Молниезащита ктп в металлическом корпусе

Обновлено: 08.01.2025

Для передачи электроэнергии на большие расстояния используют высокое напряжение. Как правило, к потребителю приходит линия 6 (10)кВ и для снижения напряжения до 0,4кВ проектируют трансформаторные подстанции. Сейчас хочу рассмотреть заземление и молниезащиту такой ТП.

В данной теме можно выделить внешний и внутренние контуры заземления, а также мероприятия по молниезащите трансформаторной подстанции.

1 Внешний контур заземления.

В общем случае внешний контур заземления для трансформаторной подстанции состоит из замкнутого контура, представляющим собой горизонтальный заземлитель и n-го количества вертикальных электродов. В качестве горизонтального электрода применяют полосовую сталь 4×40мм.

Общее сопротивление заземляющего контура должно быть не более 4Ом при удельном сопротивлении грунта не более 100Ом*м. При удельном сопротивлении грунта более 100Ом*м допускается увеличивать данное значение в 0,01·? раз, но не более чем в 10 раз (ПУЭ7 п. 1.7.101). Получается, чтобы получить нужное значение (4Ом) с удельным сопротивлением грунта 100Ом*м необходимо забить около 8 вертикальных электродов длиной 5 м из круга диаметром 16мм либо 10 вертикальных электродов длиной 3м из стального уголка 50×50х5мм.

Наружный контур заземления ТП

Наружный контур заземления ТП

Располагать наружный заземляющий контур следует на расстоянии не более 1м от стены ТП либо фундаментной плиты, на которой установлена трансформаторная подстанция.

Горизонтальный заземлитель из стальной полосы укладывается в траншее на глубине 0,7 м. Полоса укладывается на ребро.

2 Молниезащита трансформаторной подстанции.

Ниже представлен разрез ТП.

Разрез трансформаторной подстанции

Разрез трансформаторной подстанции

Узел молниезащиты ТП

Узел молниезащиты ТП

В случае с металлической кровлей молниезащиту трансформаторной подстанции выполняют следующим образом: с диаметрально противоположных сторон выполняют связь кровли с наружным контуром заземления, т.е. в местах ввода стальной полосы в здание ТП. На разрезе вторая связь кровли с заземлителем не показана. В качестве проводника следует применять проволоку диаметром 8мм. В других случаях необходимо запроектировать молниеприемник на кровле здания ТП.

Проложенная полоса зземления по наружной стене здания должна быть защищена от механических повреждеий и коррозии согласно ПУЭ7 п. 1.7.130.

3 Внутренний контур заземления.

Обычно трансформаторная подстанция состоит из трех помещений: распределительное устройство 6 (10)кВ, распределительное устройство 0,4кВ и камера трансформатора. Иногда РУ объединяют в одно общее помещение.

В каждом помещении по периметру прокладывают полосу заземления, т.к. все металлические части не находящиеся под напряжением должны быть заземлены, а это обрамление каналов, люки подполья, крепежные элементы барьеров, шинный мост, возможность присоединения переносных заземлений.

Гайка-барашек

Крепят полосу к стене на отметке 0,4м от уровня пола при помощи дюбель-держателей либо специальных держателей К-188 через расстояние 0,6-1,0м. Все разборные соединения, предусмотренные изготовителем оборудования, присоединяют болтовым соединением, остальные соединения выполняют при помощи сварки. Для переносного заземления используют «гайку-барашек». Гибкие заземляющие перемычки выполняют проводом ПВ3, но без изоляции. Это делается для видимой целостности соединения.

Проход через стену

Проход через стену

Прокладка заземляющих и нулевых защитных проводников через стены и и перекрытия должна выполняться, как правило, с их непосредственной заделкой. Для этих целей используют гильзы. Пространство в гильзах заделывают специальным негорючим легкоудаляемым составом. После прокладки полосу красят в желто-зеленый цвет в соответствии с рисунком.

Окрашивание полосы заземления

Окрашивание полосы заземления

В помещении трансформатора земление выполняют в соответствии с рисунком, представленном ниже.

Контур заземления в помещении трансформатора

Контур заземления в помещении трансформатора

1 Швеллер в стяжке пола для установки силового трансформатора.

2 Съемный оградительный барьер.

3 Предупреждающие знаки на барьере.

4 Шина заземления внутреннего контура ТП.

5 Шина заземления для силового трансформатора.

6 Проем в стене для шин 0,4 кВ.

7 Узел крепления шин 0,4 кВ.

8 Заземление створок ворот перемычкой.

9 Вентиляционная решетка в створках ворот.

10 Маслоудерживающий борт.

12 Выключатель освещения камеры.

13 Светильник освещения.

14 Сети освещения 220 В.

Узел А – точка присоединения переносного заземления. К шине заземления с помощью сварки присоединяют болт М8, комплектуют его двумя широкими шайбами М8 и «гайкой-барашек» М8.

Узел В – точка соединения шин заземления. До крепления на место установки шины, ее окончание, которое будет присоединяться с помощью сварки, подготавливают в виде «утки».

Узел С – точка соединения шины заземления к металлическим конструкциям. До крепления на место установки шины, ее окончание, которое будет присоединяться с помощью сварки, подготавливают в виде «утки» с учетом размера А металлоконструкции.

Предупреждающие знаки барьера

Предупреждающие знаки барьера

Для безопасного осмотра силового трансформатора при эксплуатации предусматривается оградительный барьер, который окрашивают в красный цвет. На барьере размещают запрещающие плакаты. Барьер устанавливается на высоте 1,2м от уровня пола и на расстоянии 0,5м от двери.

Заземление силового трансформатора

Заземление силового трансформатора

В основном все наши сети с глухозаземленной нейтралью, поэтому нам необходимо присоединить нулевую шину трансформатора к нашему заземляющему контуру. Металлический корпус силового трансформатора присоединяется к контуру заземления при помощи гибкой перемычки.

На рисунке показано заземление силового трансформатора, где:

1 Гибкая заземляющая перемычка.

2 Шина заземления.

3 Шина зануления трансформатора.

4 Ошиновка 0,4кВ трансформатора.

5 Болт заземления трансформатора.

В технических подпольях внутренний контур заземления выполняют в соответствии с рисунком.

Как защищают подстанции от ударов молнии

Любой ресурс, электроэнергия, в том числе, нуждается в транспортировке и перераспределении. В отличие от нефти или угля, электричество передается посредством линий электропередач (ЛЭП), которые в большинстве своем представляют собой воздушные линии (ВЛ). Эти каналы, по причине экономической целесообразности, предполагают транзит энергии огромной мощности.


Для приведения характеристик электроэнергии в соответствие с параметрами электросетей конечных потребителей, а также для ее распределения применяют трансформаторные подстанции.

Знание вопроса молниезащиты трансформаторных подстанций поможет не только предотвратить финансовый ущерб от атмосферного электричества, но и сохранит жизнь людям.

Опасность разряда молнии

Превышение рабочего напряжения (перенапряжение) в результате удара молнии может происходить двумя путями. Перенапряжение прямого удара (ПУМ) возникает при непосредственном попадании молнии в подстанцию. Индуцированное же происходит в результате удара в землю вблизи от объекта.

Несмотря на кратковременность воздействия (порядка 100 микросекунд), ущерб может быть весьма значительным. Кроме того что молния обладает колоссальным напряжением, температура разряда в главном канале может достигать 30000°C. Разумеется, разрушения подстанции или ее элементов могут быть весьма значительными.

Перенапряжение на установке может быть вызвано ударом молнии в участок воздушной линии, соединенный с ней. Поэтому грозозащита линий электропередач также относится к комплексу мер по защите подстанций от молний.

В общем случае можно выделить следующие основные причины необходимости оснащения объектов молниезащитными устройствами:

  • если подстанция находится в отдельном здании, предотвращается его разрушение;
  • предохранение от разрушения оборудования, что значительно увеличивает срок его эксплуатации;
  • обеспечение стабильного электроснабжения потребителей подстанцией.

Сюда же можно добавить снижение уровня травмоопасности для персонала. Это значит, что молниезащита подстанции необходима и обязательна в соответствии с действующими требованиями законодательства (ПУЭ).

Эти правила позволяют не защищать лишь подстанции на 20 и 35 кВ, оборудованные трансформаторами мощностью менее 1,6 кВ. Также разрешено не оборудовать молниезащиту подстанций и ОРУ в климатических зонах, где количество грозовых часов не превышает 20.

Защита от ПУМ


Здания, подстанции, в том числе, открытые распределительные устройства (ОРУ), воздушные линии и другие объекты защищают от ПУМ при помощи стержневого молниеотвода или комплексом таковых. Устройство, изобретенное в середине 18 века, актуально по сей день.

Вообще, молниеотводы бывают тросовыми и стержневыми. Первые из них используются для защиты от молнии протяженных объектов, типа шинных мостов, и применяются относительно редко. Вторые же наиболее распространены и способны обеспечить молниезащиту зданий, опор воздушных ЛЭП и других объектов.

Стержневой молниеотвод, как следует из названия, представляет собой устройство, состоящее из молниеприемника, токопровода и заземлителя. Расположенный значительно выше остальных конструкционных элементов сооружения, как минимум на 3 метра (ПУЭ), он и принимает на себя удар молнии.

Требования к молниеприемнику

Молниеприемник изготавливается из стали. Для того чтобы выдерживать термические нагрузки при протекании тока, а также высокую температуру самой молнии, согласно ПУЭ его диаметр должен быть более 6 мм. Соединение молниеприемника с токопроводом необходимо производить путем их сваривания.

Если это невозможно, то допустимо резьбовое соединение болтом и гайкой. Диаметр шайб в этом случае должен быть увеличен. Во избежание падения и нанесения по этой причине ущерба, устройство должно быть прочно закреплено на опоре или другой несущей конструкции.


Молниеприемники обычно закрепляют на уже имеющихся металлических конструкциях. Это могут быть прожекторные мачты, крыши высотных зданий, высокие точки на входе в подстанцию.

Исключение составляют трансформаторные подстанции. На них приемники молний для молниезащиты не устанавливают. Если же такая необходимость возникает, то обмотки с низшим напряжением защищают вентильными разрядниками.

Заземлитель

Токоотвод соединяется он с заземлителем – одной из наиважнейших частей молниезащиты. В качестве заземлителя в целях экономии используется одно заземляющее устройство ЗУ, которое отвечает наиболее жестким требованиям следующих видов заземления:

    заземление молниезащиты;
  • рабочее заземление (трансформаторы, генераторы и прочее оборудование);
  • защитное заземление, обеспечивающее безопасность людей.

Заземляющее устройство молниезащиты на подстанциях выполняют горизонтально размещенными в грунте полосами, которые соединяются с вертикальными электродами, идущими к токоотводу. Все металлические части подстанции, включая корпуса баков, выключателей и прочего, должны иметь контакт с заземлением. Только в этом случае гарантирована надежная молниезащита.

Сети с напряжением от 110 кВт делают с глухозаземленной нейтралью, а подстанции на 35 кВ и ниже заземляют через дугогасящий реактор.

Все компоненты молниеотвода должны иметь антикоррозийное покрытие, в качестве которого обычно применяется оцинковка. Количество устройств на одном сооружении, а также их эффективность и зоны защиты определяются при соответствующих расчетах. Таким образом, обеспечивается защита подстанций от прямых ударов молнии при помощи стержневых молниеотводов.

Защита от индуцированных волн

Молниезащита подстанции при непрямом попадании молнии обеспечивается специальными аппаратами, которые обеспечивают защиту от импульсного перенапряжения.

Учитывая то, что заранее неизвестно, куда попадет молния, все входы и выходы подстанции оснащаются либо разрядниками, либо более совершенными ограничителями перенапряжения (ОПН).


Принцип действия искрового разрядника основан на образовании дуги между двумя стержневыми электродами, один из которых заземлен, а второй соединен с фазным проводом.

Они разделены защитным промежутком. При пробое последнего (появлении искры) вся электроустановка отключается, обеспечивая ее молниезащиту.

Более эффективным считается трубчатый разрядник, состоящий из газогенерирующей трубки, кольцевого и стержневого электродов и двух искровых зазоров, внутреннего и внешнего.

Последние в случае возникновения перенапряжения пробиваются и образуется дуга, высокая температура которой запускает газогенератор. Под давлением газ перемещается к открытому концу трубки, чего оказывается достаточно для задувания дуги.

Разрядник вентильного типа


Еще более продвинутым устройством молниезащиты от индуцированных волн является разрядник вентильного типа. Кроме промежутков для искрообразования, в его состав входит герметичная фарфоровая покрышка и резисторы с нелинейной вольт-амперной характеристикой (ВАХ).

Стоит отметить, что согласно ПУЭ имеются ограничения на максимальное расстояние от разрядника до трансформаторов подстанции, колеблющееся от 60 до 90 м, в зависимости от типа опор ВЛ.

Разрядники для обеспечения молниезащиты подстанций применяют все реже. Более совершенные устройства постепенно занимают их нишу. Основными их преимуществами является отсутствие искровых промежутков, малые размеры, глубокое ограничение перенапряжений.

Принцип действия ОПН предельно прост. Варистор (нелинейный резистор) ведет себя как сопротивление до достижения порогового напряжения. Превышение этой величины приводит к тому, что прибор поддерживает напряжение на заданном уровне за счет ответвления части тока на землю.

При использовании ОПН в качестве молниезащиты, есть сложности с длительностью удержания рабочего напряжения и некоторые другие. Но при правильном подборе типа прибора нелинейная молниезащита наиболее эффективна.

Какие документы регламентируют устройство молниезащиты для зданий и сооружений

Порядок обустройства грозовых отводов (молниезащиты) на объектах промышленного и гражданского назначения регулируется целым рядом нормативных актов и стандартов, начиная с ПУЭ и кончая отдельными ведомственными инструкциями. Все эти документы содержат требования к молниезащите в части, касающейся проектирования (расчёта), монтажа, ввода в эксплуатацию и обслуживания этих систем.


Части конструкции

Для более точного понимания сути требований следует принять во внимание, что типовая конструкция молниезащиты состоит из следующих основных частей:

    молниеприёмника, монтируемого в самой верхней точке объекта;
  • специального ленточного токоотвода, используемого в качестве соединителя приёмника разряда с устройством заземления (ЗУ);
  • самого заземлителя, обеспечивающего сток разрядного тока в землю.

Таким образом, каждый из составных элементов молниезащиты выполняет свою, вполне определённую функцию, удовлетворяющую требованиям действующих нормативов, в частности ПУЭ.

Нормативная база

К перечню стандартов и регламентирующих документов, которые определяют ключевые моменты по обустройству молниезащиты, следует отнести:

    ПУЭ (редакция №7) «Молниезащита зданий и сооружений»;
  • инструкция РД 34.21.122-87 (Госэнергонадзор);
  • инструкция Минэнерго под номером СО 153-34.21.122-2003;
  • СНиП 3.05.06-85;
  • ряд ГОСТов и стандартов, касающихся порядка обустройства молниеприёмников и заземлений.

Пунктами 4.2.133-4.2.142 ПУЭ определяются общие принципы организации молниезащиты электроустановок и возникших в результате этого перенапряжений.

Требования этих пунктов распространяются на РУ (распределительные устройства) и ТП (трансформаторные подстанции) открытого и закрытого типа, работающие в цепях энергоснабжения, а также на другое распределительное и станционное электрооборудование.

Инструкция РД 34.21.122-87 распространяет своё действие на порядок организации молниезащиты на проектируемых гражданских и промышленных объектах с учётом их основного функционального назначения.

Помимо этого, она относит каждое из этих строений к определённой категории, присваиваемой в зависимости от опасности попадания в них грозового разряда.

Ещё одна инструкция (под наименованием СО 153-34.21.122-2003) касается всех видов зданий и сооружений, включая и промышленные коммуникационные системы. Она определяет порядок учёта документации по молниезащите при разработке проекта, строительстве, эксплуатации и реконструкции всех указанных объектов.

И, наконец, требования ГОСТ (включая действующие в строительстве нормативы и правила) распространяются на порядок обустройства отдельных элементов систем молниезащиты. Рассмотрим каждый из перечисленных выше документов более подробно.

ПУЭ (седьмая редакция)

Отдельными пунктами ПУЭ оговаривается, что РУ и ТП 20-750 кВ открытого типа оборудуются молниеприёмниками в обязательном порядке. Для некоторых видов сооружений допускается отсутствие специальной молниезащиты, но лишь при условии ограниченной продолжительности гроз в течение года (не более 20 часов).

Те же сооружения закрытого типа требуют защиты от молнии лишь в районах с показателем продолжительности гроз более 20.

Заземление

В том случае, когда здания закрытого типа имеют металлическую кровлю – молниезащита осуществляется с помощью заземляющих устройств, подсоединённых непосредственно к покрытию. Если кровельное перекрытие изготовлено из железобетонных плит, то при наличии хорошего контакта между отдельными элементами строения допускается заземление через входящую в их состав арматуру.


Защита зданий РУ и ТП в закрытом исполнении выполняется либо с помощью молниеотводов стержневого типа, либо путём укладки специальной металлической сетки.

Применение этих защитных конструкций считается обоснованным лишь в тех случаях, когда грозозащита оборудуется на железобетонной крыше зданий, плиты которой не имеют электрической связи с землёй.

Стержневая и сеточная защита


При установке на защищаемом строении типовых стержневых молниеприёмников, от каждого из них в сторону заземлителя прокладывается не менее 2-х токоотводов, расположенных по разным сторонам здания.

Особой конструкции молниеприемная сетка, укладываемая поверх кровли на специальных держателях, изготавливается из стальной проволоки диаметром 6-8 миллиметров.

При скрытом монтаже согласно ПУЭ такой молниеотвод кладётся под кровельное покрытие (на слой утеплительного или гидроизоляционного материала с негорючими свойствами).

Выполненная в виде сетки защитная конструкция должна состоять из ячеек площадью не более 12х12 метров, а её узлы рекомендуется фиксировать посредством сварки.

Токоотводы или спуски, используемые для соединения молниеприёмной сетки с ЗУ, должны устраиваться по периметру здания через каждые 25 метров (не реже).

Инструкция РД 34.21.122-87

В соответствии с положениями данного документа при проектировании зданий и сооружений хозяйственного и бытового назначения должны соблюдаться требования по их оборудованию специальной молниезащитой. Определяемые этой инструкцией нормы не распространяются на линии электропередач, РУ и ТП, а также на контактные сети и коммуникационное оборудование.


Этим документом устанавливается порядок обустройства систем молниезащиты на возводимых объектах с учётом их размещения снаружи и внутри зданий.

Кроме того, им определяется перечень защитных мер, принимаемых в случае реконструкции строения или установки на его открытых пространствах (на кровле, в частности) дополнительного электрооборудования.

Помимо требований этой инструкции при проектировании сооружений того или иного назначения должны учитываться действующие положения и правила, устанавливаемые государственными стандартами и строительными нормативами.

Согласно прописанным в РД 34.21.122-87 правилам, все подлежащие молниезащите объекты в соответствии с особенностями их конструкции и географического положения делятся на 3 категории. С таблицей, в которой сведены воедино различные виды подлежащих защите объектов, их местоположение, а также присваиваемая им в зависимости от этого категория, можно ознакомиться в Приложении.

№ пп. Здания и сооружения Местоположение Тип зоны защиты при использовании стержневых и тросовых молниеотводов Категория молниезащиты
1 Здания и сооружения или их части, помещения которых согласно ПУЭ относятся к зонам классов В-I и В-II На всей территории СССР А I
2 То же классов В-Iа, В-Iб, В-IIа В местностях со средней продолжительностью гроз 10 ч в год и более При ожидаемом количестве поражений молнией в год здания или сооружения N II
3 Наружные установки, создающие согласно ПУЭ зону класса В-Iг На всей территории СССР Б II
4 Здания и сооружения или их части, помещения которых согласно ПУЭ относятся к зонам классов П-I, П-II, П-IIа В местностях со средней продолжительностью гроз 20 ч в год и более Для здания и сооружений I и II степеней огнестойкости при 0,12 — А III
5 Расположенные в сельской местности небольшие строения III — V степеней огнестойкости, помещения которых согласно ПУЭ относятся к зонам классов П-I, П-II, П-IIа В местностях со средней продолжительностью гроз 20 ч в год и более при N III (п. 2.30)
6 Наружные установки и открытые склады, создающие согласно ПУЭ зону классов П-III В местностях со средней продолжительностью гроз 20 ч в год и более При 0,12 — А III
7 Здания и сооружения III, IIIa, IIIб, IV, V степеней огнестойкости, в которых отсутствуют помещения, относимые по ПУЭ к зонам взрыво- и пожароопасных классов То же При 0,12 — А
8 Здания и сооружения из легких металлических конструкций со сгораемым утеплителем (IVa степени огнестойкости), в которых отсутствуют помещения, относимые по ПУЭ к зонам взрыво- и пожароопасных классов В местностях со средней продолжительностью гроз 10 ч в год и более При 0,022 — А III
9 Небольшие строения III-V степеней огнестойкости, расположенные в сельской местности, в которых отсутствуют помещения, относимые по ПУЭ к зонам взрыво- и пожароопасных классов В местностях со средней продолжительностью гроз 20 ч в год и более для III, IIIa, IIIб, IV, V степеней огнестойкости при N III (п. 2.30)
10 Здания вычислительных центров, в том числе расположенные в городской застройке В местностях со средней продолжительностью гроз 20 ч в год и более Б II
11 Животноводческие и птицеводческие здания и сооружения III-V степеней огнестойкости: для крупного рогатого скота и свиней на 100 голов и более, для овец на 500 голов и более, для птицы на 1000 голов и более, для лошадей на 40 голов и более В местностях со средней продолжительностью гроз 40 ч в год и более Б III
12 Дымовые и прочие трубы предприятий и котельных, башни и вышки всех назначений высотой 15 м и более В местностях со средней продолжительностью гроз 10 ч в год и более Б III (п. 2.31)
13 Жилые и общественные здания, высота которых более чем на 25 м больше средней высоты окружающих зданий в радиусе 400 м, а также отдельно стоящие здания высотой более 30 м, удаленные от других зданий более чем на 400 м В местностях со средней продолжительностью гроз 20 ч в год и более Б III
14 Отдельно стоящие жилые и общественные здания в сельской местности высотой более 30 м То же Б III
15 Общественные здания III-V степеней огнестойкости следующего назначения: детские дошкольные учреждения, школы и школы-интернаты, стационары лечебных учреждений, спальные корпуса и столовые учреждений здравоохранения и отдыха, культурно-просветительные и зрелищные учреждения, административные здания, вокзалы, гостиницы, мотели и кемпинги То же Б III
16 Открытые зрелищные учреждения (зрительные залы открытых кинотеатров, трибуны открытых стадионов и т.п.) То же Б III
17 Здания и сооружения, являющиеся памятниками истории, архитектуры и культуры (скульптуры, обелиски и т.п.) То же Б III

Требования СО 153-34.21.122-2003

Помимо вопросов, касающихся обустройства молниезащиты на государственных объектах любой формы собственности, в инструкции под данным обозначением рассматривается порядок подготовки и хранения всех сопровождающих документов.

Документация

Подготавливаемая при этом исполнительная документация должна включать в свой состав полный комплект расчётов, схем, чертежей и пояснительных записок, определяющих порядок монтажа специального оборудования в пределах защищаемой зоны.

При её подготовке должны учитываться как расположение здания на генеральном плане застройки (с учётом прокладываемых коммуникаций), так и климатические условия в данной местности.

Сдача объекта

Кроме того, этим документом устанавливается общий порядок технической приёмки комплексов молниезащиты, а также особенности сдачи их в эксплуатацию. Особо оговаривается, что для приёмки здания или сооружения назначается специальная комиссия, состоящая из представителей исполнителя и заказчика, а также инспектора пожарной службы.

В распоряжение рабочей комиссии должны быть предоставлены все документы по оборудуемой молниезащите, включая протокол испытаний токоотводов и заземлителей. Члены комиссии должны ознакомиться с результатами визуального осмотра всех составляющих молниезащиты, а также с принятыми мерами по защите объекта от выноса опасных потенциалов и перенапряжений.

По результатам изучения представленной разработчиком документации оформляются акты приёмки и допуска оборудования молниезащиты в эксплуатацию.

После этого на каждое отдельное устройство обязательно оформляются специальные рабочие паспорта (на всю систему и заземлитель), которые остаются у лица, ответственного за электрохозяйство объекта.

Проверка

В разделах инструкции, касающихся эксплуатации введённых в действие устройств молниезащиты отдельно оговаривается, что порядок их содержания и обслуживания определяется основными положениями ПУЭ. При этом с целью поддержания систем в рабочем состоянии должны проводиться ежегодные проверки всех её составляющих.

Такие освидетельствования организуются перед началом сезона гроз, а также после внесения в конструкцию молниезащиты каких-либо изменений и усовершенствований.

Технические нормативы

К перечню рабочих документов, регламентирующих чисто технические вопросы устройства молниезащиты, относятся различные стандарты, нормативы и поправки, оформленные в виде свода специальных рекомендаций.

За образец таких поправок и специальных замечаний может быть принят целый ряд стандартов, входящих в нормативную базу и перечисленных во втором разделе статьи.


Последнее замечание касается строительных норм и правил, а также ряда ГОСТов и стандартов, имеющих отношение к разработке и эксплуатации современных средств защиты от молний.

В заключении следует отметить, что все рассмотренные документы естественно дополняют друг друга, охватывая полный перечень вопросов, касающихся обустройства и обслуживания систем защиты от разряда природного электричества.

Проектирование заземления и молниезащиты

Проектирование заземления и молниезащиты

Данный раздел сайта ZANDZ ориентирован на специалистов, занимающихся проектированием и составлением смет по заземлению и молниезащите для различных объектов. Раздел содержит в себе полезную информацию, рекомендации, примеры типовых проектов в форматах PDF и DWG, общий список объёмов и работ для составления смет.

1. Примеры проектов в DWG и PDF

Проект заземления для трансформаторной подстанции

Трансформаторная подстанция — один из самых популярных объектов, вызывающий множество вопросов и уточнений. Проектирование заземление для этого объекта требует особых знаний и внимания к деталям. Смотрите, как делать заземление для трансформаторной подстанции!

Проект заземления и молниезащиты для нефтяных резервуаров

Нефтехранилища, как и любые другие объекты нефтегазовой отрасли, по понятным причинам, требуют особой защиты от молнии. В нормативных документах они относятся к специальным, представляющим опасность для непосредственного окружения. Именно поэтому необходимо с особой внимательностью подойти к созданию решений по молниезащите таких объектов. Смотрите пример такого решения!

Проект молниезащиты склада из сэндвич-панелей

Пример проекта молниезащиты для объекта, относящегося к классу пожароопасной зоны П-IIa. В качестве естественного молниеприёмника принимается металлическая конструкция крыши.

Проект молниезащиты и заземления осветительной мачты

Пример проекта заземления и молниезащиты для отдельно стоящей металлической осветительной мачты фланцевого типа высотой 16 метров диаметром 300 мм.

Проект заземления и молниезащиты для ресторана под искусственной насыпью

Уникальный пример проекта заземления и молниезащиты с использованием молниеприёмной сетки в качестве молниеприёмного оборудования и заземлителя одновременно.

Проект молниезащиты железнодорожной сливо-наливной эстакады

Проект молниезащиты и заземления двухсторонней железнодорожной сливо-наливной эстакады для обслуживания железнодорожных вагонов-цистерн, с перекидными трапами и входными лестницами.

Проект контура заземления шкафа связи

Проект контура заземления шкафа связи (телекоммуникационного шкафа) промежуточного пункта избирательной железнодорожной связи. Цель заземления — обеспечение нормальной работы аппаратуры, расположенной в шкафу. Удельное сопротивление грунта 150 Ом*м. Решение представлено в виде пяти вертикальных электродов из омедненной стали, соединенных полосой.

Проект молниезащиты и заземления автосервиса

Проект молниезащиты и заземления автосервиса размерами 30,4х15,3х5,8 м и удельным сопротивлением грунта 500 Ом*м. Решение на основе вертикальных молниеприёмников высотой 16 м и комплектами электролитического заземления ZANDZ.

Проект молниезащиты для торгового центра

Торгово-развлекательные центры, моллы и крупные магазины нередко становятся настоящей головной болью проектировщиков. Одна из проблем, с которой они сталкиваются — сохранение эстетичного внешнего вида объекта и надёжной защиты данных объектов. Предлагаем вашему вниманию пример успешного решения такой проблемы!

Проект заземления и молниезащиты для жилого многоквартирного дома

Несмотря на то, что жилые дома относятся к обычному типу объектов, молнии в них тоже ударяют и тоже опасны для них. Учитывая "строительный бум", тема молниезащиты жилых домов стала очень популярной в проектировании. Предлагаем вашему вниманию пример проекта по молниезащите жилого многоквартирного дома!

Проект молниезащиты часовни

Пример проекта комплексного решения для часовни, включающее в себя заземление с сопротивлением 5,53 Ом, молниезащиту с использованием естественного молниеприёмника, а также защиту от перенапряжений.

Проект заземления и молниезащиты для ЦОД (центр обработки данных, дата-центр)

Пример комплекса мероприятий по защите от прямых ударов молнии и опасных наводок для высокочувствительного оборудования дата-центров!

Проект молниезащиты и заземления закрытого стационарного газорегуляторного пункта (ГРП)

Пример комплекса мероприятий по защите от прямых ударов молнии и опасных наводок для газоотводных и дыхательных труб

Проект молниезащиты стадиона

Пример комплекса мероприятий по защите от прямых ударов молнии и опасных наводок для стадиона

Проект молниезащиты и заземления производственного корпуса

Пример проекта производственного корпуса химических веществ габаритами 2,2х6х6,75 м (ДхШхВ). В соответствии с классификацией по взрывоопасности согласно ПУЭ помещения защищаемого здания относятся к категории В-I.

Проект молниезащиты и заземления радиотрансляционного узла

Проект молниезащиты, защитного и технологического (функционального) заземления радиотрансляционного узла размерами 12,5х10х8 м.

Проект заземления лифта (лифтового оборудования) в бизнес-центре

Пример расчета, схемы и чертежи типового проекта заземления для пассажирского лифта в бизнес-центре с расчётным сопротивлением заземляющего устройства 2,25 Ом. Этажность здания: 10 этажей. Габариты здания в плане: 58х18 м.

Проект молниезащиты железнодорожного вокзала и станции

Удельное сопротивление грунта на объекте: 150 Ом/м. Конструкция – металлический каркас, бетон, плоская рулонная кровля в основном здании, металлическое стальное покрытие над подъездными путями (станция). На кровле размещено оборудование вентиляции и кондиционирования.

Проект молниезащиты крытого метромоста над рекой

Основной пролёт: 900 м. Общая длина моста: 2145 м.Удельное сопротивление грунта на объекте: 30 Ом/м. Конструкция: металлический каркас, плоская кровля, железобетонные опоры.

Проект молниезащиты и заземления торговых павильонов на рынке

Конструкция: металлический каркас, кровля из профнастила, металлический каркас световых фонарей. Длина павильонов: 100 м. На крыше установлены антенны.

Проект молниезащиты и заземления канализационной насосной станции (КНС)

Объект: канализационная насосная станция с наземным резервуаром. Задача: расчёт внешней, внутренней молниезащиты и заземления с сопротивлением не более 10 Ом, предложить решение по защите здания и электрооборудования от импульсных перенапряжений.

Проект молниезащиты здания музея

Грунт: суглинок. Удельное сопротивление грунта: 150 Ом·м. Задача: провести расчёт внешней, внутренней молниезащиты и заземления с сопротивлением не более 10 Ом.

Проект молниезащиты завода по производству древесного угля

Объект: здание завода по производству древесного угля. Размеры здания: 30х40х10 м (ДхШхВ), площадь: 1200 м2. Площадь территории, на которой находится объект: 2800 м2. Здание является самым высоким объектом в радиусе 100 м. Для производства используется дорогостоящее электрооборудование.

Проект молниезащиты и заземления системы видеонаблюдения

Объект: объект с наружным видеонаблюдением. Удельное сопротивление грунта: 160 Ом·м. Расчётное сопротивление заземляющего устройства равняется 7,14 Ом, что меньше требуемого значения 10 Ом.

Проект молниезащиты административного здания

Площадь территории: 500 м2. Общая площадь здания: 1100 м2. Удельное сопротивление грунта на объекте: 300 Ом/м. Для защиты здания и оборудования на кровле предусматривается кровельная тросовая молниезащита ZANDZ.

Проект молниезащиты и заземления автозаправочной станции (АЗС)

Объект: автозаправочная станция в традиционном исполнении без пункта технического обслуживания автомобилей. На территории АЗС расположены ТРК под навесом, резервуарный парк топлива, административное здание с кафе. Для защиты АЗС от ПУМ предусматривается установка трёх отдельно стоящих молниеприёмников (мачт) высотой 20 м.

Проект молниезащиты выставочного комплекса Экспоцентра

Объект: здание торгово-выставочного комплекса Экспоцентра. Конструкция – металлический каркас, плоская кровля. Для защиты здания и оборудования на кровле предусматривается молниезащита мачтовыми молниеприёмниками ZANDZ.

Проект молниезащиты и заземления быстровозводимых модульных зданий (блок-контейнеров)

Объект: вахтовый посёлок на 150 человек. Модульное здание из 64-х типовых блок-контейнеров. Габариты: 40х13,7 м. Требуется провести расчёты и создать проект молниезащиты и заземляющего устройства с соблюдением действующей НТД.

Проект заземления симметрирующего трансформатора типа ТСТ

Удельное сопротивление грунта 100 Ом/м. В данном варианте линейное напряжение составляет 380 В, соответственно, сопротивление заземляющего устройства не должно превышать 4 Ом. Решение представляет из себя заземляющее устройство, состоящее из трёх вертикальных электродов.

Проект заземления самолётных площадок

Самолеты заземляются при помощи проводов заземления с закреплёнными штекерами, которые подключаются к розеткам на самолетах. В данном разделе предложено решение по организации заземляющего устройства для площадки стоянки самолетов. Решение выполнено в соответствии с ПУЭ, 7-изд., ПТЭЭП, ГОСТ 12.1.018.

Проект молниезащиты интернет-оборудования, размещенного на столбе (IoT, LPWAN, 4G)

Объект: столб на котором размещено интернет оборудование (IoT, LPWAN, 4G). Для защиты цепей питания выполняется установка однополюсного комбинированного УЗИП со встроенным предохранителем.

Проект заземления дизель-генераторной установки (ДГУ)

ДГУ расположена в Московской области. Грунт - суглинок, удельное сопротивление грунта – 100 Ом*м. Согласно ПУЭ-7, п.1.7.101 сопротивление заземляющего устройства должно быть не более 4 Ом.

Проект заземления диспетчерского пункта с использованием коксовой мелочи

Проект заземления Диспетчерского пункта с использованием коксовой мелочи

Диспетчерский пункт расположен в сыпучих грунтах с удельным сопротивлением 2000 Ом*м. Разработано решение по заземлению объекта с использованием коксовой мелочи.

2. Примеры расчёта смет

Экономическое обоснование применения модульного заземления ZANDZ
(на примере КТП 10/0,4 кВ)

Расчёты конструкции и сопротивления заземляющих устройств для КТП 10/0,4 кВт с использованием трёх вариантов оборудования. Во всех случаях принимаются идентичные расчётные условия, при которых итоговое сопротивление заземляющего устройства не превышает 4 Ом и находится в диапазоне от 3,5 до 4 Ом.

  • № 1 — Технический расчёт традиционного заземляющего устройства из угловой стали
  • № 2 — Локальный сметный расчёт по заземлению из угловой стали (файл в формате .xls)
  • № 3 — Технический расчёт модульно-стержневого заземляющего устройства из омедненной стали
  • № 4 — Локальный сметный расчёт по заземлению из омеднённых заземлителей (файл в формате .xls)
  • № 5 — Технический расчёт модульно-стержневого заземляющего устройства из нержавеющей стали
  • № 6 — Локальный сметный расчёт по заземлению из нержавеющей стали (файл в формате .xls)

3. Реальные примеры расчётов заземления и молниезащиты

Реальные примеры расчётов заземления и молниезащиты

В нашу компанию поступает множество запросов на расчеты заземления и молниезащиты для самых разных объектов. Технические специалисты ZANDZ с удовольствием отзываются на такие запросы и предлагают решения, соответствующие современным требованиям.

Смотрите на отдельной странице примеры расчетов для реальных объектов: туристическая база, вокзал, обсерватория, дизель-генераторная установка, антенна, школа, ресторан на воде, стадион, склад, церковь, жилое здание, дачный дом и пр.

4. Сервис расчёта вероятности удара молнии в объект

Вы можете воспользоваться уникальным сервисом расчета вероятности удара молнии в объект, защищённый молниеприёмниками, разработанным командой ZANDZ совместно с ОАО «Энергетический институт им.Г.М.Кржижановского» (ОАО «ЭНИН»)

Этот инструмент позволяет не просто проверить надежность системы молниезащиты, но и выполнить наиболее рациональный и правильный проект защиты от молнии, обеспечивая:

  • меньшую стоимость конструкции и монтажных работ, уменьшая ненужный запас и используя менее высокие, менее дорогие в монтаже, молниеприёмники;
  • меньшее количество ударов молнии в систему, сокращая вторичные негативные последствия, что особенно важно на объектах со множеством электронных приборов (количество ударов молнии уменьшается с уменьшением высоты стержневых молниеприёмников).

Функционал сервиса позволяет рассчитать эффективность запланированной молниезащиты в виде понятных параметров:

  • вероятность прорыва молнии в объекты системы (надёжность системы защиты определяется как 1 минус величина вероятности);
  • число ударов молнии в систему в год;
  • число прорывов молнии, минуя защиту, в год.

Имея подобную информацию, проектировщик может сравнить требования заказчика и нормативной документации с полученной надежностью и принять меры по изменению конструкции молниезащиты.

Для того, чтобы приступить к расчету, перейдите по ссылке.

5. Помощь в расчётах и проектировании

Вам требуется помощь в расчётах, проектировании или составлении сметы для систем заземления и молниезащиты? Отправьте заявку на консультацию и вам ответят наши технические специалисты!

Вебинар «Заземление и молниезащита для электрических подстанций», страница 2

Заземлитель за пределами ПС

— В высокоомных грунтах сетки базовых конструкций может быть недостаточно. Чтобы добиться сопротивление в 0,5 Ом для снижения сопротивления к заземлителю может быть расширен в пределах свободной территории подстанции, а также за ее пределами. За ограждением подстанции горизонтальные заземлители должны прокладываться на глубине до 1 метра. Значительного снижения можно добиться путём установки комплектов электролитического заземления.

Соединение молниеприемника с ЗУ

Соединение молниеприемника с ЗУ

— Ограждение заземляется, если на нём располагается устройства охранной сигнализации или видеонаблюдения. В случае повреждения ограждения может оказаться под напряжением и, прикасаясь к ней, люди и животные могут получить удар током. Поэтому ограждение присоединяется к контуру, который прокладывается за пределами ограждения на расстоянии 1 метра и глубине 1 метра, который послужит в качестве выравнивания потенциалов и обеспечения электробезопасности. Если на ограде нет электроприёмников, то заземлитель не присоединяется к ограждению и располагается на расстоянии не ближе 2 метров от него.

Внутренний контур заземления

Внутренний контур заземления

— Внутри здания ОПУ и ЗРУ на стене, на высоте 60 см прокладывается магистраль заземления или по-другому он называется внутренним контуром. Уже к этому внутреннему контуру у нас присоединяется металлоконструкция шкафов, стоек с оборудованием.

Внутренний контур заземления (продолжение)

Внутренний контур заземления (продолжение)

— На данном слайде мы видим внутренний контур, который присоединяется в данном случае к обогревателям, а также к стойке шкафов.

Молниезащита подстанции

— Оборудование подстанции должны защищаться от прямых ударов молнии. Как правило, необходима молниезащита всех подстанций, но есть и исключения.

Защита от молнии с помощью молниеприемников

Защита от молнии с помощью молниеприемников

— Защита от прямых ударов молнии выполняется с помощью молниеприёмников, устанавливаемых на конструкциях, порталах, а также на прожекторных мачтах. Для защиты также может потребоваться установка отдельно стоящих молниеприёмников. Также они могут понадобиться, чтобы снять молниеприёмник с порталов, например, если нужно уменьшить влияние импульсного тока молнии в нужной точке на кабеле непосредственно на оборудовании.

Расположение горизонтальных заземлителей

Расположение горизонтальных заземлителей

— Если молниеприёмники присоединяются к базовой конструкции, необходимо чтобы расстояние до силовых трансформаторов, реакторов и комплектных распределительных устройств было не менее 15 метров по магистралям заземления.

Соединение молниеприемника с ЗУ

— Если молниеприёмники присоединяются к сетке заземления подстанции, необходимо обеспечить выполнение следующих требований. От каждого отдельно стоящего молниеприёмника выполняется прокладка горизонтальных заземлителей для растекания тока не менее чем в двух направлениях или в трех направлениях, если расстояние от молниеотвода до трансформатора менее 15 метров. На каждом направлении устанавливается по вертикальному электроду глубиной в 5 метров. То есть в данном случае мы это видим.

Расчет молниезащиты подстанции

Расчет молниезащиты подстанции

— Расчёт молниезащиты подстанции производится по регулирующим документам, указанным на слайде. Принимается надёжность защиты от прямых ударов молнии равная коэффициентам 0,95 – 0,99 – это второй класс надежности. Подстанции могут относиться как к обычным с надежностью защиты коэффициентом 0,95, так и к специальным объектам с коэффициентом надёжности 0,99. В зависимости от этих принадлежностей и значимости для энергосистемы расчёт выполняется, как правило, в программных комплексах, на чертеже строится зона защита с требуемой надёжностью на высоте защищаемого оборудования. Расчёт молниезащиты также выполняется центром ZANDZ в программном обеспечении, разработанном «Энергетическим институтом им. Г. М. Кржижановского».

Читайте также: