Методы спектрального анализа металлов

Обновлено: 05.01.2025

ГОСТ Р 54153-2010

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Метод атомно-эмиссионного спектрального анализа

Steel. Method of atomic emission spectral analysis

Дата введения 2012-01-01

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ "О техническом регулировании", а правила применения национальных стандартов Российской Федерации - ГОСТ Р 1.0-2004 "Стандартизация в Российской Федерации. Основные положения"

Сведения о стандарте

1 РАЗРАБОТАН Закрытым акционерным обществом "Институт стандартных образцов"

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 145 "Методы контроля металлопродукции"

3 В настоящем стандарте учтены основные нормативные положения стандартов АСТМ Е415-08*, АСТМ Е1086-08*, АСТМ Е1009-95*

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - Примечание изготовителя базы данных.

5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячно издаваемых информационных указателях "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

Введение

Настоящий стандарт разработан впервые в связи с совершенствованием спектрального оборудования, расширением аналитических возможностей приборов, а также с учетом современных требований к точности измерений показателей качества стали в Российской Федерации.

1 Область применения

1.1 Настоящий стандарт устанавливает атомно-эмиссионный спектральный метод с фотоэлектрической регистрацией спектра для определения в стали массовой доли элементов, %:

алюминий кислоторастворимый (к. р.)

1.2 Настоящий стандарт распространяется на анализ образцов стали, имеющих диаметр, достаточный, чтобы перекрыть отверстие камеры обыскривания (для обеспечения герметичности камеры).

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ Р 8.563-2009 Государственная система обеспечения единства измерений. Методики (методы) измерений

ГОСТ Р ИСО 5725-1-2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 1. Основные положения и определения

ГОСТ Р ИСО 5725-6-2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике

ГОСТ Р 52361-2005 Контроль объекта аналитический. Термины и определения

ГОСТ Р 52781-2007 Круги шлифовальные и заточные. Технические условия

ГОСТ 8.315-97 Государственная система обеспечения единства измерений. Стандартные образцы состава и свойств веществ и материалов. Основные положения

ГОСТ 12.0.004-90 Система стандартов безопасности труда. Организация обучения безопасности труда. Общие положения

ГОСТ 12.1.004-91 Система стандартов безопасности труда. Пожарная безопасность. Общие требования

ГОСТ 12.1.019-2009 Система стандартов безопасности труда. Электробезопасность. Общие требования и номенклатура видов защиты

* Вероятно, ошибка оригинала. Следует читать: ГОСТ Р 12.1.019-2009, здесь и далее по тексту. - Примечание изготовителя базы данных.

ГОСТ 12.4.009-83 Система стандартов безопасности труда. Пожарная техника для защиты объектов. Основные виды. Размещение и обслуживание

ГОСТ 6456-82 Шкурка шлифовальная бумажная. Технические условия

ГОСТ 7565-81 (ИСО 377-2-89) Чугун, сталь и сплавы. Метод отбора проб для определения химического состава

ГОСТ 10157-79 Аргон газообразный и жидкий. Технические условия

ГОСТ 21963-2002 Круги отрезные. Технические условия

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины с соответствующими определениями по ГОСТ Р ИСО 5725-1, ГОСТ 8.563*, МИ 1317 [1], РМГ 61 [2], РМГ 29 [3], РМГ 91 [4], Р 50.2.056-2007 [5], а также следующие термины с соответствующими определениями:

* Вероятно, ошибка оригинала. Следует читать: ГОСТ Р 8.563. - Примечание изготовителя базы данных.

3.1 методика измерений (МВИ): Совокупность операций и правил, выполнение которых обеспечивает получение результатов измерений с установленными характеристиками погрешности (неопределенности).

3.2 интенсивность спектральных линий: Мощность, излучаемая единицей объема источника в интервале длин волн, соответствующем полной ширине данной спектральной линии.

3.3 стандартный образец материала (вещества): Материал (вещество), одно или несколько свойств которого установлены метрологически обоснованными процедурами, к которому приложен документ, выданный уполномоченным органом, содержащий значения этих свойств с указанием характеристик погрешностей (неопределенностей) и утверждение о прослеживаемости.

3.4 государственный стандартный образец: Стандартный образец материала (вещества), признанный федеральным органом исполнительной власти Российской Федерации, осуществляющим функции в сфере технического регулирования и метрологии.

3.5 стандартный образец предприятия: Стандартный образец материала (вещества), признанный руководством предприятия.

3.6 аналитический сигнал: Сигнал, содержащий количественную информацию о величине, функционально связанной с содержанием элемента и регистрируемой в ходе анализа материала.

3.7 градуировочная характеристика: Функциональная зависимость аналитического сигнала от содержания элемента, выраженная в виде формулы, графика или таблицы.

3.8 характеристика погрешности результатов анализа: Граница интервала, в котором погрешность измерений находится с доверительной вероятностью 0,95.

3.9 показатель точности результатов анализа: Значения характеристики погрешности (неопределенности), установленные для любого результата анализа, полученного при соблюдении требований и правил данной методики при ее реализации в конкретной лаборатории (соответствует расширенной неопределенности с коэффициентом охвата 2).

3.10 неопределенность измерений: Параметр, связанный с результатом измерений и характеризующий рассеяние значений, которые можно приписать измеряемой величине.

3.11 стандартная неопределенность: Неопределенность результатов измерений, выраженная в виде стандартного отклонения.

3.12 расширенная неопределенность: Величина, определяемая интервалом вокруг математического ожидания результатов измерений, охватывающим большую долю распределения значений, которые обоснованно могут быть приписаны измеряемой величине.

3.13 прецизионность: Степень близости друг к другу независимых результатов измерений, полученных в конкретных регламентированных условиях.

3.14 повторяемость (сходимость): Прецизионность в условиях, при которых результаты измерений получены одним методом, с использованием одного оборудования, на одной поверхности пробы, в одной лаборатории, одним и тем же оператором и практически одновременно.

Анализ металла

Исследования материалов проводятся для определения их элементного состава, физико-механических параметров и основных свойств. Анализ металлов и сплавов имеет целью контроль сортности и показатели содержания добавок и примесей. Количественные и качественные характеристики их устанавливаются с использованием химических и иных методов. Широко применяются неразрушающие методы контроля, позволяющие сохранить целостность и функциональность образцов.

В каких случаях проводят анализ металла?

Физико-химические исследования металлов и сплавов осуществляются специализированными лабораториями с применением реактивов и оборудования. Анализы проводятся по заявкам заинтересованных лиц и организаций в случаях, когда необходимо установить:

Элементный, количественный и качественный состав.

Технологию изготовления образца.

Условия эксплуатации металлического изделия.

Анализы черных и цветных металлов (сплавов) могут быть направлены на определения одного показателя, свойства или характеристики, а могут иметь комплексный характер. По результатам исследований, которые проводятся в соответствии с действующими нормативами и регламентами, составляется заключение.

Методы анализа металла

Свойства различных материалов в значительной мере определяются их составов и зависит от наличия добавок и примесей. При проведении исследований металлов и сплавов применяются следующие методы:

Маркировочные. Осуществляются в соответствии с требованиями РД РТМ 26-362-80 и применяется для определения химсостава сталей (высоко- и низколегированных), чугунов, сварочных швов и наплавлений. Позволяет установить наличие легирующих и маркировочных элементов.

Экспрессные. Проводится согласно РД 153-34.1-17.467-2001 для оценки остаточно ресурса сварных швов в трубопроводах высокого давления, в том числе и в местах установки коллекторов паровых котлов.

Контрольные. Требования к методам анализа устанавливаются положениями ГОСТ 25086 -2011. Цель контрольных исследований состоит в определении элементного состава и основных химических свойств изучаемого металла или сплава.

Арбитражные. Технические анализы регламентируются положениями ГОСТ 1756-72 и используются для контроля технологических процессов производства сталей, чугуна и различных сплавов.

Маркировочные, экспрессные, контрольные или арбитражные методы анализа цветных или черных металлов (сплавов) выбираются в зависимости от целей проводимого исследования. В некоторых случаях они носят оценочный характер и направлены на определение отдельных свойств и характеристик.

Механические и лабораторные исследования металлов

Методы анализа материалов обычно разрабатываются научными учреждениями или производственными предприятиями и утверждаются нормативными документами. Исследования металлов и сплавов комплексные или по отдельным направлениям проводятся металловедческими или металлургическими лабораториями с соответствующей аккредитацией. В своей работе они используют следующие методики:

Спектральные. Существуют следующие разновидности: стилоскопирование, фотоэлектрический и атомарно-эмиссионных методов. Спектральные анализы металлов применяются для сталей, меди и сплавов (титановых, алюминиевых, медно-цинковых или магниевых), а также для бронз. Порядок проведения исследований устанавливается соответствующими ГОСТами.

Химические. Позволяют точно установить элементный состав металла, содержание углерода и мышьяк в чугунах и легированных сталях. Для химического анализа металлов особо чистых применяются различные методы концентрирования примесей ионным обменом, экстракцией или осаживанием.

Коррозийные. Оценка стойкости металлов и сплавов к агрессивным факторам среды проводится в соответствии с ГОСТ ISO 9223-2017.

Рентгенографические. Относятся к неразрушающим методам и обеспечивают сохранение образца. Наибольшее распространение получил рентгенофлуоресцентный анализ сталей, основанный на зависимости характеристик вторичного излучения от содержания элемента в контрольной пробе.

Металлографические. Микроструктурные и макроструктурные анализы сталей, чугунов и сплавов, в том числе и жаропрочных, проводится с использованием методов, установленных соответствующими стандартами. Цель – исследования структурообразования.

Металлургические. Комплекс исследований включает описания микроструктуры, измерения размерных характеристик, выявление неметаллических примесей и включений.

Ультразвуковые. Применяются для дефектоскопии изделий из черных и цветных металлов и сплавов, а также сварных соединений. Позволяют выявлять микроскопические трещины и нарушения структуры материалов.

Механические. Относятся к разрушающим методам контроля, в рамках комплексных исследований проводятся испытание образцов на удар, на твердость, на растяжение или на изгиб.

Фрактографические. Такие методы исследований позволяют проанализировать строение изломов в металлических изделиях, в том числе работающих в условиях высокого давления и термических воздействий.

Исследования микро- и макроскопической структуры, а также хим. анализ металла позволяют оценить его физико-механические характеристики и эксплуатационные качества. Выбор того или иного метода зависит от марки материала или сплава, а также параметров изделия или конструкционного узла.

Методы спектрального анализа металлов


Нужен полный текст и статус документов ГОСТ, СНИП, СП?
Попробуйте профессиональную справочную систему
«Техэксперт: Базовые нормативные документы» бесплатно

МЕТОДИЧЕСКИЕ УКАЗАНИЯ
ПО ПРОВЕДЕНИЮ СПЕКТРАЛЬНОГО АНАЛИЗА МЕТАЛЛА ДЕТАЛЕЙ
ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК С ПОМОЩЬЮ СТИЛОСКОПА

СОСТАВЛЕНЫ Специализированным центром научно-технический информации по эксплуатации энергосистем ОРГРЭС

Автор инж. Д.Э.Кан

Редактор канд. техн. наук А.Г.Комаровский

УТВЕРЖДЕНЫ Главным инженером Главэнергоремонта П.Орешкиным, Главным инженером Главного технического управления по эксплуатации энергосистем С.Молокановым

Методические указания предназначены для монтажного, ремонтного и эксплуатационного персонала, осуществляющих организацию и производство работ по монтажу и ремонту оборудования, а также контроль и наблюдение за металлом трубопроводов, котлов и турбин на тепловых электрических станциях.

Методические указания разработаны на основе опыта работы производственного предприятия "Мосэнергоремонт".

С выходом Методических указаний отменяется "Временная инструкция по спектральному анализу металла деталей энергетических установок с помощью стилоскопа", выпущенная БТИ ОРГРЭС в 1962 г.

Для обеспечения надежной работы энергетических установок с высокими параметрами пара их детали и узлы изготавливаются из жаропрочной и жаростойкой стали.

Случайная замена материала изделий при монтаже и ремонте оборудования, не предусмотренная проектом, может привести к выходу из строя установки или к тяжелым авариям. Для предотвращения аварий производится спектральный анализ металла с помощью стилоскопа, позволяющий на месте, без повреждения деталей приближенно оценивать процентное содержание в стали* ванадия, хрома, молибдена, никеля, титана, вольфрама, марганца, ниобия, кобальта, кремния. Продолжительность анализа для определения марки стали - 2-3 мин.

* Возможен также анализ цветных сплавов.

На необходимость спектрального анализа посредством стилоскопа для контроля металла при монтаже и ремонте энергетического оборудования указано в правилах Госгортехнадзора и соответствующих руководящих материалах Министерства энергетики и электрификации СССР.

Настоящие методические указания определяют условия и порядок ведения работ с помощью стилоскопа при анализе металла деталей и узлов энергетического оборудования.

I. ПОНЯТИЕ О ВИЗУАЛЬНОМ СПЕКТРАЛЬНОМ АНАЛИЗЕ И АППАРАТУРЕ

Всякое вещество, приведенное в состояние светящихся паров, дает излучение, характерное для его атомного строения, которое слагается из общего излучения атомов всех элементов, входящих в состав данного вещества.

Для определения химического состава вещества методом спектрального анализа требуется выделение излучения атомов каждого элемента, т.е. отделение друг от друга световых лучей с разными длинами волн.

Разложение света по длинам волн осуществляется с помощью оптических приборов: стилоскопов и спектрографов. При этом излучение наблюдается в виде спектра, представляющего совокупность большого количества светящихся ярких линий.

Спектр является характеристикой исследуемого материала, позволяющей по наличию соответствующих спектральных линий судить о составе излучающих паров.

Для возбуждения спектра обычно применяются искровые и дуговые источники света, которые входят в комплект стилоскопической установки.

Электрическая схема генераторов стилоскопических установок позволяет получать электрическую дугу или низковольтную искру, удовлетворяющую условиям проведения анализов. Питание генератора осуществляется через разделительный трансформатор, вторичная обмотка которого заземляется.

Принцип действия стилоскопической установки - создание электрического разряда между анализируемым объектом (являющимся одним из электродов) и постоянным электродом прибора, приводит к парообразованию вещества электродов и заполнению межэлектродного промежутка светящимися парами. Излучение светящегося пара направляется через узкую щель прибора в оптическую систему, где происходит разложение света и образование линейчатого спектра. Полученный спектр представляет собой ряд световых проекций щели, каждая из которых соответствует определенной длине волны.

Наличие в спектре характерных линий искомых элементов указывает на присутствие данных элементов в анализируемом металле.

Сравнение относительной интенсивности спектральных линий искомых элементов с линиями основы дает возможность приближенной оценки содержания в металле элементов.

Таким образом, с помощью стилоскопа производится качественный и полуколичественный анализ стали, позволяющий определить наличие и приближенно оценить количество легирующих элементов в стали. Сопоставление полученных результатов с химическим составом проектной марки стали позволяет оценить соответствие металла исследуемой детали требованиям проекта. Химический состав наиболее распространенных сталей и присадочных материалов для сварки, применяемых в котлотурбостроении, приведен в приложении I.

В настоящее время промышленность выпускает два типа стилоскопов: стационарный СЛ-11 с горизонтальным расположением деталей и переносный СЛП-2, в котором детали смонтированы в вертикальной плоскости. Применяется также много приборов прежних выпусков: CЛ-1, СЛ-3, СЛ-10, СЛП-1 и др.

Стационарные стилоскопы используются для проведения спектрального анализа мелких деталей, переносные стилоскопы - для контроля крупногабаритных изделий и деталей на смонтированном оборудовании, доставка которых к стационарному стилоскопу невозможна.

Распространены две оптические схемы устройства стилоскопов: автоколлимационная (стилоскопы СЛ-10, СЛ-11 и СЛП-2) и схема постоянного отклонения (стилоскопы СЛ-1, СЛ-3 и др.).

Для приборов, построенных по автоколлимационной схеме, характерно двойное прохождение луча через две диспергирующие призмы: неподвижную шестидесятиградусную и поворотную тридцатиградусную с посеребренной гранью большого катета (рис.1). При этом ахроматический объектив выполняет роль и объектива зрительной трубы.


Рис.1. Оптическая схема стилоскопа СЛП-2:

2 - диспергирующая призма; 3 - объектив; 4 - призма; 5 - оптическая щель; 6 - конденсор; 7 - призма;
8 - защитное стекло; 9 - постоянный электрод; 10 - анализируемый объект; 11 - упорные контакты

В схеме постоянного отклонения обязательны два объектива и диспергирующая система, состоящая из трех шестидесятиградусных призм.

Автоколлимационные стилоскопы благодаря минимальному количеству оптических деталей компактны, имеют небольшой вес и хорошо разделяют линии с близкими длинами волн. Введение в поле зрения окуляра анализируемого участка спектра проводится поворотом диспергирующей призмы относительно неподвижно закрепленного окуляра. При этом происходит перефокусировка объектива с сохранением резкости спектра, что значительно облегчает условия его рассмотрения.

II. ПОДГОТОВКА ИЗДЕЛИЙ И СТАНДАРТНЫХ ЭЛЕКТРОДОВ К АНАЛИЗУ

1. Для проведения анализа на изделии (образце) выбирается по возможности плоский, гладкий участок и на нем зачищается площадка размером 2х2 см. Окалина, антикоррозионные покрытия, следы краски, всевозможные поверхностные загрязнения, а также поры, шлаковые включения, трещины, раковины, шероховатости и прочие пороки на поверхности анализируемого образца удаляются зачисткой абразивным кругом. Так как существует возможность загрязнения анализируемого изделия (образца) материалом круга, особенно при определении кремния и титана, окончательная обработка поверхности аналитической площадки производится напильником. Если изделие подвергалось обработке, вызвавшей изменение химического состава в поверхностном слое (химико-термическая обработка, травление и др.), то такой слой также обязательно снимается.

При работе с переносным стилоскопом на изделии готовится вторая площадка размером ~1 см на расстоянии 8 см от первой, служащая опорой для вольфрамовых контактов стилоскопа, с помощью которых производится присоединение анализируемого объекта к заземляющему проводу прибора. Зачистка опорной площадки ограничивается удалением загрязнений и окалины.

Для отбора проб с помощью ударно-искрового пробоотборника на изделии подготавливается одна площадка размером 3х3 см.

2. Масса анализируемого изделия во всех случаях должна быть не менее 50 г, иначе может произойти усиленное поступление пробы в плазму разряда, что приведет к преувеличенному представлению о содержании элементов в анализируемом изделии (образце).

Мелкие детали, стружка и прочие объекты малой массы допускаются к анализу при условии приготовления из них специальных образцов.

Стружка прессуется в брикет диаметром порядка 15 мм при длине 50 мм. Брикеты готовятся на механических прессах различного типа или путем уплотнения в формах с помощью кувалды.

Для анализа сварочных электродов образцы приготовляются из наплавленного металла. Наплавка производится на пластины из малоуглеродистой стали (Сталь 20, Ст.2, Ст.3), предварительно проверенные стилоскопом на отсутствие легирующих элементов. Каждая наплавка выполняется одним электродом на отдельную пластину, толщина которой при диаметре электрода до 2 мм должна быть не менее 3 мм и при диаметре электрода свыше 2 мм - не менее 6 мм. Форма наплавки круглая в виде цилиндра, высота и основание которого не менее четырех диаметров проверяемого электрода. Анализ производится по верхней площадке. В каждой партии анализируется три электрода, взятых из разных пачек (замесов), вне зависимости от количества замесов, составляющих партию.

3. Постоянные электроды стилоскопа перед началом работы должны иметь следующие размеры:

1) электроды дисковой формы - диаметр 60 мм для переносных стилоскопов и 90 мм для стационарных, толщину 1,0-1,5 мм;

При массовых анализах следует применять дисковые электроды. Использованную часть электродов рекомендуется срезать на токарном станке, а оставшиеся электроды применяются по назначению. Перед каждым анализом постоянные электроды должны зачищаться. При заточке электродов допускается уменьшение диаметра диска до 40 мм и длины стержня до 130 мм с выполнением указанного выше профиля заточки, так как использование электродов с различной заточкой вносит ошибки в спектроскопические оценки. Для заточки электродов и изделий должны применяться специальные заточные станки, напильники и наждачная бумага.

Чтобы избежать переноса вещества от предыдущей анализируемой пробы на последующую, инструмент, используемый для зачистки, должен очищаться после каждого его применения.

III. ОРГАНИЗАЦИЯ И ОФОРМЛЕНИЕ РАБОТ ПО СПЕКТРАЛЬНОМУ АНАЛИЗУ

1. В соответствии с инструкциями по наблюдению за металлом котлов, трубопроводов и турбин обязательному спектральному анализу с помощью стилоскопа подлежат все вновь устанавливаемые детали энергетического оборудования, независимо от наличия сертификата, маркировки и предстоящего срока эксплуатации, предназначенные для работы при температуре выше 450 °С, а также все детали и материалы, которые по проекту должны быть выполнены из легированной стали (приложение II).

Организация, производящая работы по спектральному анализу, несет ответственность за правильность выполнения анализа и качество технической документации по нему.

2. Результаты анализов оформляются протоколами (приложение III) составляемыми в трех экземплярах: один экземпляр хранится в организации, производящей анализ, а два другие выдаются заказчику.

В протоколе подробно, с указанием наименования детали, в соответствии с чертежом перечисляются все прошедшие проверку детали, присадочные материалы, сварные швы и т.д.

Анализ на смонтированном паропроводе проводится по схеме паропровода в соответствии с нумерацией сварных стыков (рис.2). Запись результатов анализов ведется согласно номера сварных стыков, ограничивающих место анализа: например, участок трубы между стыками "69-70" обозначается "труба 69-70", задвижка между стыками "65-66" - "задвижка 65-66" и т.д., а металл сварных швов непосредственно номером стыка. Протоколы без приложения схем недействительны.


Рис.2. Схема паропровода:

65-77 - сварные стыки

Если при контроле крепежа на установленной по месту постоянной работы арматуры или фланцевых соединений обнаружено несоответствие стали проектной марки, то составляется эскиз (рис.3) с расстановкой и нумерацией крепежа, который прилагается к протоколу. Запись результатов контроля крепежа ведется в протоколе согласно принятой на эскизе нумерации.

Задвижка 65-66


Рис.3. Схема расположения гаек и шпилек:

1-12 - порядок расположения гаек и шпилек

3. Детали, присадочные материалы и сварные швы, металл которых не соответствует проектным маркам, подлежат изъятию и замене, о чем составляется акт, который может служить основанием для предъявления станцией рекламации заводу.

Если при контроле металла сварных швов выявлен хотя бы один шов, металл которого не соответствует проектному, контролю подлежат все однотипные швы (100%), выполненные данным сварщиком на проверяемом оборудовании.

4. Все проверенные детали котлов и трубопроводов, не имеющие заводскую маркировку, анализ которых производится до установки на агрегате, подвергаются маркировке - окраске или клеймению. Детали турбин маркировке не подлежат.

Трубы паропроводов, питательных линий, их байпасы и дренажи, трубы повepxнocтeй нагрева, змеевики, панели, коллекторы и т.п. окрашиваются по наружной поверхности в соответствии с цветной маркировкой по МРТУ 2402-65, приведенной ниже.

Метод фотоэлектрического спектрального анализа

Steel. Method of photoelectric spectral analysis

1 РАЗРАБОТАН Российской Федерацией, Межгосударственным техническим комитетом МТК 145 "Методы контроля металлопродукции"

ВНЕСЕН Госстандартом России

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол N 11-97 от 25 апреля 1997 г.)

За принятие проголосовали:

Наименование национального органа по стандартизации

Госстандарт Республики Казахстан

Главная государственная инспекция Туркменистана

3 Постановлением Государственного комитета Российской Федерации по стандартизации, метрологии и сертификации от 23 сентября 1997 г. N 332 межгосударственный стандарт ГОСТ 18895-97 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 1998 г.

5 ПЕРЕИЗДАНИЕ. Январь 2002 г.

Настоящий стандарт устанавливает фотоэлектрический спектральный метод определения в стали массовой доли элементов, %:

Метод основан на возбуждении атомов элементов стали электрическим разрядом, разложении излучения в спектр, измерении аналитических сигналов, пропорциональных интенсивности или логарифму интенсивности спектральных линий, и последующем определении массовых долей элементов с помощью градуировочных характеристик.

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 8.315-97 ГСИ. Стандартные образцы состава и свойств веществ и материалов. Основные положения

ГОСТ 2424-83* Круги шлифовальные. Технические условия

* На территории Российской Федерации документ не действует. Действует ГОСТ Р 52781-2007, здесь и далее по тексту. - Примечание изготовителя базы данных.

ГОСТ 7565-81 (ИСО 377-2-89) Чугун, сталь и сплавы. Метод отбора проб для химического состава

ГОСТ 21963-82* Круги отрезные. Технические условия

* На территории Российской Федерации документ не действует. Действует ГОСТ 21963-2002, здесь и далее по тексту. - Примечание изготовителя базы данных.

3 ОТБОР И ПОДГОТОВКА ПРОБ

Отбор и подготовка проб - по ГОСТ 7565 с дополнением. Поверхность пробы, предназначенную для обыскривания, затачивают на плоскость. На поверхности не допускаются раковины, шлаковые включения, цвета побежалости и другие дефекты.

4 АППАРАТУРА И МАТЕРИАЛЫ

Фотоэлектрические вакуумные и воздушные установки индивидуальной градуировки.

Отрезной станок типов 8230 и 2К337.

Шлифовальный станок модели 3Е881.

Точильно-шлифовальный станок (обдирочно-наждачный) типа ТЩ-500.

Универсальный станок для заточки электродов модели КП-35.

Токарно-винторезный станок модели 1604.

Отрезные диски 400х4х32 мм по ГОСТ 21963.

Электрокорундовые абразивные круги с керамической связкой, зернистостью N 50, твердостью СТ-2, размером 300х40х70 мм по ГОСТ 2424.

Шкурка шлифовальная бумажная типа 2 на бумаге марки БШ-200 (П7) из нормального электрокорунда зернистостью 40-60 по ГОСТ 6456.

Аргон газообразный высшего сорта по ГОСТ 10157.

Электропечь для сушки и чистки аргона типа СУОЛ-0.4.4/12-Н2-У4.2.

В случае применения вакуумных фотоэлектрических установок используют постоянные электроды-прутки серебряные, медные и вольфрамовые диаметром 5-6 мм или вольфрамовую проволоку диаметром 1-2 мм длиною не менее 50 мм.

Для воздушных фотоэлектрических установок используют медные прутки марок M00, M1, M2 по ГОСТ 859 и угольные стержни марки С3 диаметром 6 мм и длиной не менее 50 мм.

Для определения массовой доли элементов в прокатной стали применяют вакуумные и воздушные фотоэлектрические установки. Если образец не перекрывает полностью отверстие в штативе вакуумной установки, применяют контактную камеру (см. рисунок 1) или другое приспособление, ограничивающее отверстие в столе штатива.

1 - прокладки; 2 - пластина; 3 - пружина; 4 - контакт

Рисунок 1 - Контактная камера для вакуумного спектрометра

Допускается применение другой аппаратуры, оборудования и материалов, обеспечивающих точность анализа, предусмотренную настоящим стандартом.

5 ПОДГОТОВКА К АНАЛИЗУ

5.1 Подготовку установки к выполнению измерений проводят в соответствии с инструкцией по обслуживанию и эксплуатации установки.

5.2 Градуировку каждой фотоэлектрической установки осуществляют экспериментально при внедрении методики выполнения измерений с помощью стандартных образцов (СО) состава, аттестованных в соответствии с ГОСТ 8.315.

Допускается применение однородных проб, проанализированных стандартизованными или аттестованными методиками химического анализа.

5.3 При первичной градуировке выполняют не менее пяти серий измерений в разные дни работы фотоэлектрической установки. В серии для каждого СО проводят по две пары параллельных (выполняемых одно за другим на одной поверхности) измерений. Порядок пар параллельных измерений для всех СО в серии рандомезируют. Вычисляют среднее арифметическое значение аналитических сигналов по серии и среднее арифметическое значение аналитических сигналов для пяти серий измерений для каждого СО.

Расчетным или графическим способом устанавливают градуировочные характеристики, которые выражают в виде формулы, графика или таблицы. Градуировочные характеристики используют для определения массовых долей контролируемых элементов непосредственно или с учетом влияния химического состава и физико-химических свойств объекта.

Для установок, сопряженных с ЭВМ, процедура градуировки определяется программным обеспечением. При этом точность результатов анализа должна удовлетворять требованиям настоящего стандарта.

5.4 При повторной градуировке допускается сокращение числа серий до двух.

5.5 В случае оперативной градуировки (получения градуировочных характеристик с каждой партией анализируемых проб) выполняют не менее двух параллельных измерений для каждого СО.

6 ПРОВЕДЕНИЕ АНАЛИЗА

6.1 Условия проведения анализа на фотоэлектрических установках приведены в приложении А (таблицы А.1, А.2).

6.2 Длины волн спектральных линий и диапазон значений массовых долей элементов приведены в приложении А (таблица А.3).

Методы спектрального анализа. Метод спектрального анализа. Метод спектрального анализа металлов и сплавов


Единственный в мире Музей Смайликов

Самая яркая достопримечательность Крыма

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

На тему «Метод спектрального анализа металлов и сплавов»

Студент 4 курса группы АВА-41

Сычев Павел Валерьевич

Макаровский Станислав Владимирович

Химический анализ металлов и сплавов……………………………..5

Задачи изучения спектров……………………………………………. 7

Спектральный анализ металлов и сплавов………………………….8

Точность и преимущества метода………………………………….…11

Заключение……………. 13

Список использованных источников………………………………. 14

Химический анализ металлов и сплавов является важной процедурой, с помощью которой можно контролировать наличие в том или ином металле каких либо, примесей и включений других металлов. Физико-химические методы анализа металлов и сплавов позволят определить чистоту материала на предмет содержания в нем нежелательных примесей. Это в свою очередь позволит прогнозировать технические характеристики будущих деталей, которые будут производиться с применением того или иного металла либо сплавов нескольких металлов.

Спектральные методы анализа - это методы, основанные на определении химического состава и строения веществ по их спектру. Спектром вещества называют упорядоченное по длинам волн электромагнитное излучение, испускаемое, поглощаемое, рассеиваемое или преломляемое веществом. Методы, основанные на получении и изучении спектров испускания (эмиссии) электромагнитного излучения (энергии), называют эмиссионными, поглощения (абсорбции) - абсорбционными, рассеяния - методами рассеяния, преломления - рефракционными.

Спектр вещества получают, воздействуя на него температурой, потоком электронов, световым потоком (электромагнитной энергией) с определённой длиной волны (частоты излучения) и другими способами. При определённой величине энергии воздействия вещество способно перейти в возбуждённое состояние. При этом происходят процессы, приводящие к появлению в спектре излучения с определённой длиной волны.

Излучение, поглощение, рассеяние или рефракция электромагнитного излучения может рассматриваться как аналитический сигнал, несущий информацию о качественном и количественном составе вещества или о его структуре. Частота (длина волны) излучения определяется составом исследуемого вещества, а интенсивность излучения пропорциональна числу частиц, вызвавших его появление, т.е. количеству вещества или компонента смеси.

Каждый из аналитических методов обычно использует не полный спектр вещества, охватывающий диапазон длин волн от рентгеновских излучений до радиоволн, а только определённую его часть. Спектральные методы обычно различают по диапазону длин волн спектра, являющемуся рабочим для данного метода: ультрафиолетовые (УФ), рентгеновские, инфракрасные (ИК) и микроволновые.

Химический анализ металлов и сплавов

Металлы, а также их сплавы широко используются в разных отраслях промышленности и народного хозяйства. В чистом виде металлы практически не существуют – они обязательно имеют в своем составе природные или технологические примеси. От их типа и концентрации напрямую зависят эксплуатационные параметры будущей продукции, которая производится из металла. Использование химического анализа позволит установить его качественные и количественные свойства. В процессе проведения этого анализа можно будет: определить количественный состав элементов; выявить наличие инородных соединений и их концентрацию; провести идентификацию сплавов; определять соотношение смесей в металлических сплавах при их маркировке. Стоит отметить: современный химический анализ металлов и сплавов является важным этапом экспертизы, которая используется для определения качества продукции и проверки ее соответствия текущим стандартам. В основном анализ проводится для: экспертизы качества выпускаемых металлов и сплавов на предмет их соответствия текущим стандартам; контроля технологических процессов на этапе производства; выполнения входной экспертизы сырья; разработки и создания новых сплавов; сертификации продукции из металла; освидетельствования чистых металлов.

Методы химического анализа являются основными при определении состава различных веществ. Современный химический анализ металлов и сплавов является важным этапом экспертизы, которая используется для определения качества продукции и проверки ее соответствия текущим стандартам. Без этой процедуры не проводятся технологические процессы в отрасли производства сталей, она необходима при создании и выпуске новых материалов, а также контроле выпускаемой продукции современными предприятиями. От правильности и точности проведенного анализа будет зависеть качество и надежность будущей продукции, которая производится с использованием металлов и их сплавов.

Задачи изучения спектров

Точность атомного спектрального анализа зависит, главным образом, от состава и структуры исследуемых объектов. Анализировать состав близких по своей структуре и составу образцов, можно с погрешностью ±1 – 3% по отношению к определяемой величине.


  1. Исследование сплавов в процессе плавки с целью получения сплава нужного состава;

  2. Анализ готовых сплавов с целью определения марки сплава (сортировки), либо точное определение его состава или определение содержания вредных примесей;

  3. Контроль качества готовых изделий;

  4. Контроль правильности применения сплавов при монтаже готовых изделий;

  5. Проверка различного рода покрытий;

  6. Иногда необходимо определять распределение примесей и включений в металле.

Для того чтобы атомы начали испускать свет, их необходимо возбудить электрическим разрядом. Электрический разряд в виде искры в атмосфере аргона способен возбудить большое количество элементов. Достигается высокотемпературная (более 10000 К) плазма, способная возбудить даже такой элемент, как азот.

В искровом штативе между вольфрамовым электродом и исследуемым образцом возникают искры с частотой от 100 до 1000 Гц. Искровой стол имеет световой канал, по которому полученный световой сигнал попадает в оптическую систему. При этом световой канал и искровой штатив продуваются аргоном. Попадание воздуха из окружающей среды в искровой штатив ведет к ухудшению пятна обжига и соответственно к ухудшению качества химического анализа пробы.

Современная оптическая система выполнена по схеме Пашена-Рунге. Спектральное разрешение оптической системы зависит от фокального расстояния, количества штрихов используемой дифракционной решетки, параметра линейной дисперсии и квалифицированном выполнении юстировки всех оптических компонентов. Для покрытия всех необходимых эмиссионных линий достаточно охватывать спектральную область от 140 до 680 нм. Для хорошей видимости спектра оптическая камера должна быть заполнена инертным газом (аргоном высокой частоты) или вакуумирована.

Прибор для спектрального анализа металла — анализатор М5000. В качестве регистрирующих элементов современные анализаторы металлов, оснащаются CCD детекторами (или ФЭУ), которые преобразуют видимый свет в электрический сигнал, регистрируют его и передают на компьютер. На экране монитора мы наблюдаем концентрации элементов в процентах.

Интенсивность спектральной линии анализируемого элемента, помимо концентрации анализируемого элемента, зависит от большого числа различных факторов. По этой причине рассчитать теоретически связь между интенсивностью линии и концентрацией соответствующего элемента невозможно. Вот почему для проведения анализа необходимы стандартные образцы, близкие по составу к анализируемой пробе. Предварительно эти стандартные образцы экспонируются (прожигаются) на приборе. По результатам прожигов для каждого анализируемого элемента строится градуировочный график, зависимость интенсивности спектральной линии элемента от его концентрации. Впоследствии, при проведении анализа проб, по этим градуировочным графикам производится пересчет измеренных интенсивностей в концентрации.

Точность и преимущества метода

Метод спектрального анализа отличается высокими показателями чувствительности, что позволяет определять даже малейшие концентрации примесей в металлах и сплавах. Показатель чувствительности этого метода находится в пределах 10-5…10-7%.

Что касается точности, то метод позволяет получить показатель в пределах 5% при небольших концентрациях примесей и до 3% при более высоком содержании примесей.


  • возможность параллельного определения сразу 70-ти элементов в составе металла или его сплава;

  • высокая скорость проводимого анализа;

  • низкий порог обнаружения примесей;

  • высокая точность и чувствительность;

  • информативность полученных результатов;

  • относительная простота проведения эксперимента;

  • возможность исследования больших изделий без ущерба их поверхностям.

Области применения

Методы атомного спектрального анализа, качественного и количественного, разработаны значительно лучше, чем молекулярного, и имеют более широкое практическое применение. Атомные спектральные исследования используют для анализа самых разнообразных объектов. Область его применения очень широка: черная и цветная металлургия, машиностроение, геология, химия, биология, астрофизика и многие другие отрасли науки и промышленности.

Область использования молекулярной спектроскопии в основном охватывает анализ органических веществ, хотя применима и для изучения неорганических соединений. Молекулярный анализ спектров внедряется, главным образом, в химической, нефтеперерабатывающей и химико-фармацевтической промышленности.

Выполнение химического анализа металлов и сплавов стало необходимым атрибутом в различных отраслях промышленности. Без этой процедуры не проводятся технологические процессы в отрасли производства сталей, она необходима при создании и выпуске новых материалов, а также контроле выпускаемой продукции современными предприятиями. От правильности и точности проведенного анализа будет зависеть качество и надежность будущей продукции, которая производится с использованием металлов и их сплавов .

1. Гармаш, А.В. Введение в спектроскопические методы анализа.Оптические методы анализа. - Москва, 1995.

2. Якунина, И.В. Методы и приборы контроля окружающей среды. Экологический мониторинг./ И.В. Якунина, Н.С. Попов - Тамбов: ТГТУ, 2009.

3. Сотникова, Е.В. Аналитические методы экологического мониторинга./Е.В. Сотникова, Н.Ю. Калпина, Е.В. Ряховская, Б.В. Смирин - Москва: МГТУ "Мами", 2011.

4. Саксонов, М.Н. Экологический мониторинг нефтегазовой отрасли. Физико-химические и биологические методы./М.Н. Саксонов, А.Д. Абалаков, Л.В. Данько, О.А. Бархатова, А.Э. Балаян, Д.И. Стом - Иркутск: Иркутский государственный университет, 2005.

Читайте также: