фотоэлектроны, которые описывают в однородном магнитном поле с индукцией 1 мТл окружности максимальным радиусом 2 мм. Определите работу выхода электрона из металла.

Электроны, вылетевшие в положительном направлении оси OX под действием света с катода фотоэлемента, попадают в электрическое и магнитное поля (см. рисунок). Какой должна быть частота падающего света ν, чтобы в момент попадания самых быстрых электронов в область полей действующая на них сила была направлена против оси OY? Работа выхода для вещества катода 2,39 эВ, напряжённость электрического поля 3⋅102 В/м, индукция магнитного поля 10−3 Тл.

Презентация "Решение задач по физике повышенной сложности"

Задача №1
При изучении явления фотоэффекта исследовалась зависимость энергии Ефэ вылетающих из освещенной пластины фотоэлектронов от частоты падающего света. Погрешности измерения частоты света и энергии фотоэлектронов составляли соответственно 5×1013 Гц и 4×10–19 Дж. Результаты измерений с учетом их погрешности представлены на рисунке. Согласно этим измерениям, постоянная Планка приблизительно равна
1) 2×10–34 Дж×с
2) 5,0×10–34 Дж×с
3) 6,9×10–34 Дж×с
4) 9×10–34 Дж×с

Задача №2
Четырёх учеников попросили нарисовать общий вид графика зависимости фототока насыщения I от интенсивности J падающего света. Какой из приведённых рисунков выполнен правильно?
1)
2)
3)
4)
Задача №3
Какой график соответствует зависимости максимальной кинетической энергии фотоэлектронов Е от частоты v падающих на вещество фотонов при фотоэффекте?

Задача №4
Слой оксида кальция облучается светом и испускает электроны. На рисунке показан график изменения максимальной энергии фотоэлектронов в зависимости от частоты падающего света. Какова работа выхода фотоэлектронов из оксида кальция?

Задача №5
На металлическую пластинку падает электромагнитное излучение, выбивающее из неё электроны, кинетическая энергия которых принимает значения от 0 до 3 эВ. Работа выхода электронов из металла равна 5 эВ. Чему равна энергия фотонов, падающих на пластинку?
1) 5 эВ
2) 2 эВ
3) 3 эВ
4) 8 эВ

1) увеличилось в 1,5 раза
2) стало равным нулю
3) уменьшилось в 2 раза
4) уменьшилось более чем в 2 раза

Задача №7
В опытах по фотоэффекту взяли пластину из металла с работой выхода 3,4×10–19 Дж и стали освещать ее светом частоты 3×1014Гц. Затем частоту увеличили в 2 раза, оставив неизменным число фотонов, падающих на пластину за 1 с. В результате этого число фотоэлектронов, покидающих пластину за 1 с
Задача №8
В опытах по фотоэффекту взяли пластину из металла с работой выхода 3,4×10– 19 Дж и стали освещать ее светом частоты 6×1014Гц. Затем частоту уменьшили в 2 раза, одновременно увеличив в 1,5 раза число фотонов, падающих на пластину за 1 с. В результате этого максимальная кинетическая энергия фотоэлектронов

Задача №9
Металлическую пластину освещают светом с энергией фотонов 6,2 эВ. Работа выхода для металла пластины равна 2,5 эВ. Какова максимальная кинетическая энергия образовавшихся фотоэлектронов?

Задача №10
Найдите задерживающую разность потенциалов U, при которой прекращается фототок в вакуумном фотоэлементе при облучении светом катода с работой выхода Aвых=2 эВ, если энергия фотонов равна 4,1 эВ.
Задача №11
Найдите задерживающую разность потенциалов U, при которой прекращается фототок в вакуумном фотоэлементе при облучении светом катода с работой выхода Aвых=2 эВ, если энергия фотонов равна 8,1 эВ.
Задача №12
При исследовании зависимости кинетической энергии фотоэлектронов от длины волны падающего света фотоэлемент освещался через различные светофильтры. В первой серии опытов использовался светофильтр, пропускающий только зелёный свет, а во второй – пропускающий только фиолетовый свет. В каждом опыте наблюдали явление фотоэффекта и измеряли запирающее напряжение. Как изменяются длина световой волны и запирающее напряжение при переходе от первой серии опытов ко второй?
Для каждой величины определите соответствующий характер её изменения:
1) увеличивается
2) уменьшается
3) не изменяется

На металлическую пластинку направили пучок света от лазера, вызвав фотоэффект. Интенсивность лазерного излучения плавно увеличивают, не меняя его частоты. Как меняются в результате этого число вылетающих в единицу времени фотоэлектронов и их максимальная кинетическая энергия?
Для каждой величины определите соответствующий характер изменения:

1) увеличивается
2) уменьшается
3) не изменяется

Кванты света с длиной волны 660 нм вырывают с поверхности металла фотоэлектроны, которые описывают в однородном магнитном поле с индукцией 1 мТл окружности максимальным радиусом 2 мм. Определите работу выхода электрона из металла.

Задача №15
Электроны, вылетевшие в положительном направлении оси OX под действием света с катода фотоэлемента, попадают в электрическое и магнитное поля (см. рисунок). Какой должна быть частота падающего света ν, чтобы в момент попадания самых быстрых электронов в область полей действующая на них сила была направлена против оси OY? Работа выхода для вещества катода 2,39 эВ, напряжённость электрического поля 3⋅102 В/м, индукция магнитного поля 10−3 Тл.

Рабочие листы и материалы для учителей и воспитателей

Более 3 000 дидактических материалов для школьного и домашнего обучения

Читайте также: