На что расходуется энергия затрачиваемая в процессе совершения работы выхода электрона из металла

Обновлено: 22.01.2025

Цель работы: построение и изучение вольтамперной характеристики двухэлектродной лампы (диода); исследование зависимости плотности тока насыщения термоэлектронной эмиссии от температуры катода и определение работы выхода электрона из вольфрама методом прямых Ричардсона.

Теоретическое введение

Свойства металлов в значительной степени определяются состоянием электронов проводимости, т.е. электронов, способных перемещаться в металле.


Распределение энергии электрона для металла изображено на энергетической диаграмме (рис. 9.1). За нулевую энергию здесь выбрана энергия свободного электрона вне металла с кинетической энергией, равной нулю. Пунктиром изображены незанятые энергетические уровни при Т=0 К. Энергетические уровни электронов обозначены тонкими горизонтальными линиями, заполняющими интервал энергий от дна потенциальной ямы до энергии ЕF. EF – энергия Ферми, максимальная кинетическая энергия, которой может обладать электрон при Т=0 К.

Электронам, находящимся в потенциальной яме на разных уровнях энергии, для выхода за пределы металла необходимо сообщать разную энергию. Минимальная кинетическая энергия, необходимая для удаления электрона из металла

называется работой выхода электрона из металла в вакуум при Т=0 К.

При температуре Т>0 К электроны находятся в тепловом равновесии, поэтому к энергии Ферми прибавляется еще некоторая тепловая энергия. Величина работы выхода зависит от состояния поверхности металла. Положение уровня Ферми при нагреве металла вплоть до расплавления практически не меняется, но при этом возникает некоторое число (небольшой процент) быстрых электронов, которые способны преодолеть работу выхода и выйти из металла.

Рассмотрим природу сил, препятствующих выходу электронов из металла и образующих работу выхода АВЫХ. Отдельные электроны проводимости, двигаясь внутри металла с большими скоростями, могут пересекать поверхность металла. Вылетевший из металла электрон удаляется от поверхности до тех пор, пока кулоновское взаимодействие с избыточным положительным зарядом, возникшим на месте, которое покинул электрон, не заставит его вернуться обратно.

Постоянно одни электроны "испаряются" с поверхности металла, другие возвращаются обратно. Поэтому металл оказывается окутанным облаком электронов, образующих совместно с наружным слоем положительных ионов двойной электрический слой, подобно плоскому конденсатору. Поле двойного слоя препятствует выходу электронов из металла.

Другой силой, препятствующей выходу электрона из металла, является кулоновская сила индуцированного им положительного заряда (рис. 9.2). Эта сила носит название "силы электрического изображения", так как действие распределенного по поверхности проводника заряда эквивалентно действию равного по величине положительного заряда, являющегося зеркальным изображением электрона в плоскости РР. Оба этих физических процесса и определяют величину АВЫХ. При комнатной температуре практически все свободные электроны заперты в пределах проводника; имеется лишь небольшое количество электронов, энергия которых достаточна для того, чтобы преодолеть потенциальный барьер и выйти из металла.

Однако электронам можно различными способами сообщить дополнительную энергию. В этом случае часть электронов получает возможность покинуть металл, и наблюдается испускание электронов – электронная эмиссия. В зависимости от того, каким способом сообщена электронам энергия, различают типы электронной эмиссии. Если электроны получают энергию за счет тепловой энергии тела при повышении его температуры, можно говорить о термоэлектронной эмиссии. Если энергия подводится светом, имеем явление фотоэмиссии. Если энергия сообщается электронам при бомбардировке извне какими-то другими частицами, наблюдается вторичная эмиссия.

Для наблюдения термоэлектронной эмиссии можно использовать вакуумную лампу, содержащую два электрода: накаливаемый током катод и холодный электрод, собирающий термоэлектроны – анод. Такие лампы носят название вакуумных диодов. На рис. 9.3 изображена схема включения такого диода. Ток в этой цепи появляется только в том случае, если положительный полюс батареи соединен с анодом, а отрицательный – с катодом. Сила термоэлектронного тока в диоде зависит от величины потенциала анода относительно катода.

Кривая, изображающая зависимость силы тока в диоде от анодного напряжения, называется вольтамперной характеристикой (ВАХ). На рис. 9.4 показаны вольтамперные характеристики диода при разных температурах катода. Когда потенциал анода равен нулю, сила тока мала, она определяется лишь самыми быстрыми термоэлектронами, способными достигнуть анода. При увеличении положительного потенциала анода сила тока возрастает и затем достигает насыщения, т.е. почти перестает зависеть от анодного напряжения.

При увеличении температуры катода увеличивается и значение тока, при котором достигается насыщение. Одновременно увеличивается и то анодное напряжение, при котором устанавливается ток насыщения.

Таким образом, вольтамперная характеристика диода оказывается нелинейной, т.е. не выполняется закон Ома. Это объясняется тем, что при термоэлектронной эмиссии у поверхности катода создается довольно большая плотность электронов. Они создают общий отрицательный заряд, и электроны, вылетающие с малой скоростью, не могут его проскочить. С увеличением анодного напряжения концентрация электронов в облаке пространственного заряда уменьшается. Поэтому и тормозящее действие пространственного заряда делается меньше, а анодный ток растет быстрее, чем в прямой зависимости от анодного напряжения. Таким образом, главным физическим фактором, влияющим на нелинейность вольтамперной характеристики диода, является объемный заряд в прикатодном пространстве.

Теоретическая зависимость анодного тока от анодного напряжения на участке 1–2 (рис. 9.4) была получена Ленгмюром и Богуславским. Она называется еще “законом трех вторых”:

По мере роста анодного напряжения Uа все больше электронов, вылетевших из катода, достигает анода. При достаточно большой разности потенциалов наблюдается отклонение от закона “трех вторых”. С возрастанием анодного напряжения темп роста анодного тока замедляется и график зависимости Ia(Ua) выходит на практически горизонтальный участок (рис.9.4); достигается насыщение. При определенном значении анодного напряжения Ua все вылетевшие из катода за единицу времени электроны достигают анода, и дальнейший рост анодного напряжения не может увеличить силу анодного тока. Максимальный термоэлектронный ток, возможный при данной температуре катода, называется током насыщения.

При повышении температуры увеличивается скорость хаотического движения электронов в металле. При этом число электронов, способных покинуть металл, резко возрастает. Плотность тока насыщения, т.е. сила тока насыщения на единицу площади поверхности катода S, вычисляется по формуле Ричардсона – Дешмана:

где В – эмиссионная постоянная; k – постоянная Больцмана, k = 1.38∙10 -23 Дж/К. Плотность тока насыщения характеризует эмиссионную способность катода, которая зависит от природы катода и его температуры.

Экспоненциальная зависимость в (9.3) показывает, что си­ла то­ка на­сы­ще­ния силь­но зави­сит от ра­бо­ты вы­хо­да элек­тро­нов из ме­тал­ла. Для чис­тых ме­тал­лов зна­чи­тель­ный ток мо­жет быть по­лу­чен лишь при тем­пе­ра­ту­ре по­ряд­ка 2000 К. Же­ла­тель­но, что­бы ра­бо­та вы­хо­да бы­ла как мож­но мень­ше. Для по­вы­шения эмис­си­он­ной спо­соб­но­сти на ка­тод на­но­сит­ся мо­но­атом­ный слой щелочно­зе­мель­ных ато­мов, зна­чи­тель­но по­ни­жаю­щих ра­бо­ту вы­хо­да.

Методика измерений

Измеряя на опыте зависимость тока насыщения от температуры, можно определить работу выхода для данного металла. В нашем случае для определения работы выхода используется метод прямых Ричардсона. Прологарифмируем уравнение (9.3):

График зависимости от является прямой линией с угловым коэффициентом (рис.9.5). Определив тангенс угла наклона прямой к оси абсцисс, можно найти работу выхода:

Для построения графика необходимо знать плотность анодного тока насыщения jнас и температуру катода. Температуру можно найти разными способами:

а) Подводимая к катоду мощность расходуется в вакуумной лампе в основном на тепловое излучение. Для вольфрама была экспериментально определена зависимость температуры катода от расходуемой на его нагрев

джоулевой мощности, приходящейся на единицу площади поверхности катода. На графике (рис. 9.8), который прилагается к работе, приведены результаты этих измерений. По этому графику, зная мощность, подводимую к катоду, можно определить его температуру.

б) По температурной зависимости сопротивления катода:

где – сопротивление катода, нагретого до тем­пе­ра­ту­ры Т, Ro=1.5 Ом – со­про­тив­ле­ние ка­то­да при ком­нат­ной тем­пе­ра­ту­ре; Т0= 300 К.

Экспериментальная часть

ВАРИАНТ 1 (ФПЭ-06 – новая установка)

Приборы и оборудование: ИП – источник питания, ФПЭ-06 – модуль “Определение работы выхода”, PV – вольтметр (прибор Ф-214 1/2), PA – амперметр (прибор Ф-214 1/4).

Экспериментальная установка


Электрическая схема для проведения опыта представлена на (рис. 9.6 и 9.7). В качестве диода в работе используется радиолампа с вольфрамовым катодом прямого накала. Нагрев катода осуществляется постоянным током. Амперметр и вольтметр в цепи накала служат для определения мощности, расходуемой на нагрев катода, что необходимо для определения температуры.

Амперметр на панели источника питания служит для контроля тока накала IН, максимальное значение которого не должно превышать 2.2 А. Плавная регулировка напряжения накала осуществляется ручкой, расположенной под амперметром. Напряжение накала UН измеряется вольтметром (PV), который подключается к тем клеммам на источнике питания, где указано напряжение 2,5–4,5 В. Вольтметр на панели источника питания измеряет анодное напряжение UА, регулировка которого осуществляется ручкой на панели источника питания, расположенной непосредственно под вольтметром. Для измерения анодного тока IН используется амперметр, который подключается к модулю ФПЭ-06 к клеммам РА. Он должен работать в режиме миллиамперметра, измеряя ток до 20 mA.

Порядок выполнения работы

1. Подключить модуль ФПЭ-06 соединительным кабелем к источнику питания.

2. Установить напряжение накала UН равным 3.7 В, измерить и записать силу тока накала IH и, увеличивая анодное напряжение в интервале от 10 до 100 В через каждые 10 В, измерять значение анодного тока IА. Все результаты записать в табл. 9.1.

Таблица 9.1

UH=3.7 B, IH= А UH=3.9 B, IH= А UH=4 B, IH= А UH=4.2 B, IH= А UH=4.3 B, IH= А
UA, B IA, A UA, B IA, A UA, B IA, A UA, B IA, A UA, B IA, A

3. Провести измерения (пункт 2) для следующих значений напряжения накала UН: 3.9; 4.0; 4.2; 4.3 В.

4. Для каждого значения тока накала построить вольтамперную характеристику и точку перегиба полученной кривой считать точкой насыщения.

5. Для всех значений напряжения накала рассчитать мощность, выделяемую на катоде, по формуле: ,а также мощность, приходящуюся на единицу площади катода: . Для данной лампы площадь поверхности катода принять Sn=3.52×10 -2 см 2 .

6. По графику (рис. 9.8) зависимости температуры катода от расходуемой на его нагрев мощности определить температуру катода для каждого значения мощности нагрева.

7. Рассчитать плотность анодного тока насыщения по формуле , принять S=11×10 -6 м2 .

8. Все полученные данные занести в табл. 9.2.

№ п/п IНАС, мA IH, A UH, В P/Sn, Bт/см 2 Т, К 1/Т, К -1 jНАС, мA/м 2

9. Построить график зависимости от (1/Т), откладывая по оси абсцисс х=(1/Т), а по оси ординат – (рис.9.5).

10. Определить тангенс угла наклона α полученной прямой к оси абсцисс:

и рассчитать работу выхода по формуле (9.5): . Все данные занести в таблицу 9.3.

11. Сделать выводы.

, К -1 , К , Дж , эВ

ВАРИАНТ 2 (старая установка)

Приборы и оборудование: ва­ку­ум­ный ди­од, циф­ро­вые при­бо­ры Щ4313 для из­ме­рения то­ков и на­пря­же­ний, по­тен­цио­мет­ры, ис­точ­ник по­сто­ян­но­го то­ка.


Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.


Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.


Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

© cyberpedia.su 2017-2020 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

Работа выхода электронов из металла. Термоэлектронная эмиссия

Электроны проводимости в металлах образуют своеобразный электронный газ и участвуют в тепловом движении. Но поскольку они удерживаются в объеме металла, а не разлетаются из него, значит, вблизи поверхности металла существуют силы, действующие на элек­троны и направленные внутрь металла. Для того чтобы электрон вы­вести за пределы металла необходимо совершить определенную ра­боту против удерживающих его сил.

Работой выхода А электрона из металла называется работа, которую нужно совершить при удалении электрона из металла в ва­куум.

Электрон – заряженная частица и сила, препятствующая его выходу из металла, имеет электрическую природу. Существуют две наиболее вероятные причины возникновения этой силы, а следова­тельно, и работы выхода.

Электрон, обладая достаточной кинетической энергией, может покинуть поверхность металла. На поверхности металла в результате этого индуцируется положительный заряд, отчего между электроном и металлом возникает сила притяжения, препятствующая удалению электрона. Работа этой силы представляет часть работы выхода.

Электроны вследствие хаотического движения способны пере­секать поверхность металла и удаляться от нее на малые расстояния. При этом число электронов, покидающих поверхность металла, равно числу электронов, возвращающихся в металл и на границе металл-ва­куум поддерживается динамическое равновесие электронов.

Над поверхностью металла, таким образом, существует элек­тронная “атмосфера “ т.е. у поверхности образуется как бы двойной электрический слой (напоминающий плоский заряженный конденса­тор. Рис.97)

Электрическое поле такого двойного электрического слоя заключено в малом зазоре над поверхностью металла, и прохождение электрона через этот двойной электрический слой сопровождается совершением определенной работы, связанной с разностью потенциалов А = е φ. Величину φ называют потенциальным барьером. Полная работа вы­хода электрона обуславливается обеими этими причинами.

Если электрон внутри металла имеет кинетическую энергию

то он может покинуть объем металла. Работа выхода для металлов имеет порядок величины несколько эВ. Энергия же теплового движения электронов в металле при комнатной температуре (Т ≃ 300 0 К) имеет величину порядка ∼ 0,03 эВ. По­этому подавляющее большинство электронов будет связано в преде­лах металла. Однако, если электронам сообщить дополнительную энергию, то часть из них получает возможность покинуть металл и мы наблю­даем явление испускания электронов, называемое электронной эмис­сией. Различают различные типы электронной эмиссии. Если элек­троны получают энергию за счет тепловой энергии при повышении температуры, то такая эмиссия называется термоэлектронной.

При подведении энергии светом наблюдается фотоэмиссия, при бомбар­дировке поверхности какими-либо частицами наблюдается вторич­ная электронная эмиссия. Эмиссия под действием сильного элек­трического поля называется автоэлектронной.Термоэлектронную эмиссию можно наблюдать на электронной лампе – электрова­куумном диоде (рис. 98), состоящим из анода А и накаливаемого катода К, включенных в элек­трическую цепь. Ток диода (анодный ток) имеет зависимость “степени 3/2”

I = c· U 3/2 , где U – анодное напряжение; с – const.

Плотность тока насыщения, когда все вылетающие с катода электроны (при дан­ной температуре катода) достигают анода, определяют по формуле Ричардсона-Дэшмана

где А – постоянная Ричардсона-Дэшмана =6,02·10 5 А/м 2 ·К 2 , Т – абсолютная температура катода, – работа выхода материала катода, k – постоянная Больцмана.

Электрический ток в газах

Газы, состоящие из нейтральных молекул и атомов, не прово­дят электрический ток. Для возникновения электропроводности газов они должны быть ионизированы.

Ионизацией молекулы или атома называется процесс отщеп­ления или отрыва от них одного или нескольких электронов в результате чего возникают положительный ион и электроны. Если нейтральный атом и молекула присоединяют электрон, то возникает отрицательный ион. Процесс, обратный ионизации, т.е. такой, при котором элек­троны, присоединяясь к положительному иону, образуют нейтраль­ную молекулу или атом, называется рекомбинацией.

Для ионизации молекулы (атома) небходимо совершить работу ионизации Аi против сил притяжения между вырываемым электроном и атомным остатком. Эта работа зависит от вида атома, кратности ионизации, энергетического состояния. Потенциалом ионизации φi называется разность потенциалов в ускоряющем поле, которую должна пройти заряженная частица, чтобы накопить энергию, равную работе ионизации

Ионизация газов вызывается бомбардировкой его атомов и молекул заряженными части­цами (электронами, ионами, α-частицами), нейтронами, электромаг­нитным излучением.

Газовым разрядом называется процесс прохождения электри­ческого тока через газ. Различают самостоятельный и несамостоятельный газовые разряды. Предположим, что на газовый промежуток действует какой-либо ионизатор (например, ультрафиолетовые или рентгеновские лучи, падающие на ка­тод и выбивающие из него фотоэлектроны), в результате чего газ становится электропроводящим и в цепи поте­чет ток (рис. 99а). Увеличение анодного на­пряжения приведет к изменению тока в цепи. Вольтамперную ха­рактеристику можно разделить на 4 участка (рис. 99б). На первом участке кривой при небольших напряжениях выполняется закон Ома. Плотность тока в газовом промежутке равна

где n0 – число пар противопо­ложно заряженных частиц в еди­нице объема; u+ и u- - подвиж­ность этих частиц;

е – заряд электрона;

Е – напряженность поля.

На 2-м участке кривой на­блюдается отклонение от закона Ома, вызванное убыванием кон­центрации ионов в газе и ток достигает насыщения IН при не­котором значении UН. Увеличе­ние напряжения на участке 3 кри­вой не приводит к увеличению тока, т.е. все образующиеся в газе электроны и ионы достигают анода и катода.

Газовый разряд, который поддерживается вследствие действия внешнего ионизатора, получил название несамостоятельного.

Если в одном из режимов разряда на участках кривой 1-2-3 действие внешнего ионизатора прекратить, то разряд прекратится. Дальнейшее увеличение анодного напряжения приводит к резкому возрастанию анодного тока. Это происходит вследствие того, что электроны под действием поля приобретают энергию, достаточную для ионизации молекул и атомов газа. Процесс такой ионизации но­сит лавинный характер.

За время свободного пробега в сильном электрическом поле электрон(e) успевает приобрести энер­гию, достаточную для того, чтобы столкнувшись с молекулой(M), вызвать ее ионизацию.

При этом образуется положитель­ный ион и добавочный электрон.

Эти два электрона в свою очередь набрав нужную энергию ионизируют два атома, а образовавшиеся (2+2) электрона ионизируют следующие 4 атома и удвоят количество электронов и т.д. Таким образом, происходит лавинообразное раз­множение первичных ионов, созданных внешним ионизатором, и уси­ление разрядного тока как показано на рис. 100.

Самостоятельным газовым разрядом называется электрический разряд в газе, который продолжается после прекращения действия внешнего ионизатора. Для существования самостоятельного газового разряда необходимо, чтобы электронные лавины поддерживали сами себя, т.е. чтобы в газе происходил еще и другой процесс, непрерывно воспроизводящий новые электроны взамен ушедших на анод.

Такими могут быть процессы вторичной электронной эмиссии с катода в результате его бомбардировки ускоренными положитель­ными ионами, фотоэффект, соударения положительных ионов с ней­тральными молекулами и атомами.

Виды газовых разрядов:

Тлеющий – наблюдаемый при давлениях 0,1 – 0,01 мм. рт. ст., применяется в газовых трубках, лампах дневного света ( красное све­чение у неона, синевато-зеленое – у аргона, желтоватые – у натрия).

Искровой разряд – возникает между электродами при силь­ных полях – на воздухе Екрит ≃ 3·10 6 В/м или 30 кВ/см, в вакууме Ек­рит выше.

Коронный разряд – когда вследствие высокой напряженности на острие электрода начинает развиваться лавинный процесс, но вследствие снижения напряженности поля по мере удаления от ост­рия эта лавина не достигает анода.

Молния – вид искрового разряда. Токи 10 4 - 5 ·10 5 А. ΔU 10 8 - 10 9 В, длительность мкс., заряд 0,1 – 200 Кл. Сильное разо­гревание воздуха приводит к возникновению ударной звуковой волны – грому.

Дуговой разряд – при низком сопротивлении цепи искровой разряд переходит в дуговой, который протекает при высоких токах в десятки и сотни ампер.

Работа выхода электронов из металла. Контактные явления

Электроны проводимости в кристалле находятся в потенциальной яме. Выход из нее требует совершения работы по преодолению силы, действующей на электрон со стороны кристалла. Найдем эту силу. Обладая энергией теплового движения, электроны могут выскакивать из кристалла на расстояние в несколько периодов. Вышедший из кристалла и находящийся у его поверхности на расстоянии х электрон индуцирует в металле заряд е+ (рис.97). Этот наведенный заряд действует на вышедший электрон так, как если бы он был сосредоточен под поверхностью металла на глубине х в точке, симметричной той, в которой находится электрон (см. Эл-во §5). Индуцированный заряд е+ называется электрическим изображением заряда е-. Оба точечные заряда притягиваются друг к другу с силой Кулона . (14.1)

Но это и есть сила притяжения металлом вышедшего из него электрона. Под действием этой силы электрон втягивается обратно в металл. Чтобы удалить электрон из металла, надо совершить работу по преодолению этой силы, перемещая электроны на бесконечность из точки, расположенной на расстоянии х0 от поверхности металла. В качестве х0 можно взять межатомное расстояние.

На рис.98 показана зависимость потенциальной энергии электрона от расстояния х до атомной плоскости – стенки металла. Энергетическое расстояние еj от уровня Ферми до нулевого уровня называют термодинамической работой выхода электрона, величину jпотенциалом выхода. Уровень Ес обозначает дно зоны проводимости, где Е = 0. У металлов работа выхода еj заключена в пределах 1,8 ¸ 5,3 эВ. Меньше всего она у щелочных металлов, больше – у золота, серебра, платины (табл. 14.1).

Таблица 14.1
Металл еj, эВ Металл еj, эВ
Литий Li 2,38 Платина Pt 5,32
Натрий Na 2,35 Ванадий V 4,58
Калий К 2,22 Вольфрам W 4,54
Рубидий Rb 2,16 Золото Au 4,30
Цезий Cs 1,18 Серебро Ag 4,30

Большое влияние на работу выхода оказывают мономолекулярные адсорбированные слои. Например, слой атомов цезия Cs на вольфраме W (рис.99). Цезий щелочной металл. Его внешний, валентный электрон связан с ядром значительно слабее, чем валентные электроны в вольфраме. Поэтому атомы цезия отдают вольфраму свои валентные электроны и превращаются в положительные ионы. Между этими ионами и их электрическими изображениями в вольфраме возникает сила притяжения, удерживающая ионы цезия на поверхности вольфрама. Поле этого двойного электрического слоя помогает выходу электронов из вольфрама. По этому в присутствии слоя цезия работа выхода электрона из вольфрама уменьшается с 4,54 эВ до 1,38 эВ. Подобно цезию действуют одноатомные слои бария Ba, церия Cе, тория Th и др.

2. Термоэлектронная эмиссия.

С повышением температуры металла поверхность Ферми разрыхляется, энергия электронов увеличивается, и они поднимаются на более высокие уровни (рис.100). Соответственно уменьшается работа выхода электронов. Поэтому концентрация вылетевших из кристалла электронов в пристеночном слое растет. Процесс испускания электронов нагретым металлом называется термоэлектронной эмиссией.

Формально термоэлектронная эмиссия есть всегда, когда Т > 0 К. Но заметной она становится при температурах Т > 800 К.

Облако термоэлектронов находится в динамическом равновесии. Число вылетевших из металла электронов в каждый промежуток времени примерно равно числу электронов, втянутых в металл. Поэтому суммарный ток эмиссии равен нулю.

На основе термоэлектронной эмиссии построен ламповый вакуумный диод (рис.101). Здесь К – катод, обычно нагреваемая вольфрамовая спираль, А – анод, холодная металлическая пластина обычно цилиндрической формы. По оси этого цилиндра натягивается спираль катода. Оба электрода помещаются в стеклянный сосуд с высоким вакуумом.

Если между катодом и анодом создавать электрическое поле с напряжением U, как показано на рис.101, то термоэлектроны под действием этого поля будут перемещаться от катода к аноду. Возникает электрический ток в вакууме. Вольтамперная характеристика вакуумного диода показана на рис.102. С повышением анодного напряжения U ток I через анод растет почти пропорционально U. Но при достижении некоторого значенья Iнас перестает увеличиваться. Это предельное значение Iнас называют ток насыщением. Он возникает тогда, когда все электроны, вылетевшие из нагретого катода, захватываются полем и переносятся к аноду.

С повышением температуры катода ток насыщения увеличивается. Разделив ток насыщения на поверхность S катода, получаем плотность тока насыщения jнас = iнасçS. В 1901г. Оуэн Ричардсон, исходя из классических представлений, теоретически нашел зависимость плотности тока насыщения от температуры поверхности катода. Уточненная Дешманом в 1923г. с учетом квантовых представлений, зависимость jнас(Т) имеет вид: . Формула Ричардсона-Дэшмана (14.2)

Здесь еj – работа выхода, А – константа, имеющая разное значение у разных металлов и колеблющаяся около теоретического значения А= 1,2·10 6 Аç(м 2 К 2 ).

3. Контактная разность потенциалов.

Рассмотрим процессы, происходящие при контакте двух разных металлов. Допустим, до электрического контакта металл 1 (на рис.103 слева) имеет работу выхода еj1, а работа выхода металла 2 больше, j2 > j1.

Приведем металлы в состояние электрического контакта, то есть сблизим их до такого расстояния, при котором возможен эффективный обмен электронами. Поскольку работа выхода электронов из металла 2 больше, то уровень Ферми в металле 2 ниже, чем в металле 1. В результате электроны проводимости с уровня Ферми металла 1 начинают переходить на уровень Ферми металла 2.

В результате такого перехода электронов металл 2 заряжается отрицательно, энергия электронов и, соответственно, уровень Ферми в нем повышаются. Металл 1 заряжается положительно, энергия электронов и уровень Ферми в нем понижаются. Между металлами возникает контактная разность потенциалов j12.

Суммарное перетекание зарядов прекратится, когда уровни Ферми сравняются, а разность потенциалов между проводниками будет равна разности потенциалов выхода, j12 = j2 - j1, и встречные потоки электронов сравняются n21=-n12 (рис.103 справа). Контактная разность потенциалов между проводниками создает для электронов, переходящих в проводник с большей работой выхода, потенциальный барьер высотой еj12.

Оценим количество электронов, перетекающих из одного металла в другой при возникновении контактной разности потенциалов j12. Будем считать, что между контактирующими металлами остается зазор шириной d, а заряды концентрируются на контактирующих поверхностях. Тогда заряд Q на каждой из поверхностей, необходимый для создания напряжения j12, найдется из формулы плоского конденсатора, . (14.3)

Как видно из таблицы 14.1, контактная разность потенциалов В. Расстояние d между металлами не может быть меньше параметра решетки а » 0,3 нм. Полагая j12 =1 В и d = 0,3 нм, получаем максимальную плотность заряда на контактирующих поверхностях.

Разделив на заряд электрона получаем, что на 1 м 2 поверхности приходится 2·10 17 электронов. Если диаметр атомов взять равным постоянной решетки а = 0,3 нм, то на 1 м 2 поверхности в одноатомном слое металла размещается атомов. Если атомы металла содержат по одному валентному электрону, то для создания контактной разности потенциалов 1 В потребовалось всего лишь (2×10 17 ç10 19 )´100% = 2% электронов проводимости одноатомного поверхностного слоя.

4. Закон Вольта.

Контактную разность потенциалов открыл в девяностых годах XVIII века итальянец Александр Вольта. В серии экспериментов 1792–1794 годов он установил, что в цепочке из ряда последовательно соединенных металлов контактная разность потенциалов зависит лишь от крайних металлов. Этот опытный факт называется законом Вольта. Действительно, пусть имеется цепочка из металлов 1,2,3,4 (рис.104). Работа выхода металлов еj1, еj2, еj3, еj4. На границе каждой пары возникает контактная разность:

Просуммировав левые и правые части, получаем: . (14.5)

Сумма всех контактных ЭДС (левой части равенства) равна контактной ЭДС крайних металлов в цепочке (правая часть равенства). Если концы цепи замкнуть, то независимо от количества звенев сумма контактных разностей потенциалов равна нулю. Тока в цепи нет.

5. Термо-ЭДС.

Сумма контактных разностей потенциалов в замкнутой цепи равна нулю лишь при условии, что температуры всех контактов одинаковы. В 1821 г. Томас Зеебек, сжимая концы висмутовой и медной пластинок теплыми пальцами обнаружил, что если цепь замкнута, то в ней протекает ток. Это явление возникновения ЭДС в цепи из разных металлов при перепаде температур между спаями называют эффектом Зеебека или термоэлектричеством. В рамках классической электронной теории можно дать простое толкование явлению Зеебека и получить зависимость термо-ЭДС от перепада температур.

Пусть имеется замкнутая цепь из двух металлов 1 и 2 со спаями A и B (рис.105). Полагаем, что электроны проводимости на верхних уровнях зоны проводимости распределяются в силовом поле решетки по закону Больцмана.

Здесь n01 и n02 – концентрация электронов проводимости на уровнях Ферми. В силу полной заполняемости этих уровней будем полагать n01 = n02; U1 и U2 – потенциальная энергия электронов в металлах 1 и 2. Она может изменяться от нуля на уровне Ферми до еj (работа выхода) на нулевом уровне. Разделим первое уравнение на второе.

Разделив разность U1U2 на заряд электрона е, получаем концентрационную разность потенциалов между металлами 1 и 2. . (14.9)

Если температуры спаев ТА и ТB одинаковы, то концентрационная ЭДС в замкнутой цепи, так же, как контактная разность потенциалов, равна нулю. Тока в цепи нет. Если же температуры спаев разные, ТА ¹ ТB, то в цепи возникает термо-ЭДС (рис.106). Концентрационные перепады потенциалов в контактах А и B разные.

Учитывая грубость классических приближений, обычно выделяют лишь температурную зависимость, которая хорошо подтверждается опытом при малых перепадах температур, . (14.12)

Термо-ЭДС, возникающая в цепи из разных металлов, широко применяется для измерения температур в диапазоне от 0 К до » 1000°С. Соответствующее устройство из двух разных металлов называется термопарой. Один спай термопары поддерживается при постоянной температуре, например при 0 о С в сосуде с тающим льдом, другой помещают в ту среду, температуру которой хотят измерить. О величине температуры можно судить как по величине термотока, измеряемого гальванометром, так и более точно по величине термо-ЭДС, измеряемой методом компенсации. С помощью термопар можно измерять температуру с точностью до сотых долей градуса.

6. Эффект Пельтье,1834 г.

Он обратен эффекту Зеебека и состоит в том, что при пропускании тока по цепи из разных металлов один контакт у металла нагревается, другой охлаждается.

Пусть в цепи из двух разных металлов действует источник тока – батарея Б. В результате в цепи идет постоянный ток I (рис.107). Проходя спай B, электроны, идущие по цепи на рисунке против часовой стрелки, дополнительно ускоряются полем контактного потенциала. Их скорость дрейфа увеличивается, поэтому при столкновении с узлами электроны передают им большую, по сравнению со средней, энергию. Спай В нагревается больше, чем рядом расположенные участки проводников.

В спае А электроны тормозятся контактным полем, их скорость дрейфа уменьшается, поэтому спай А нагревается меньше, чем рядом расположенные участки проводов. Кроме того, для установления равновесия этих электронов с электронным газом им необходимо приобрести еще энергию. Эту энергию они черпают из решетки. В результате спай А охлаждается больше, чем нагревается. В итоге теплота в спае А поглощается.

Выделяющаяся или поглощающаяся теплота Пельтье QП в контакте пропорциональна заряду It, прошедшему через контакт. . (14.13)

Здесь П – коэффициент Пельтье связан с дифференциальной термо-ЭДС соотношением: П = аDT.(14.14)

Где DТ – разность температур между контактами.

Эффект Пельтье позволяет создавать малогабаритные холодильные устройства. Их особенность в том, что изменяя направление тока в цепи, можно один и тот же контакт заставить как поглощать тепло (холодильник), так и выделять его (нагреватель).

7. Эффект Томсона.

В 1853 – 54 г.г. Рудольф Клаузиус и Уильям Томсон независимо друг от друга применили к явлениям термоэлектричества принципы термодинамики. В процессе построения термодинамической теории термоэлектричества Томсон установил, что неравномерно нагретый проводник должен вести себя как система находящихся в контакте физически разнородных участков. На этом основании Томсон пришёл к заключению и подтвердил его экспериментально, что в однородном неравномерно нагретом проводнике должно выделяться или поглощаться тепло Пельтье (тепло Томсона). Само явление назвали эффектом Томсона.

Принципиальная схема экспериментальной установки изображена на рис.108

Концы двух одинаковых проводящих стержней помещены в два термостата с разными температурами Т1 и Т2. Допустим, Т1 > Т2. Тогда градиент температуры в верхнем стержне направлен по току I, а в нижнем – против тока. В результате в одном стержне выделяется тепло Томсона (его температура выше), а в другом – поглощается.

Знак эффекта у разных проводников разный. В висмуте и цинке, например, тепло выделяется, если поток тепла и электрический ток совпадают по направлению (на рисунке нижний проводник). А в Fe, Pt, Sb при тех же условиях тепло поглощается. С изменением направления тока знак эффекта во всех проводниках меняется.

Тепло Томсона Q, выделяющееся в проводнике, пропорционально перепаду температур ΔТ, току I, протекающему по проводнику, и времени t Q = σΔTIt.

Здесь σ – коэффициент Томсона. Он зависит от материала провода и от его температуры. Коэффициент σ невелик. У металлов он порядка 10 –5 ВçК. За положительное направление тока принимают направление градиента температур, то есть направление от холодного конца проводника к горячему. Если тепло при этих условиях выделяется (проводник нагревается), эффект Томсона считается положительным.

Количественно эффект Томсона исследовал в 1867 г. Франсуа Леру. В установке, собранной по схеме рис. 108, к поверхности стержней он присоединял спаи термопар. Пока тока через стержни не было, термоЭДС в цепи термопар была равна нулю. При включении тока через стержни появлялась термоЭДС, величина и знак которой позволяли определить коэффициент Томсона σ.

8. Закон Джоуля – Ленца в замкнутой цепи всегда выполняется. Суммарный эффект Пельтье и Томсона в замкнутой цепи равен нулю, поскольку наряду с участками цепи, где тепло Пельтье и Томсона выделяется, всегда есть участки, где такое же тепло поглощается.

Работа выхода электронов из металла

Как показывает опыт, свободные электро­ны при обычных температурах практиче­ски не, покидают металл. Следовательно, в поверхностном слое металла должно быть задерживающее электрическое поле, препятствующее выходу электронов из ме­талла в окружающий вакуум. Работа, ко­торую нужно затратить для удаления электрона из металла в вакуум, называет­ся работой выхода.Укажем две вероятные причины появления работы выхода:

1. Если электрон по какой-то причине удаляется из металла, то в том месте, которое электрон покинул, возникает из­быточный положительный заряд и элект­рон притягивается к индуцированному им самим положительному заряду.

2. Отдельные электроны, покидая ме­талл, удаляются от него на расстояния порядка атомных и создают тем самым над поверхностью металла «электронное облако», плотность которого быстро убы­вает с расстоянием. Это облако вместе с наружным слоем положительных ионов решетки образует двойной электрический слой, поле которого подобно полю плоско­го конденсатора. Толщина этого слоя рав­на нескольким межатомным расстояниям (10 -10 — 10 -9 м). Он не создает элек­трического поля во внешнем пространстве, но препятствует выходу свободных элек­тронов из металла.

Таким образом, электрон при вылете из металла должен преодолеть задержи­вающее его электрическое поле двойного слоя. Разность потенциалов Dj в этом слое, называемая поверхностным скачком потенциала,определяется работой выхода (А) электрона из металла:

где е — заряд электрона. Так как вне двойного слоя электрическое поле отсут­ствует, то потенциал среды равен нулю, а внутри металла потенциал положителен и равен Dj. Потенциальная энергия сво­бодного электрона внутри металла равна — еDj и является относительно вакуума отрицательной. Исходи из этого можно считать, что весь объем металла для элек­тронов проводимости представляет потен­циальную яму с плоским дном, глубина которой равна работе выхода А.

Работа выхода выражается в элект­рон-вольтах(эВ): 1 эВ равен работе, со­вершаемой силами поля при перемещении элементарного электрического заряда (за­ряда, равного заряду электрона) при про­хождении им разности потенциалов в 1 В. Так как заряд электрона равен 1,6•l0 -19 Кл, то 1 эВ = 1,6•10 -19 Дж.

Работа выхода зависит от химической природы металлов и от чистоты их по­верхности и колеблется в пределах не­скольких электрон-вольт (например, у ка­лия Л=2,2 эВ, у платины A = б,3 эВ). Подобрав определенным образом покры­тие поверхности, можно значительно уменьшить paботу выхода. Например, если нанести на поверхность вольфрама =4,5 эВ) слой оксида щелочно-земельного металла (Са, Sr, Ba), то работа выхода снижается до 2 эВ.

Самостоятельный газовый разряд и его типы

Разрядв газе, сохраняющийся после прекращения действия внешнего иониза­тора, называется самостоятельным.

Рассмотрим условия возникновения са­мостоятельного разряда. Как уже указыва­лось в § 106, при больших напряжениях между электродами газового промежутка (см. рис. 156) ток сильно возрастает (участки CD и DE на рис. 157). При боль­ших напряжениях возникающие под дей­ствием внешнего ионизатора электроны, сильно ускоренные электрическим полем, сталкиваясь с нейтральными молекулами газа, ионизируют их, в результате чего образуются вторичные электроны и поло­жительные ионы (процесс 1 на рис. 158). Положительные ионы движутся к катоду, а электроны — к аноду. Вторичные элек­троны вновь ионизируют молекулы газа, и, следовательно, общее количество электро­нов и ионов будет возрастать по мере продвижения электронов к аноду лавино­образно. Это является причиной увеличения электрического тока на участке CD (см. рис. 157). Описанный процесс назы­вается ударной ионизацией.


Однако ударная ионизация под дей­ствием электронов недостаточна для под­держания разряда при удалении внешнего ионизатора. Для этого необходимо, чтобы электронные лавины «воспроизводились», т. е. чтобы в газе под действием каких-то процессов возникали новые электроны. Та­кие процессы схематически показаны на рис. 158: 1) ускоренные полем положи­тельные ионы, ударяясь о катод, выбивают из него электроны (процесс 2); 2) поло­жительные ионы, сталкиваясь с молекула­ми газа, переводят их в возбужденное состояние; переход таких молекул в нор­мальное состояние сопровождается ис­пусканием фотона (процесс 3); 3) фотон, поглощенный нейтральной молекулой, ионизирует ее, происходит так называе­мый процесс фотонной ионизации молекул (процесс 4); 4) выбивание электронов из катода под действием фотонов (про­цесс 5).

Наконец, при значительных напряже­ниях между электродами газового проме­жутка наступает момент, когда положи­тельные ионы, обладающие меньшей дли­ной свободного пробега, чем электроны, приобретают энергию, достаточную для ионизации молекул газа (процесс 6), и к отрицательной пластине устремляются ионные лавины. Когда возникают кроме электронных лавин еще и ионные, сила тока растет уже практически без увеличе­ния напряжения (участок DE на рис. 157).

В результате описанных процессов (16) число ионов и электронов в объеме газа лавинообразно возрастает и разряд становится самостоятельным, т. е. сохра­няется после прекращения действия внеш­него ионизатора. Напряжение, при кото­ром возникает самостоятельный разряд, называется напряжением пробоя.

В зависимости от давления газа, кон­фигурации электродов, параметров внеш­ней цепи можно говорить о четырех типах самостоятельного разряда: тлеющем, искровом, дуговом и коронном.

1. Тлеющий разрядвозникает при ни­зких давлениях. Если к электродам, впаянным в стеклянную трубку длиной 30— 50 см, приложить постоянное напряжение в несколько сотен вольт, постепенно отка­чивая из трубки воздух, то при давлении ж 5,3—6,7 кПа возникает разряд в виде светящегося извилистого шнура краснова­того цвета, идущего от катода к аноду. При дальнейшем понижении давления шнур утолщается, и при давлении ж 13 Па разряд имеет вид, схематически изобра­женный на рис. 159.


Непосредственно к катоду прилегает тонкий светящийся слой 1 — первое катод­ное свечение,или катодная пленка,затем следует темный слой 2 — катодное темное пространство,переходящее в дальнейшем в светящийся слой 3 — тлеющее свечение,имеющее резкую границу со стороны като­да, постепенно исчезающую со стороны анода. Оно возникает из-за рекомбинации электронов с положительными ионами. С тлеющим свечением граничит темный промежуток 4 — фарадеево темное про­странство,за которым следует столб иони­зированного светящегося газа 5 — поло­жительный столб.Положительный столб существенной роли в поддержании разря­да не имеет. Например, при уменьшении расстояния между электродами трубки его длина сокращается, в то время как катод­ные части разряда по форме и величине остаются неизменными. В тлеющем разря­де особое значение для его поддержания имеют только две его части: катодное тем­ное пространство и тлеющее свечение. В катодном темном пространстве происхо­дит сильное ускорение электронов и поло­жительных ионов, выбивающих электроны с катода (вторичная эмиссия). В области тлеющего свечения же происходит удар­ная ионизация электронами молекул газа. Образующиеся при этом положительные ионы устремляются к катоду и выбивают из него новые электроны, которые, в свою очередь, опять ионизируют газ и т. д. Таким образом непрерывно поддерживается тлеющий разряд.

При дальнейшем откачивании трубки при давлении ж 1,3 Па свечение газа ос­лабевает и начинают светиться стенки трубки. Электроны, выбиваемые из катода положительными ионами, при таких разре­жениях редко сталкиваются с молекулами газа и поэтому, ускоренные полем, ударя­ясь о стекло, вызывают его свечение, так называемую катодолюминесценцию.По­ток этих электронов исторически получил название катодных лучей.Если в катоде просверлить малые отверстия, то положи­тельные ионы, бомбардирующие катод, пройдя через отверстия, проникают в про­странство за катодом и образуют резко ограниченный пучок, получивший назва­ние каналовых(или положительных) лу­чей,названных по знаку заряда, который они несут.

Тлеющий разряд широко используется в технике. Так как свечение положитель­ного столба имеет характерный для каж­дого газа цвет, то его используют в газо­светных трубках для светящихся надписей и реклам (например, неоновые газораз­рядные трубки дают красное свечение, аргоновые — синевато-зеленое). В лампах дневного света, более экономичных, чем лампы накаливания, излучение тлеющего разряда, происходящее в парах ртути, по­глощается нанесенным на внутреннюю по­верхность трубки флуоресцирующим ве­ществом (люминофором), начинающим под воздействием поглощенного излучения светиться. Спектр свечения при соответ­ствующем подборе люминофоров близок к спектру солнечного излучения. Тлеющий разряд используется для катодного напы­ленияметаллов. Вещество катода в тлею­щем разряде вследствие бомбардировки положительными ионами, сильно нагрева­ясь, переходит в парообразное состояние. Помещая вблизи катода различные пред­меты, их можно покрыть равномерным слоем металла.

2. Искровой разрядвозникает при больших напряженностях электрического поля (Ё=3•10 6 В/м) в газе, находящемся под давлением порядка атмосферного. Искра имеет вид ярко светящегося тонкого канала, сложным образом изогнутого и разветвленного.

Объяснение искрового разряда дается на основе стримерной теории,согласно которой возникновению ярко светящегося канала искры предшествует появление слабосветящихся скоплений ионизованно­го газа — стримеров.Стримеры возника­ют не только в результате образования электронных лавин посредством ударной ионизации, но и в результате фотонной ионизации газа. Лавины, догоняя друг друга, образуют проводящие мостики из стримеров, по которым в следующие мо­менты времени и устремляются мощные потоки электронов, образующие каналы искрового разряда. Из-за выделения при рассмотренных процессах большого коли­чества энергии газ в искровом промежутке нагревается до очень высокой температу­ры (примерно 10 4 К), что приводит к его свечению. Быстрый нагрев газа ведет к по­вышению давления и возникновению удар­ных волн, объясняющих звуковые эффек­ты при искровом разряде — характерное потрескивание в слабых разрядах и мощ­ные раскаты грома в случае молнии, явля­ющейся примером мощного искрового раз­ряда между грозовым облаком и Землей или между двумя грозовыми облаками.

Искровой разряд используется для воспламенения горючей смеси в двигате­лях внутреннего сгорания и предохране­ния электрических линий передачи от пе­ренапряжений (искровые разрядники). При малой длине разрядного промежутка искровой разряд вызывает разрушение (эрозию) поверхности металла, поэтому он применяется для электроискровой точ­ной обработки металлов (резание, сверле­ние). Его используют в спектральном ана­лизе для регистрации заряженных частиц (искровые счетчики).

3. Дуговой разряд.Если после зажи­гания искрового разряда от мощного источника постепенно уменьшать расстоя­ние между электродами, то разряд стано­вится непрерывным — возникает дуговой разряд. При этом сила тока резко воз­растает, достигая сотен ампер, а напряже­ние на разрядном промежутке падает до

ряд можно получить от источника низкого напряжения минуя стадию искры. Для этого электроды (например, угольные) сближают до соприкосновения, они сильно раскаляются электрическим током, потом их разводят и получают электрическую дугу (именно так она была открыта В. В. Петровым). При атмосферном дав­лении температура катода приблизительно равна 3900 К. По мере горения дуги угольный катод заостряется, а на аноде образуется углубление — кратер, являю­щийся наиболее горячим местом дуги.

По современным представлениям, ду­говой разряд поддерживается за счет вы­сокой температуры катода из-за интенсив­ной термоэлектронной эмиссии, а также термической ионизации молекул, обуслов­ленной высокой температурой газа.

Дуговой разряд находит широкое при­менение в народном хозяйстве для сварки и резки металлов, получения высококаче­ственных сталей (дуговая печь) и освеще­ния (прожекторы, проекционная аппара­тура). Широко применяются также дуго­вые лампы с ртутными электродами в кварцевых баллонах, где дуговой разряд возникает в ртутном паре при откачанном воздухе. Дуга, возникающая в ртутном паре, является мощным источником уль­трафиолетового излучения и используется в медицине (например, кварцевые лампы). Дуговой разряд при низких давлениях в парах ртути используется в ртутных выпрямителях для выпрямления перемен­ного тока.

4. Коронный разряд— высоковольт­ный электрический разряд при высоком (например, атмосферном) давлении в резконеоднородном поле вблизи электродов с большой кривизной поверхности (напри­мер, острия). Когда напряженность поля вблизи острия достигает 30 кВ/см, то во­круг него возникает свечение, имеющее вид короны, чем и вызвано название этого вида разряда.

В зависимости от знака коронирующего электрода различают отрицательную или положительную корону. В случае от­рицательной короны рождение электронов, вызывающих ударную ионизацию молекул катода под действием положительных ионов, в случае положительной — вслед­ствие ионизации газа вблизи анода. В естественных условиях корона возника­ет под влиянием атмосферного электриче­ства у вершин мачт (на этом основано действие молниеотводов), деревьев. Вредное действие короны вокруг проводов высоковольтных линий передачи проявля­ется в возникновении вредных токов утеч­ки. Для их снижения провода высоковоль­тных линий делаются толстыми. Коронный разряд, являясь прерывистым, становится также источником радиопомех.

Используется коронный разряд в элек­трофильтрах, применяемых для очистки промышленных газов от примесей. Газ, подвергаемый очистке, движется снизу вверх в вертикальном цилиндре, по оси которого расположена коронирующая проволока. Ионы, имеющиеся в большом количестве во внешней части короны, осе­дают на частицах примеси и увлекаются полем к внешнему некоронирующему элек­троду и на нем оседают. Коронный разряд применяется также при нанесении порош­ковых и лакокрасочных покрытий.

Тема 4. Свойства электронов. Работа выхода электро-нов. Движение электронов в электрических и магнитных полях.

Целью изучения данной темы является ознакомление со свойствами электронов и их поведением в магнитных и электрических полях.

Свойства электронов.

Работа электронных приборов и интегральных микросхем основана на управлении концентрацией, скоростью, и направлением движения заряжен-ных частиц в различных средах с помощью электрических и магнитных полей. Изучение свойств этих частиц и их поведения в различных условиях с помощью электрических и магнитных полей является необходимой предпосылкой для понимания работы разнообразных электронных элементов.

В связи с этим возникает вопрос:

Почему именно электрон наилучшим образом удовлетворяет тре-бованиям, предъявляемым к частицам, выступающим в качестве носи-телей тока в электронных приборах?

Свойства электронов достаточно хорошо изучены. Электрон – это электрически заряженная частица, имеющая :

отрицательный заряд е=1.602× 10 -19 Кл ;

массу mе= 9,109× 10 -31 кг;

радиус rе= 2,82 × 10 -15 м ;

удельный заряд =1,759× 10 11 Кл/кг.

Ни одна другая частица не имеет такого большого значения отношения заряда к массе , как электрон. Это позволяет легко отличить его от других частиц.

Электроны обладают следующими основными свойствами:

в электрическом поле электроны испытывают воздействие силы и сами могут создавать электрическое поле;

Электроны отталкиваются друг от друга;

Движущиеся электроны образуют электрический ток. Следовательно, подобно электрическому току, проходящему последовательно, поток электронов создает магнитное поле и в поперечном магнитном поле сам испытывает воздействие силы;

Находясь в движении электрон обладает кинетической энергией, равной . При столкновении электрона с каким либо телом их кинетическая энергия превращается в тепловую; при соударении движущегося электрона с нейтральным атомом кинетическая энергия электрона может быть затрачена на ионизацию атома;

Благодаря большой величине электрон обладает высокой подвижностью.

Как уже отмечалось, в соответствии с квантовой теорией электроны, помимо свойств, присущих отдельным материальным частицам (корпускулам), обладают также и волновыми свойствами. Установлено, что электронам, как и световым лучам, свойственно явление дифракции, т.е. огибание препятствия, поставленного на их пути. Особенно заметны волновые свойства электронов в пространстве, линейные размеры которого сравнимы с размерами электрона.

Работа выхода электронов и влияние адсорбционных слоев на работу выхода.

Работа выхода электронов

Для работы электронных приборов необходимы свободные электроны. Только в этом случае они смогут выполнять функции носителей электричес-кого тока. Как получить такие электроны? На первый взгляд, ответ не вызы-вает затруднений – ведь каждое из окружающих нас веществ содержит мно-жество электронов. Задача заключается лишь в том, чтобы « оторвать» их от ядра и при необходимости «извлечь» из вещества. Но, оказывается , это возможно лишь при выполнении определенных условий, о которых и пойдет речь ниже.

При температуре абсолютного нуля (Т =0° К) и отсутствии других источников возбуждения электроны в атомах любого вещества занимают уровни с наименьшей энергией. В проводниках, обладающих высокой концентрацией электронов в зоне проводимости, распределение электронов по величинам энергии можно изобразить графиком (рис. 4.2.1), названным распределением Ферми (по оси абсцисс отложено значение энергии, а по оси ординат – количество электронов).


Из графика (кривая 1) видно. что при температуре абсолютного нуля нет электронов, обладающих энергией, большей ЕF(уровень Ферми). Величина ЕFзависит от физических свойств материала и определяется выражением

где h постоянная Планка;

meмасса электрона;

N число свободных электронов в 1 см 3 проводника.

В металлах N » 10 22 …10 23 . Поэтому максимальная энергия ЕF элект-ронов внутри металла достигает десятков электрон-вольт. Однако выход электронов на поверхность металла при температуре абсолютного нуля и отсутствии внешних воздействий (освещения поверхности проводника, бомбардировка пучком электронов и т.п.) не наблюдается. Это объясняется двумя причинами. Во-первых, те немногие электроны, которые выходят за пределы проводника, теряют большую часть своей энергии и накапливаются на поверхности металла. Между этими электронами и положительными ионами, находящимися внутри металла у его поверхности, образуется элект-рическое поле, направленное от проводника к слою электронов (рис. 4.2.2).



Совокупность положительных ионов у поверхности металла и электронов, появля-ющихся над поверхностью, называется двойным элект-рическим слоем. Действие двойного электри-ческого слоя на электроны, стремящиеся покинуть пределы металла, является тормозящим, так как этим электронам приходится лететь по направлению электрических силовых линий и отдавать свою энергию полю.

Во-вторых, если некоторое количество электронов все же вышло за пределы металла в окружающую среду, то металл будет их обратно притягивать. Объясняется это тем, что металл, лишенный части электронов, заряжается поло-жительно и, следовательно, между ним и вылетевшими электронами возникает электри-ческое поле, препятствующее выходу новых электронов.

Таким образом, для отрыва от поверхности проводника электроны должны затратить работу против электрических сил, возвращающих их обратно, т.е. некоторую полную энергию

Величина E0называется работой выхода. Работа по перемещению электрона из проводника в окружающее пространство равна произведению заряда электрона е на пройденную разность потенциалов φ0. Поэтому

Эта работа измеряется в электрон-вольтах (эВ).

Диаграмма изменения энергии при переходе электрона из металла в вакуум приведена на рис. 4.2.3. По оси ординат отложена величина энергии в соответствующих точках пространства, а по оси абсцисс – расстояние от поверхности металла. В целом кривая изображает потенциальный барьер, удерживающий электроны в металле.


Участок abсоответствует максимальной энергии электрона ЕFвнутри металла; высота потенциального барьера определяет полную энергию Еа, которую электрон должен иметь для выхода из металла, разность этих энергий соответствует работе выхода электрона еφ0.

Величина работы выхода твердых тел зависит от их структуры и явля-ется физической характеристикой тела. Чем меньше у данного проводника работа выхода, тем меньшей должна быть затрата энергии для получения свободных электронов вне этого проводника.


Несколько сложнее обстоит дело с определением работы выхода электронов из полу-проводника. Как видно из рис. 4.2.4, выход электронов возможен из зоны проводимости с затратой работы χ0 , с примесных уровней с затратой работы χ1 и из валентной зоны с затратой работы χ2, χ3 .

Наименьшая работа χ0 требуется для удаления электрона из зоны проводимости. Однако выход только таких электронов будет приводить к нарушению равновесного состояния электронного газа, которое может восстанавливаться за счет перехода электронов в зону проводимости с примесных уровней и из валентной зоны. Такой переход требует затраты работы, которая совершается частично за счет внутренней энергии кристалла, вследствие чего при восстановлении равновесия кристалл охлаждается. При удалении электронов из валентной зоны равновесие восстанавливается путем перехода в эту зону части электронов из зоны проводимости. Это сопровождается выделением энергии и приводит к нагреванию кристалла.

И только одновременное удаление электронов с уровней, расположенных выше и ниже уровня Ферми, и в таком соотношении, чтобы их средняя энергия отвечала уровню химического потенциала , не приводит к изменению температуры полупроводника и нарушению равновесия системы. Поэтому и для полупроводников за работу выхода принимают расстояние от уровня Ферми до нулевого уровня, хотя на самом уровне Ферми может не находиться ни одного электрона.

Работа выхода измеряется обычно в электрон-вольтах. Отношение работы выхода к заряду электрона представляет собой потенциал выхода. Работа выхода, измеренная в электрон-вольтах, численно равна потенциалу выхода, измеренному в вольтах.

Читайте также: