Методы получения металлов реферат
Металлы. Методы получения металлов. Химические свойства металлов. Характеристика металлов главной подгруппы I группы. Характеристика элементов главной подгруппы II группы. Характеристика элементов главной подгруппы III группы. Алюминий. Переходные металлы
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 18.05.2006 |
Размер файла | 24,0 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Общая характеристика металлов. Элементы I группы Li, Na, K, Rb, Cs, Fr. Оксиды и пероксиды щелочных металлов. Гидроксиды. Элементы главной II группы: Be, Mg, Ca, Sr, Ba, Ra. Переходные металлы. Хром, железо, цынк, медь и их соединения.
реферат [29,5 K], добавлен 18.05.2006
Строение атомов металлов. Положение металлов в периодической системе. Группы металлов. Физические свойства металлов. Химические свойства металлов. Коррозия металлов. Понятие о сплавах. Способы получения металлов.
реферат [19,2 K], добавлен 05.12.2003
Знакомство с основными особенностями металлов побочной подгруппы VI группы. Общая характеристика физических и химических свойств хрома. Перманганат калия KMnO4 как наиболее широко применяемая соль марганцовой кислоты. Способы получения марганца.
контрольная работа [51,4 K], добавлен 18.01.2014
Общая характеристика металлов. Определение, строение. Общие физические свойства. Способы получения металлов. Химические свойства металлов. Сплавы металлов. Характеристика элементов главных подгрупп. Характеристика переходных металлов.
реферат [76,2 K], добавлен 18.05.2006
Металлы – простые вещества, обладающие в обычных условиях характерными свойствами. Металлы – химические элементы, характеризующиеся способностью отдавать внешние электроны. Типы классификации металлов. Разделение металлов на непереходные и переходные.
реферат [47,7 K], добавлен 15.03.2009
Положение металлов в периодической системе Д.И. Менделеева. Строение атомов металлов, кристаллических решеток. Металлы в природе, общие способы их получения. Физические свойства металлов. Общие химические свойства. Электрохимический ряд напряжения.
презентация [2,3 M], добавлен 09.02.2012
Общая характеристика химических элементов IV группы таблицы Менделеева, их нахождение в природе и соединения с другими неметаллами. Получение германия, олова и свинца. Физико-химические свойства металлов подгруппы титана. Сферы применения циркония.
Получение металлов
Металлы находятся в природе как в свободном виде — самородные металлы, так и в виде различных соединений.
В свободном состоянии в природе встречаются такие металлы, которые трудно окисляются кислородом воздуха, например, платина, золото, серебро, значительно реже ртуть, медь и др. Самородные металлы обычно содержатся в небольших количествах в виде зерен или вкраплений в горных породах. Изредка встречаются и довольно крупные куски металлов — самородки. Так, из найденных самый крупный самородок меди весил 420 т, серебра — 13,5 т, а золота — 112 кг.
Прикрепленные файлы: 1 файл
Получение металлов.docx
&Металлы находятся в природе как в свободном виде — самородные металлы, так и в виде различных соединений.
& В свободном состоянии в природе встречаются такие металлы, которые трудно окисляются кислородом воздуха, например, платина, золото, серебро, значительно реже ртуть, медь и др.
& Самородные металлы обычно содержатся в небольших количествах в виде зерен или вкраплений в горных породах. Изредка встречаются и довольно крупные куски металлов — самородки. Так, из найденных самый крупный самородок меди весил 420 т, серебра — 13,5 т, а золота — 112 кг.
& Большинство металлов в природе существует в связанном состоянии в виде различных химических природных соединений — минералов. Очень часто это оксиды, например минералы железа: красный железняк, бурый железняк, магнитный железняк Fe3O4. Нередко минералами являются сульфидные соединения, например свинцовый блеск РbS, цинковая обманка, или галенит ZnS, киноварь НgS.
Минералы входят в состав горных пород и руд.
& Рудами называют содержащие минералы природные образования, в которых металлы находятся в количествах, пригодных в технологическом и экономическом отношении для получения металлов в промышленности. По химическому составу минерала, входящего в руду, различают оксидные, сульфидные и другие руды.
Обычно перед получением металлов из руды ее предварительно обогащают — отделяют пустую породу, примеси и т. д., в результате образуется концентрат, служащий сырьем для металлургического производства.
& Металлургия — это наука о методах и процессах производства металлов из руд и других металлосодержащих продуктов, о получении сплавов и обработке металлов. Такое же название имеет и важнейшая отрасль тяжелой промышленности, занимающаяся получением металлов и сплавов.
В зависимости от метода получения металла из руды (концентрата) существует несколько видов металлургических производств.
& Пирометаллургия — методы переработки руд, основанные на химических реакциях, происходящих при высоких температурах (греч. пирос — огонь). Пирометаллургические процессы включают обжиг, при этом содержащиеся в рудах соединения металлов, в частности сульфиды, переводятся в оксиды, а сера удаляется в виде оксида серы.
& Гидрометаллургия — методы получения металлов, основанные на химических реакциях, происходящих в растворах. Гидрометаллургические процессы включают стадию перевода нерастворимых соединений металлов из руд в растворы, например, действием серной кислоты переводят в раствор соли меди, цинка и урана, а обработкой раствором соды — соединения молибдена и вольфрама с последующим восстановительным выделением металлов из полученных растворов с помощью других металлов или электрического тока.
& Электрометаллургия — методы получения металлов, основанные на электролизе, т. е. выделении металлов из растворов или расплавов их соединений при пропускании через них постоянного электрического тока. Этот метод применяют главным образом для получения очень активных металлов — щелочных, щелочноземельных и алюминия, а также для производства легированных сталей. Именно этим методом английский химик Гемфри Дэви впервые получил калий, натрий, барий и кальций.
& Большого внимания заслуживают микробиологические методы получения металлов, в которых используется жизнедеятельность некоторых видов бактерий. Например, так называемые тионовые бактерии способны переводить нерастворимые сульфиды в растворимые сульфаты. В частности, такой бактериальный метод применяется для извлечения меди из ее сульфидных руд непосредственно на месте их залегания. Далее рабочий раствор, обогащенный сульфатом меди(II), подается на гидрометаллургическую переработку.
Реферат по химии на тему "Добыча Металла"
Наиболее динамичный период развития человечества обусловлено открытием человеком металлов и их сплавов. В природе в чистом виде встречаются небольшое количество металлов, таких как: золото, серебро и медь. К тому же, золото и серебро являются драгоценными металлами и использовались в ювелирных целях и чеканки монет. В тоже время самородная медь необладала необходимыми прочностными характеристиками, что требовало нахождение других материалов. Выше указанные причины стимулировли человечество в поиске новых металлов. В процессе изучению окружающего мира человек осознал, что в рудах содержится другие металлы с более востребованными характеристиками столь необходимыми человечеству. В результате этого человечество вынуждено было находить способы получение металлов из руд. Поэтому появилась металлургия, что дало огромные возможности для развитию человечеству.
Металлургия - это наука о методах и процессах производства металлов из руд и других металлосодержащих продуктов,о полуении сплавов и обработке металлов.
В мировой практике исторически сложилось деление металлов на чёрные (железо и сплавы на его основе) и все остальные— нечерные или цветные металлы. Соответственно, металлургия часто подразделяется на чёрную и цветную.
Чёрная металлургия включает добычу и обогащение руд чёрных металлов, производство чугуна, стали и ферросплавов. К чёрной металлургии относят также производство проката чёрных металлов, стальных, чугунных и других изделий из чёрных металлов.
К цветной металлургии относят добычу, обогащение руд цветных металлов, производство цветных металлов и их сплавов. По физическим свойствам и назначению цветные металлы условно делят на тяжёлые (медь, свинец, цинк, олово, никель) и лёгкие (алюминий, титан, магний).
По основному технологическому процессу подразделяется на пирометаллургию и гидрометаллургию.
· Пирометаллургия— металлургические процессы, протекающие при высоких температурах (обжиг, плавка и т.п.). Разновидностью пирометаллургии является плазменная металлургия.
· Гидрометаллургия — процесс извлечения металлов из руд, концентратов и отходов различных производств при помощи воды и различных водных растворов химических реактивов (выщелачивание) с последующим выделением металлов из растворов (например, цементацией, электролизом).
Во многих странах мира идет интенсивный научный поиск по применению различных микроорганизмов в металлургии, то есть применение биотехнологии (биовыщелачивание, биоокисление, биосорбция, биоосаждение и очистка растворов). К настоящему времени наибольшее применение биотехнические процессы нашли для извлечения таких цветных металлов, как медь, золото, цинк, уран, никель из сульфидного сырья. Особое значение имеет реальная возможность использования методов биотехнологии для глубокой очистки сточных вод металлургических производств.
Производство и потребление металлов
Из наиболее ценных и важных для современной техники металлов лишь немногие содержатся в земной коре в больших количествах: алюминий, железо, магний, титан. Природные ресурсы некоторых весьма важных металлов измеряются сотыми и даже тысячными долями процента. Особенно бедна природа благородными и редкими металлами.
Производство и потребление металлов в мире постоянно растёт. За последние 20 лет ежегодное мировое потребление металлов и мировой металлофонд удвоились и составляют, соответственно, около 800млн тонн и около 8млрд тонн. Изготовленная с использованием черных и цветных металлов доля продукции в настоящее время составляет 72—74% валового национального продукта государств. Металлы в XXI веке остаются основными конструкционными материалами, так как по своим свойствам, экономичности производства и потребления не имеют себе равных в большинстве сфер применения.
Из 800млн т ежегодно потребляемых металлов более 750млн т приходится на сталь, около 20—22млн т на алюминий, 8—10млн т— медь, 5—6 млн т— цинк, 4—5млн т— свинец (остальные- менее 1млн т). Масштабы производства таких цветных металлов, как алюминий, медь, цинк, свинец, измеряются в млн т/год; таких как магний, титан, никель, кобальт, молибден, вольфрам- в тыс. т, таких как селен, теллур, золото, платина— в тоннах, таких как иридий, осмий и т.п.— в килограммах.
В настоящее время основная масса металлов производится и потребляется в таких странах как США, Япония, Китай, Россия, Германия, Украина, Франция, Италия, Великобритания и другие.
Благодаря своим физическим свойствам (твёрдость, высокая плотность, температура плавления, электропроводность, звукопроводность, внешний вид и другим) они находят применение в различных областях. Применение металлов зависит от их индивидуальных свойств:
· Железо и сталь обладают твердостью и прочностью. Благодаря этим их свойствам они широко используются в строительстве.
· Алюминий ковок, хорошо проводит тепло, обладает высокой прочностью при сверхнизких температурах. Он используется для изготовления кастрюль и фольги, в криогенной технике. Благодаря своей низкой плотности— при изготовлении частей самолётов.
· Медь обладает пластичностью и высокой электропроводностью. Именно поэтому она нашла своё широкое применение в производстве электрических кабелей и энергетическом машиностроении.
· Золото и серебро очень тягучи, вязки и инертны, обладают высокой стоимостью, используются в ювелирном деле. Золото также используется для изготовления неокисляемых электрических соединений.
В чистом виде металлы применяются незначительно. Гораздо большее применение находят сплавы металлов, так как они обладают особыми индивидуальными свойствами. Наиболее часто используются сплавы алюминия, хрома, меди, железа, магния, никеля, титана и цинка. Много усилий было уделено изучению сплавов железа и углерода. Обычная углеродистая сталь используется для создания дешёвых, высокопрочных изделий, когда вес и коррозия не критичны.
Нержавеющая или оцинкованная сталь используется, когда важно сопротивление коррозии.
Алюминиевые и магниевые сплавы используются, когда требуются прочность и легкость.
Медно-никелевые сплавы используются в коррозионно-агрессивных средах и для изготовления ненамагничиваемых изделий. Суперсплавы на основе никеля используются при высоких температурах. При очень высоких температурах используются монокристаллические сплавы.
Черная металлургия
Железо в природе находится в руде в виде оксидов Fe 3 O 4 , Fe 2 O 3 , гидроксида Fe 2 O 3 ×H 2 O, карбонатов FeCO 3 и других. Поэтому для восстановления железа и получения сплавов на его основе существует несколько стадий, включающих подготовку сырья к доменной плавке (окускование), доменное производство и производство стали.
Доменное производство чугуна
На первой стадии получения железосодержащих сплавов происходит высвобождение железа из руды или окускованного сырья в доменной печи при температуре свыше 1000 градусов Цельсия и выплавка чугуна. Свойства получаемого чугуна зависят от хода процесса в доменной печи. Поэтому задавая процесс восстановления железа в доменной печи можно получить два вида чугуна: передельный, который идёт в дальнейший передел для выплавки стали, и литейный чугун, из которого получают чугунные отливки.
Производство стали
Передельный чугун служит для производства стали. Сталь— это сплав железа с углеродом и легирующими элементами. Она прочнее чугуна и более пригодна для строительных конструкций и производства деталей машин. Выплавка стали происходит в сталеплавильных печах, где металл находится в жидком состоянии.
Методов получения стали существует несколько. Основными методами получения стали являются: кислородно-конверторный, мартеновский, электроплавильный. Каждый метод использует различное оборудование— конвертеры, мартеновские печи, индукционные печи, дуговые печи.
Первым способом массового производства жидкой стали был бессемеровский процесс. Этот способ производства стали в конвертере с кислой футеровкой был разработан англичанином Г. Бессемером в 1856—1860гг. Несколько позже, в 1878 году,— С.Томасом был разработан схожий процесс в конвертере с основной футеровкой, получивший название томасовский процесс. Сущность конвертерных процессов на воздушном дутье заключается в том, что залитый в плавильный агрегат чугун продувают снизу воздухом. Кислород, содержащийся в воздухе, окисляет примеси чугуна, в результате чего он превращается в сталь. При томасовском процессе, кроме того, в основной шлак удаляются фосфор и сера.При окислении выделяется тепло, которое обеспечивает нагрев стали до температуры около 1600 °С. Электросталеплавильное производство
Электросталеплавильное производство
В настоящее время для массовой выплавки стали применяют дуговые сталеплавильные электропечи, питаемые переменным током, индукционные печи и получающие распространение в последние годы дуговые печи постоянного тока. Причём доля печей последних двух видов в общем объёме выплавки невелика.
В дуговых электропечах переменного тока выплавляют стали электропечного сортамента. Основными достоинствами дуговых электропечей является то, что в них в течение многих десятилетий выплавляют основную часть высококачественных легированных и высоколегированных сталей, которые затруднительно, либо невозможно выплавлять в конвертерах и мартеновских печах. Благодаря возможности быстро нагреть металл, можно вводить большие количества легирующих добавок и иметь в печи восстановительную атмосферу и безокислительные шлаки (в восстановительный период плавки), что обеспечивает малый угар вводимых в печь легирующих элементов. Кроме того, имеется возможность более полно, чем в других печах, раскислять металл, получая его с более низким содержанием оксидных неметаллических включений, а также получать сталь с более низким содержанием серы в связи с её хорошим удалением в безокислительный шлак. Также есть возможность плавно и точно регулировать температуру металла.
Цветная металлургия
В цветной металлургии применяются очень разнообразные методы производства цветных металлов. Многие металлы получают пирометаллургическим способом с проведением избирательной восстановительной или окислительной плавки, где часто в качестве источника тепла и химического реагента используют серу, содержащуюся в рудах. Вместе с тем ряд металлов с успехом получают гидрометаллургическим способом с переводом их в растворимые соединения и последующим выщелачиванием.
Часто оказывается наиболее приемлемым электролитический процесс водных растворов или расплавленных сред.
Иногда применяют металлотермические процессы, используя в качестве восстановителей производимых металлов другие металлы с большим сродством к кислороду. Можно указать ещё на такие способы, как химико-термический, цианирование и хлорид-возгонка.
Библиография
Герасимов Я. И. Химическая термодинамика в цветной металлургии. Т. 1-7. / Я.И.Герасимов, А.Н.Крестовников, А.С.Шахов и др.— М.: Металлургиздат, 1960—1973.— 2108 с.
Павленко Н. И. История металлургии в России XVIII века. Заводы и заводовладельцы. М.: Издательство АН СССР, 1962.— 566 с.
Юсфин Ю. С., Пашков Н. Ф. Металлургия железа: Учебник для вузов.— Москва: Академкнига, 2007.— 464с.
Воскобойников В.Г., Кудрин В.А., Якушев А.М. Общая металлургия / Под ред..— Учебник для вузов. - 6-изд., перераб. и доп..— М.: Академкнига, 2005.— 768с.
Металловеды / Составитель С.С.Черняк— Иркутск: Изд-во ИрГУ, 2000.— 532 с.
Методы получения металлов реферат
ХИМИЯ – это область чудес, в ней скрыто счастье человечества,
величайшие завоевания разума будут сделаны
именно в этой области.(М. ГОРЬКИЙ)
Таблица
Менделеева
Универсальная таблица растворимости
Коллекция таблиц к урокам по химии
Общая характеристика и способы получения металлов
Значительная химическая активность металлов (взаимодействие с кислородом воздуха, другими неметаллами, водой, растворами солей, кислотами) приводит к тому, что в земной коре они встречаются главным образом в виде соединений: оксидов, сульфидов, сульфатов, хлоридов, карбонатов и т. д. В свободном виде встречаются металлы, расположенные в ряду напряжений правее водорода (Аg, Нg, Рt,Аu, Сu), хотя гораздо чаще медь и ртуть в природе можно встретить в виде соединений.
Минералы и черные породы, содержащие металлы и их соединения, из которых выделение чистых металлов технически возможно и экономически целесообразно, называют рудами.
Получение металлов из руд — задача металлургии.
Металлургия — это и наука о промышленных способах получения металлов из руд, и отрасль промышленности.
Любой металлургический процесс — это процесс восстановления ионов металла с помощью различных восстановителей. Суть его можно выразить так:
Чтобы реализовать этот процесс, надо учесть активность металла, подобрать восстановитель, рассмотреть технологическую целесообразность, экономические и экологические факторы.
В соответствии с этим существуют следующие способы получения металлов:
Пирометаллургия
Пирометаллургия — восстановление металлов из руд при высоких температурах с помощью углерода, оксида углерода (II), водорода, металлов — алюминия, магния.
Например, олово восстанавливают из касситерита SnО2, а медь — из куприта Cu2O
прокаливанием с углем (коксом):
SnО2+ 2С = Sn + 2СО ↑; Cu2O + С = 2Cu+ СО ↑
Сульфидные руды предварительно подвергают обжигу при доступе воздуха, а затем полученный оксид восстанавливают углем:
2ZnS + 302 = 2ZnО + 2SO2 ↑; ZnО + С = Zn + СО ↑
сфалерит (цинковая обманка)
Из карбонатных руд металлы выделяют также путем прокаливания с углем, т. к. карбонаты при нагревании разлагаются, превращаясь в оксиды, а последние восстанавливаются углем:
FeСO3 = FеО + СO2 ↑ ; FеО + С = Fе + СО ↑
сидерит (шпатовый железняк)
Восстановлением углем можно получить Fе, Сu, Zn, Сd, Ge, Sn, Рb и другие металлы, не образующие прочных карбидов (соединений с углеродом).
В качестве восстановителя можно применять водород или активные металлы:
К достоинствам этого метода относится получение очень чистого металла.
2) TiO2+ 2Мg = Тi + 2МgO (магнийтермия)
Чаще всего в металлотермии используют алюминий, теплота образования оксида
которого очень велика (2А1 + 1,5 O2 = Аl2O3 + 1676 кДж/моль). Электрохимический ряд напряжений металлов нельзя использовать для определения возможности протекания реакций восстановления металлов из их оксидов. Приближенно установить возможность этого процесса можно на основании расчета теплового эффекта реакции (Q), зная значения теплот образования оксидов:
где Q1— теплота образования продукта, Q2 -теплота образования исходного вещества.
Доменный процесс (производство чугуна):
C + O2 = CO2, CO2 + C ↔ 2CO
3Fe2O3 + CO = 2(Fe 2 Fe 3 2)O4+ CO2
(Fe 2 Fe 3 2)O4+ CO= 3FeO + CO2
FeO + CO= Fe + CO2
(чугун содержит до 6,67% углерода в виде зерен графита и цементита Fe3C);
Выплавка стали (0,2-2,06% углерода) проводится в специальных печах (конвертерных, мартеновских, электрических), отличающихся способом обогрева. Продувание воздуха, обогащенного кислородом, приводит к выгоранию из чугуна избыточного углерода, а также серы, фосфора и кремния в виде оксидов. При этом оксиды либо улавливаются в виде отходящих газов (CO2, SO2), либо связываются в легко отделяемый шлак – смесь Ca3(PO4)2 и CaSiO3. Для получения специальных сталей в печь вводят легирующие добавки других металлов.
Гидрометаллургия
Гидрометаллургия — это восстановление металлов из их солей в растворе.
Процесс проходит в два этапа: 1) природное соединение растворяют в подходящем реагенте для получения раствора соли этого металла; 2) из полученного раствора данный металл вытесняют более активным или восстанавливают электролизом. Например, чтобы получить медь из руды, содержащей оксид меди СuО, ее обрабатывают разбавленной серной кислотой:
Затем медь либо извлекают из раствора соли электролизом, либо вытесняют из сульфата железом:
Таким образом, получают серебро, цинк, молибден, золото, уран.
Электрометаллургия
Электрометаллургия — восстановление металлов в процессе электролиза растворов или расплавов их соединений.
Этим методом получают алюминий, щелочные металлы, щелочноземельные металлы. При этом подвергают электролизу расплавы оксидов, гидроксидов или хлоридов.
Реферат по химии на тему "Металлы и Металлургия"
Наиболее динамичный период развития человечества обусловлено открытием человеком металлов и их сплавов. В природе в чистом виде встречаются небольшое количество металлов, таких как: золото, серебро и медь. К тому же, золото и серебро являются драгоценными металлами и использовались в ювелирных целях и чеканки монет. В тоже время самородная медь необладала необходимыми прочностными характеристиками, что требовало нахождение других материалов. Выше указанные причины стимулировли человечество в поиске новых металлов. В процессе изучению окружающего мира человек осознал, что в рудах содержится другие металлы с более востребованными характеристиками столь необходимыми человечеству. В результате этого человечество вынуждено было находить способы получение металлов из руд. Поэтому появилась металлургия, что дало огромные возможности для развитию человечеству.
Металлургия— область науки и техники, охватывающая процессы получения металлов из руд или других материалов, а также процессы, связанные с изменением химического состава, структуры и свойств металлических сплавов. В первоначальном, узком значении — искусство извлечения металлов из руд. В настоящее время металлургия является также отраслью промышленности.
Металлы — группа элементов, в виде простых веществ, обладающих характерными металлическими свойствами, такими, как высокие тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность, ковкость и металлический блеск.
К металлургии относятся:
производство металлов из природного сырья и других металлосодержащих продуктов;
получение сплавов;
обработка металлов в горячем и холодном состоянии;
сварка;
нанесение покрытий из металлов;
область материаловедения, изучающая физическое и химическое поведение металлов, интерметаллидов и сплавов.
К металлургии примыкает разработка, производство и эксплуатация машин, аппаратов, агрегатов, используемых в металлургической промышленности. На условной границе между металлургией и горным делом находятся процессы окускования (подготовка обогащённого сырья к дальнейшей пирометаллургической переработке). С точки зрения академической науки их относят к металлургическим дисциплинам. С металлургией тесно связаны коксохимия, производство огнеупорных материалов, и химия (когда речь идёт о металлургии редкоземельных металлов, например).
Распространение и сферы применения
Из наиболее ценных и важных для современной техники металлов лишь немногие содержатся в земной коре в больших количествах: алюминий (8,9 %), железо (4,65 %), магний (2,1 %), титан (0,63 %). Природные ресурсы некоторых весьма важных металлов измеряются сотыми и даже тысячными долями процента. Особенно бедна природа благородными и редкими металлами.
Производство и потребление металлов в мире постоянно растёт. За последние 20 лет ежегодное мировое потребление металлов и мировой металлофонд удвоились и составляют, соответственно, около 800 млн тонн и около 8 млрд тонн. Изготовленная с использованием черных и цветных металлов доля продукции в настоящее время составляет 72—74 % валового национального продукта государств. Металлы в XXI веке остаются основными конструкционными материалами, так как по своим свойствам, экономичности производства и потребления не имеют себе равных в большинстве сфер применения.
Из 800 млн т ежегодно потребляемых металлов более 90 % (750 млн т) приходится на сталь, около 3 % (20—22 млн т) на алюминий, 1,5 % (8—10 млн т) — медь, 5—6 млн т — цинк, 4—5 млн т — свинец (остальные — менее 1 млн т).
Масштабы производства таких цветных металлов, как алюминий, медь, цинк, свинец, измеряются в млн т/год; таких как магний, титан, никель, кобальт, молибден, вольфрам- в тыс. т, таких как селен,
теллур, золото, платина — в тоннах, таких как иридий, осмий и т. п. — в килограммах.
Сплавы и их применение
Нержавеющая или оцинкованная сталь используется, когда важно сопротивление коррозии. Алюминиевые и магниевые сплавы используются, когда требуются прочность и легкость.
Медно-никелевые сплавы (такие, как монель-металл) используются в коррозионно-агрессивных средах и для изготовления ненамагничиваемых изделий. Суперсплавы на основе никеля (например, инконель) используются при высоких температурах (турбонагнетатели, теплообменники и т. п.). При очень высоких температурах используются монокристаллические сплавы.
Взаимодействие металлов с простыми веществами
На внешнем электронном уровне у большинства металлов небольшое количество электронов (1-3), поэтому они в большинстве реакций выступают как восстановители (то есть «отдают» свои электроны)
Реакции с простыми веществами
С кислородом реагируют все металлы, кроме золота и платиновых металлов. Реакция с серебром происходит при высоких температурах, но оксид серебра(II) практически не образуется, так как он термически неустойчив. В зависимости от металла на выходе могут оказаться оксиды, пероксиды, надпероксиды:
Железо взаимодействует с серой при нагревании, образуя сульфид:
С водородом реагируют металлы IA и IIA групп, кроме Be. Реакции осуществляются при нагревании, при этом образуются гидриды. В реакциях металл выступает как восстановитель, степень окисления водорода −1:
С углеродом реагируют только наиболее активные металлы. При этом образуются ацетилениды или метаниды. Ацетилениды при взаимодействии с водой дают ацетилен, метаниды — метан.
Взаимодействие кислот с металлами
С кислотами металлы реагируют по-разному. Металлы, стоящие в электрохимическом ряду активности металлов (ЭРАМ) до водорода, взаимодействуют практически со всеми кислотами.
Взаимодействие неокисляющих кислот с металлами, стоящими в электрическом ряду активности металлов до водорода
Происходит реакция замещения, которая также является окислительно-восстановительной:
Окисляющие кислоты могут взаимодействовать и с металлами, стоящими в ЭРАМ после водорода: Очень разбавленная кислота реагирует с металлом по классической схеме:
При увеличении концентрации кислоты образуются различные продукты:
Реакции для азотной кислоты (HNO3)
При взаимодействии с активными металлами вариантов реакций ещё больше:
Герасимов Я. И. Химическая термодинамика в цветной металлургии. Т. 1-7. / Я.И.Герасимов, А.Н.Крестовников, А.С.Шахов и др.— М.: Металлургиздат, 1960—1973.— 2108 с.
Павленко Н. И. История металлургии в России XVIII века. Заводы и заводовладельцы. М.: Издательство АН СССР, 1962.— 566 с.
Юсфин Ю. С., Пашков Н. Ф. Металлургия железа: Учебник для вузов.— Москва: Академкнига, 2007.— 464с.
Воскобойников В.Г., Кудрин В.А., Якушев А.М. Общая металлургия / Под ред..— Учебник для вузов. - 6-изд., перераб. и доп..— М.: Академкнига, 2005.— 768с.
Читайте также: