Между двумя металлическими пластинами подвешен шарик из фольги что будет
1. Если стеклянную палочку потереть о шёлк или бумагу, то она приобретёт способность притягивать лёгкие тела, например бумажки, волосы и пр. Тот же эффект можно наблюдать, если поднести к лёгким предметам эбонитовую палочку, потертую о мех. Тела, которые в результате трения приобретают способность притягивать другие тела, называют наэлектризованными или заряженными, а явление приобретения телами электрического заряда называют электризацией.
Подвесив на двух нитях лёгкие шарики из фольги и коснувшись каждого из них стеклянной палочкой, потёртой о шёлк, можно увидеть, что шарики оттолкнутся друг от друга. Если потом коснуться одного шарика стеклянной палочкой, потёртой о шёлк, а другого эбонитовой палочкой, потёртой о мех, то шарики притянутся друг к другу. Это означает, что стеклянная и эбонитовая палочки при трении приобретают заряды разных знаков, т.е. в природе существуют два рода электрических зарядов, имеющих противоположные знаки: положительный и отрицательный. Условились считать, что стеклянная палочка, потёртая о шёлк, приобретает положительный заряд, а эбонитовая палочка, потёртая о мех, приобретает отрицательный заряд.
Из описанного опыта также следует, что заряженные тела взаимодействуют друге другом. Такое взаимодействие называют электрическим. При этом одноимённые заряды, т.е. заряды одного знака, отталкиваются друг от друга, а разноимённые заряды притягиваются друг к другу.
На явлении отталкивания одноимённо заряженных тел основано устройство электроскопа — прибора, позволяющего определить, заряжено ли данное тело (рис. 77), и электрометра, прибора, позволяющего оценить значение электрического заряда (рис. 78).
Если заряженным телом коснуться стержня электроскопа, то листочки электроскопа разойдутся, поскольку они приобретут заряд одного знака. То же произойдёт со стрелкой электрометра, если коснуться заряженным телом его стержня. При этом, чем больше заряд, тем на больший угол отклонится стрелка от стержня.
2. Из простых опытов следует, что сила взаимодействия между заряженными телами может быть больше или меньше в зависимости от величины приобретённого заряда. Таким образом, можно сказать, что электрический заряд, с одной стороны, характеризует способность тела к электрическому взаимодействию, а с другой стороны, является величиной, определяющей интенсивность этого взаимодействия.
Заряд обозначают буквой \( q \) , за единицу заряда принят кулон: \( [q] \) = 1 Кл.
Если коснуться заряженной палочкой одного электрометра, а затем этот электрометр соединить металлическим стержнем с другим электрометром, то заряд, находящийся на первом электрометре, поделится между двумя электрометрами. Можно затем соединить электрометр с ещё несколькими электрометрами, и заряд будет делиться между ними. Таким образом, электрический заряд обладает свойством делимости. Пределом делимости заряда, т.е. наименьшим зарядом, существующим в природе, является заряд электрона. Заряд электрона отрицателен и равен 1,6·10 -19 Кл. Любой другой заряд кратен заряду электрона.
3. Электрон — частица, входящая в состав атома. В истории физики существовало несколько моделей строения атома. Одна из них, позволяющая объяснить ряд экспериментальных фактов, в том числе явление электризации, была предложена Э. Резерфордом. На основании проделанных опытов он сделал вывод о том, что в центре атома находится положительно заряженное ядро, вокруг которого по орбитам движутся отрицательно заряженные электроны. У нейтрального атома положительный заряд ядра равен суммарному отрицательному заряду электронов. Ядро атома состоит из положительно заряженных протонов и нейтральных частиц нейтронов. Заряд протона по модулю равен заряду электрона. Если из нейтрального атома удалены один или несколько электронов, то он становится положительно заряженным ионом; если к атому присоединяются электроны, то он становится отрицательно заряженным ионом.
Знания о строении атома позволяют объяснить явление электризации трением. Электроны, слабо связанные с ядром, могут отделиться от одного атома и присоединиться к другому. Это объясняет, почему на одном теле может образоваться недостаток электронов, а на другом — их избыток. В этом случае первое тело становится заряженным положительно, а второе — отрицательно.
4. Если потереть незаряженные стеклянную и эбонитовую пластинки друг о друга и затем внести их по очереди в полый шар, надетый на стержень электрометра, то электрометр зафиксирует наличие заряда и у стеклянной, и у эбонитовой пластинки. При этом можно показать, что пластинки будут иметь заряд противоположных знаков. Если в шар внести обе пластины стрелка электрометра останется на нуле. Подобное можно обнаружить, если потереть эбонитовую палочку о мех: мех, так же как и палочка, будет заряжен, но зарядом противоположного знака.
В результате трения электроны перешли со стеклянной пластины на эбонитовую, и стеклянная пластина оказалась заряженной положительно (недостаток электронов), а эбонитовая отрицательно (избыток электронов). Таким образом, при электризации происходит перераспределение заряда, электризуются оба тела, приобретая равные по модулю заряды противоположных знаков.
При этом алгебраическая сумма электрических зарядов до и после электризации остаётся постоянной: \( q_1+q_2+…+q_n=const \) .
В описанном опыте \( q_n \) алгебраическая сумма зарядов пластин до и после электризации равна нулю.
Записанное равенство выражает фундаментальный закон природы — закон сохранения электрического заряда. Как и любой физический закон, он имеет определённые границы применимости: он справедлив для замкнутой системы тел, т.е. для совокупности тел, изолированных от других объектов.
ПРИМЕРЫ ЗАДАНИЙ
Часть 1
1. Если массивную гирю поставить на пластину из изолятора и соединить с электрометром, а затем несколько раз ударить по ней куском меха, то гиря приобретёт отрицательный заряд и стрелка электрометра отклонится. При этом кусок меха приобретёт заряд
1) равный нулю
2) положительный, равный по модулю заряду гири
3) отрицательный, равный заряду гири
4) положительный, больший по модулю заряда гири
2. Два точечных заряда будут притягиваться друг к другу, если заряды
1) одинаковы по знаку и любые по модулю
2) одинаковы по знаку и обязательно одинаковы по модулю
3) различны по знаку, но обязательно одинаковы по модулю
4) различны по знаку и любые по модулю
3. На рисунках изображены три пары одинаковых лёгких заряженных шариков, подвешенных на шёлковых нитях. Заряд одного из шариков указан на рисунках. В каком(-их) случае(-ях) заряд второго шарика может быть отрицателен?
1) только А
2) А и Б
3) только В
4) А и В
4. Ученик во время опыта по изучению взаимодействия металлического шарика, подвешенного на шёлковой нити, с положительно заряженным пластмассовым шариком, расположенным на изолирующей стойке, зарисовал в тетради наблюдаемое явление: нить с шариком отклонилась от вертикали на угол \( \alpha \) . На основании рисунка можно утверждать,что металлический шарик
1) имеет положительный заряд
2) имеет отрицательный заряд
3) не заряжен
4) либо не заряжен, либо имеет отрицательный заряд
5. Отрицательно заряженное тело отталкивает подвешенный на нити лёгкий шарик из алюминиевой фольги. Заряд шарика:
A. положителен
Б. отрицателен
B. равен нулю
Верными являются утверждения:
1) только Б
2) Б и В
3) А и В
4) только В
6. Металлический шарик 1, укреплённый на длинной изолирующей ручке и имеющий заряд \( +q \) , приводят поочерёдно в соприкосновение с двумя такими же изолированными незаряженными шариками 2 и 3, расположенными на изолирующих подставках.
Какой заряд в результате приобретёт шарик 2?
7. От капли, имеющей электрический заряд \( -2e \) , отделилась капля с зарядом \( +e \) . Каков электрический заряд оставшейся части капли?
8. Металлическая пластина, имевшая отрицательный заряд \( -10e \) , при освещении потеряла четыре электрона. Каким стал заряд пластины?
9. К водяной капле, имевшей электрический заряд \( +5e \) присоединилась кайля с зарядом \( -6e \) . Каким станет заряд объединенной капли?
10. На рисунке изображены точечные заряженные тела. Тела А и Б имеют одинаковый отрицательный заряд, а тело В равный им по модулю положительный заряд. Каковы модуль и направление равнодействующей силы, действующей на заряд Б со стороны зарядов А и В?
1) \( F=F_А+А_В \) ; направление 2
2) \( F=F_А-А_В \) ; направление 2
3) \( F=F_А+А_В \) ; направление 1
4) \( F=F_А-А_В \) ; направление 1
11. Из перечня приведённых ниже высказываний выберите два правильных и запишите их номера в таблицу.
1) Сила взаимодействия между электрическими зарядами тем больше, чем больше расстояние между ними.
2) При электризации трением двух тел их суммарный заряд равен нулю.
3) Сила взаимодействия между электрическими зарядами тем больше, чем больше заряды.
4) При соединении двух заряженных тел их общий заряд будет меньше, чем алгебраическая сумма их зарядов до соединения.
5) При трении эбонитовой палочки о мех заряд приобретает только эбонитовая палочка.
12. В процессе трения о шёлк стеклянная линейка приобрела положительный заряд. Как при этом изменилось количество заряженных частиц на линейке и шёлке при условии, что обмен атомами при трении не происходил? Установите соответствие между физическими величинами и их возможными изменениями при этом. Запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.
ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) количество протонов на шёлке
Б) количество протонов на стеклянной линейке
B) количество электронов на шёлке
ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличилась
2) уменьшилась
3) не изменилась
16. Электродинамика (объяснение явлений)
Две параллельные металлические пластины больших размеров расположены на расстоянии \(d\) друг от друга и подключены к источнику постоянного напряжения (рис. 1). Пластины закрепили на изолирующих подставках и спустя длительное время отключили от источника (рис. 2).
Из приведённого ниже списка выберите два правильных утверждения.
1) Напряжённость электрического поля в точке А больше, чем в точке В.
2) Потенциал электрического поля в точке А больше, чем в точке С.
3) Если увеличить расстояние между пластинами \(d\) , то напряжённость электрического поля в точке С не изменится.
4) Если уменьшить расстояние между пластинами \(d\) , то заряд правой пластины не изменится.
5) Если пластины полностью погрузить в керосин, то энергия электрического поля конденсатора останется неизменной.
После того как длительное время пластины были подключены к источнику постоянного напряжения, они зарядились: левая пластина отрицательно, правая – положительно.
1) \(\color>\) плоского заряженного конденсатора электрическое поле однородно. Напряжённости поля в точках А и В одинаковые.
2) \(\color>\) Потенциал электрического поля внутри конденсатора убывает от положительной пластины к отрицательной. Потенциал электрического поля в точке А меньше, чем в точке С.
3) \(\color>\) Поскольку пластины отключены от источника, то заряд и его поверхностная плотность на них не меняется при изменении расстояния. Значит, не будет изменяться и напряжённость электрического поля между пластинами.
4) \(\color>\) Заряд пластин остаётся постоянным, независимо от того, сдвигают пластины или нет.
5) \(\color>\) Диэлектрическая проницаемость керосина больше 1. При полном погружении в керосин энергия электрического поля конденсатора уменьшится.
Однородное электростатическое поле создано равномерно заряженной горизонтальной пластиной. Линии напряженности поля направлены вертикально вверх (см. рисунок).
Выберите два верных утверждения о данной ситуации и укажите их номера.
1) Если в точку \(A\) поместить пробный точечный отрицательный заряд, то на него со стороны пластины будет действовать сила, направленная вертикально вверх.
2) Пластина имеет положительный заряд.
3) Потенциал электростатического поля в точке \(B\) выше, чем в точке \(C\) .
4) Напряжённость поля в точке \(C\) больше, чем в точке \(A\) .
5) Работа электростатического поля по перемещению пробного точечного отрицательного заряда из точки \(A\) в точку \(B\) положительна.
1) \(\color>\)
Если в точку \(A\) поместить пробный точечный отрицательный заряд, то на него будет действовать сила, направленная вертикально вниз, так как заряд и пластина заряжены разноименно (см. пункт 2).
2) \(\color>\)
На рисунке видно, что линии напряженности выходят из пластины. Следовательно, она заряжена положительно.
3) \(\color>\)
Чем ближе точка расположена к пластине, тем в ней больше потенциал электростатического поля. Потенциал возрастает при приближении к положительной пластине.
4) \(\color>\)
Напряжённость поля одинакова во всех точках над пластиной.
5) \(\color>\)
Заряд в точках \(A\) и \(B\) будет иметь одинаковый потенциал. Следовательно, работа по его перемещению между этими точками равна нулю.
Две параллельные металлические пластины больших размеров расположены на расстоянии \(d\) друг от друга и подключены к источнику постоянного напряжения (см. рисунок).
Из приведённого ниже списка выберите два правильных утверждения.
1) Если увеличить расстояние \(d\) между пластинами, то напряжённость электрического поля в точке В уменьшится.
2) Если пластины полностью погрузить в керосин, то энергия электрического поля пластин останется неизменной.
3) Напряжённость электрического поля в точке А меньше, чем в точке С.
4) Потенциал электрического поля в точке А выше, чем в точке С.
5) Если уменьшить расстояние \(d\) между пластинами, то заряд левой пластины уменьшится.
1) \(\color>\)
При увеличении расстояния, заряд пластин не изменится, но увеличится расстояние до точки \(B\) (пробного заряда \(q\) ), следовательно, сила Кулона уменьшится, при этом напряженность равна: \[E=\dfrac\] Следовательно, напряженность уменьшится
2) \(\color>\)
При погружении ёмкость конденсатора увеличится, а напряжение не изменится, следовательно, по формуле: \[W=\dfrac\] энергия увеличится
3) \(\color>\)
Внутри плоского конденсатора получается однородное электрическое поле, напряженность которого в каждой точке одинакова.
4) \(\color>\)
Да, так как точка А находится ближе к заряженной пластине, то на гипотетический заряд в этой точке будет действовать бОльшая сила Кулона, чем в точке C.
5) \(\color>\)
При уменьшении расстояния между пластинами ёмкость увеличивается, из формулы: \[C=\varepsilon_0\dfrac\] Следовательно, конденсатор сможет накопить больший заряд
Для оценки заряда, накопленного воздушным конденсатором, можно использовать устройство, изображённое на рисунке: лёгкий шарик из оловянной фольги подвешен на изолирующей нити между двумя пластинами конденсатора, при этом одна из пластин заземлена, а другая заряжена положительно. Когда устройство собрано, а конденсатор заряжен (и отсоединён от источника), шарик приходит в колебательное движение, касаясь поочерёдно обеих пластин.
Выберите два верных утверждения, соответствующих колебательному движению шарика после первого касания пластины.
1) По мере колебаний шарика напряжение между пластинами конденсатора уменьшается.
2) При движении шарика к положительно заряженной пластине его заряд равен нулю, а при движении к заземлённой пластине — положителен.
3) При движении шарика к заземлённой пластине он заряжен положительно, а при движении к положительно заряженной пластине — отрицательно.
4) При движении шарика к заземлённой пластине он заряжен отрицательно, а при движении к положительно заряженной пластине — положительно.
5) По мере колебаний шарика электрическая ёмкость конденсатора уменьшается.
1) По мере движения, заряд от конденсатора будет уходить в землю и напряжение между обкладками падать. Сначала шарик соприкоснется с положительно заряженной пластиной и станет положительно заряженной, начнет от нее отталкиваться, пока не коснется нейтрально заряженной и там потеряет заряд и так, пока колебания не прекратятся
2)–4) Из пункта 1, шарик при движении к заземленной пластине будет заряжен положительно.
5) На пластины конденсатора никак не воздействуют (не изменяют расстояние между ними и не изменяют площадь), следовательно, ёмкость будет постоянна
Плоский воздушный конденсатор ёмкостью \(C_0\) , подключённый к источнику постоянного напряжения, состоит из двух металлических пластин, находящихся на расстоянии \(d_0\) друг от друга. Расстояние между пластинами меняется со временем так, как показано на графике.
Выберите два верных утверждения, соответствующих описанию опыта.
1) В момент времени \(t_4\) ёмкость конденсатора увеличилась в 5 раз по сравнению с первоначальной (при t = 0).
2) В интервале времени от \(t_1\) до \(t_4\) заряд конденсатора уменьшается.
3) В интервале времени от \(t_1\) до \(t_4\) энергия конденсатора равномерно уменьшается.
4) В промежутке времени от \(t_1\) до \(t_4\) напряжённость электрического поля между пластинами конденсатора остаётся постоянной.
5) В промежутке времени от \(t_1\) до \(t_4\) напряжённость электрического поля между пластинами конденсатора увеличивается.
1) \(\color>\) Ёмкость определяется формулой: \[C=\varepsilon_0\dfrac\] Следовательно, при уменьшении расстояния в 5 раз, ёмкость возрастет в 5 раз
2) \(\color>\)
Заряд равен: \[q=CU\] Так как ёмкость увеличивается, а напряжение постоянно, то заряд увеличивается.
3 ) \(\color>\)
Энергия конденсатора: \[W=\dfrac\] Аналогично предыдущему пункту энергия увеличивается.
4) \(\color>\)
Напряженность вычисляется по формуле: \[E=\dfrac\] Так как напряжение постоянно, а расстояние между пластинами уменьшается, то напряженность увеличивается.
5) \(\color>\) См. пункт 4
На уединённой неподвижной проводящей сфере радиусом \(R\) находится положительный заряд \(Q\) . Сфера находится в вакууме. Напряжённость электростатического поля сферы в точке A равна 36 В/м. Все расстояния указаны на рисунке.
Выберите два верных утверждения, описывающих данную ситуацию.
1) Потенциал электростатического поля в точке \(A\) выше, чем в точке \(F\) : \(\phi_A>\phi_F\)
2) Потенциал электростатического поля в точках \(B\) и \(D\) одинаков: \(\phi_B =\phi_D\)
3) Потенциал электростатического поля в точках \(A\) и \(B\) одинаков: \(\phi_A=\phi_B\)
4) Напряжённость электростатического поля в точке C \(E_C\) = 9 В/м.
5) Напряжённость электростатического поля в точке B \(E_B\) = 0.
Досрочный экзамен по физике 2020 г.
Для начала определим формулы, по которым можно рассчитать необходимые величины. Потенциал: \[\phi= \dfrac\] Но потенциал внутри сферы будет равен потенциалу на поверхности сферы.
Напряженность: \[E=\dfrac\] Но напряженность внутри сферы равна 0. \(r\) – расстояние от центра сферы до нужной точки.
1) \(\color>\)
Точка \(A\) находится дальше от центра сферы, следовательно, потенциал в ней меньше.
2) \(\color>\)
Из вышесказанного потенциалы одинаковы (см. перед пунктом 1)
3) \(\color>\)
Точка \(A\) находится дальше от центра сферы, следовательно, потенциал в ней меньше.
4) \(\color>\)
Расстояние от центра сферы до точек \(A\) и \(C\) одинаково, следовательно, напряженность в этих точках тоже одинаковая.
5) \(\color>\)
Точка \(B\) находится внутри сферы, следовательно, напряженность в ней равна 0.
Два незаряженных стеклянных кубика 1 и 2 сблизили вплотную и поместили в электрическое поле, напряженность которого направлена горизонтально влево, как показано в верхней части рисунка. Затем кубики раздвинули (нижняя часть рисунка).
Выберите из предложенного перечня два утверждения, которые соответствуют результатам проведенных экспериментальных исследований, и укажите их номера.
1) После того как кубики раздвинули, заряд первого кубика оказался положителен, заряд второго — отрицателен.
2) После помещения в электрическое поле электроны из первого кубика стали переходить во второй.
3) После того как кубики раздвинули, заряды обоих кубиков остались равными нулю.
4) До разделения кубиков в электрическом поле левая поверхность 1-го кубика была заряжена отрицательно.
5) После того как кубики раздвинули, правые поверхности обоих кубиков оказались заряжены отрицательно.
Стекло относится к диэлектрикам, в которых возникающая во внешнем электрическом поле поляризация вызывается в основном ориентацией полярных молекул или появлением наведённой поляризации у неполярных молекул, а не за счёт перемещения подвижных зарядов (электронов).
Поэтому после того, как кубики раздвинули, (полные) заряды обоих кубиков остались равными нулю, а правые поверхности обоих кубиков оказались заряжены отрицательно.
Электрическое поле. Электростатика
Электризация тел. Два вида электрических зарядов. Взаимодействие электрических зарядов. Закон сохранения электрического заряда
Читайте также: