Методы оценки свариваемости металлов

Обновлено: 29.12.2024

Перед сваркой проверяют наличие сертификатов и заводскую маркировку материалов, а у специальных сталей, кроме того,— наличие легирующих элементов методом стилоскопирования (спектральный анализ). Показатели механических свойств (предел прочности, предел текучести, относительное удлинение, относительное поперечное сужение, угол загиба или сплющивание для труб малых диаметров, ударная вязкость и химический состав) должны соответствовать ГОСТам и техническим условиям.

При отсутствии сертификатов на материалы проводят лабораторные исследования (механические испытания, химический анализ, металлографические исследования).

Поступивший металл и все заготовки независимо от их назначения и последующего способа контроля подлежат в первую очередь внешнему осмотру с целью выявления расслоений, трещин, недопустимых вмятин, окислов, закатов.

Перед сваркой все заготовки очищают от ржавчины, окалины и загрязнений механическим или химическим способом согласно технологии или техническим условиям на данный объект.

При разработке конструкционных материалов новых марок обязательной предпосылкой является возможность их надежного соединения сваркой.

Под свариваемостью материалов понимается комплексная технологическая характеристика металла или сплава, которая отражает их реакцию на процесс сварки и показывает пригодность данного материала для получения надежного сварного соединения. Свариваемость определяется в первую очередь механическими испытаниями сварных швов на разрыв, изгиб, ударную вязкость и, кроме того, способностью материалов без образования трещин и значительного изменения свойств выдерживать быстрый нагрев до температуры плавления, значительное тепловое расширение, быстрое охлаждение и усадку при этом. Например, сталь должна обладать запасом вязкости при местных нагревах и высоких напряжениях и не быть склонной к хрупкому разрушению без проведения термической обработки.

В некоторых случаях для определения свариваемости проводят специальные испытания сварных соединений в условиях, соответствующих реальным условиям их эксплуатации.

Помимо сварных образцов испытывают и несварные образцы основного металла, применяя термическую обработку, чтобы воспроизвести изменение свойств материала аналогично происходящему во время нагревания при сварке.

Испытание материалов на свариваемость необходимо при разработке технологии сварки, электродных покрытий и присадочных материалов новых типов, в частности некоторых аустенитных электродов и проволок.

Свариваемость стали может быть определена также по содержанию химических элементов (С, Mo, V, Ni, Cr, Mn), влияющих на ее механические свойства.

В этом случае пользуются эмпирической формулой, определяющей эквивалент углерода Сэкв:

Сэкв = C + Mn/20 + Ni/15 + (Cr + Mo + V)/10 %,

где Mn, Ni, Cr, Mo, V, С — содержание элементов в стали в весовых процентах по данным химического анализа.

Для ручной дуговой, автоматической и полуавтоматической сварки эквивалент углерода не должен превышать 0,45%. При этом соотношении не обнаружено склонности стали к образованию горячих трещин.

Если Сэкв более 0,45%, то для предотвращения образования трещин и закалочных структур применяют предварительный и сопутствующий подогрев и последующую термическую обработку. При сварке металлов малых толщин допускается предельное содержание Сэкв 0,55% без применения термической обработки.

Свариваемость стали ухудшают примеси серы и фосфора, содержание которых свыше 0,035 и 0,04% соответственно повышает склонность к образованию трещин.

По свариваемости стали подразделяют на: хорошо, удовлетворительно, ограниченно и плохо свариваемые.

Свариваемость металла и методы ее оценки

Свариваемость — свойство металла или сочетания металлов образовывать при установленной технологии сварки соединение, отвечающее требованиям, обусловленным конструкцией и эксплуатацией изделия. Следовательно, свариваемость зависит, с одной стороны, от особенностей материала, технологии сварки и конструктивного оформления соединений, а с другой — от необходимых эксплуатационных свойств сварной конструкции. Последние определяются техническими требованиями, предъявляемыми к таким конструкциям.

Свариваемость материалов считается достаточной, если требования к эксплуатационным свойствам сварных соединений с принятыми допущениями удовлетворяются, и недостаточной, если не обеспечивается минимальный уровень хотя бы одного из эксплуатационных свойств сварного соединения. Различают свариваемость физическую и технологическую.

Физическая свариваемость определяет принципиальную возможность получения монолитных сварных соединений, что особенно важно при сварке разнородных материалов.

Технологическая свариваемость представляет собой реакцию материала на сварочный термодеформационный цикл и металлургическое воздействие сварки, которая оценивается, например, посредством сравнения механических свойств металла сварного соединения с одноименными свойствами основного металла.

При оценке свариваемости учитывают также стойкость металла к образованию трещин и его специальные свойства (коррозионную стойкость, прочность при высоких или низких температурах, сопротивление хрупкому разрушению).

Свариваемость углеродистых сталей определяется, в первую очередь, содержанием в них углерода. Под хорошей свариваемостью низкоуглеродистой стали, предназначенной для изготовления конструкций, работающих при статических нагрузках, понимают возможность с использованием обычной технологии получить сварное соединение, равнопрочное основному металлу, без трещин в металле шва и снижения пластичности в околошовной зоне. При этом металлы шва и околошовной зоны должны быть стойкими к переходу в хрупкое состояние при температуре эксплуатации конструкции и наличии концентраторов напряжений, обусловленных формой сварного узла.

Свариваемость материала оценивается посредством сравнения его свойств со свойствами ранее применявшихся материалов или основного металла. Свариваемость признают удовлетворительной, если результаты испытаний различных свойств сварного соединения соответствует нормативам, установленным техническими условиями на данную продукцию.

Стойкость металла сварного соединения к образованию горячих трещин — это наиболее важный показатель свариваемости, так как при сварке сплавов с широким температурным интервалом кристаллизации под действием возникающих при затвердевании растягивающих напряжений возможно появление горячих трещин, являющихся весьма серьезным дефектом.

Стойкость металла сварного соединения к образованию холодных трещин — это также очень важный показатель свариваемости, поскольку под действием сварочного нагрева изменяется структура основного металла. При этом в околошовной зоне закаливаемых сплавов в результате фазовых превращений образуются хрупкие структуры типа мартенситных, что может привести к появлению холодных трещин.

Процессы, происходящие в металле сварного соединения, могут вызвать хрупкие разрушения сварной конструкции. Причинами таких разрушений могут быть конструктивные недостатки, наличие макроскопических концентраторов напряжений, дефектов сварных соединений (раковин, пор, шлаковых включений, подрезов по краю швов), микротрещин и полостей.

Склонность металла сварного соединения к хрупкому разрушению — это также достаточно важный показатель свариваемости. Оценивают ее посредством специальных испытаний по сравнению со склонностью к хрупкому разрушению основного металла, зоны термического влияния и металла сварного шва. Считается, что лучшей свариваемостью обладают те металлы, сварные соединения которых не отличаются по склонности к хрупкому разрушению от основного металла.

Методы определения показателей свариваемости материалов подразделяются на прямые — при использовании которых выполняют сварку образцов заданной формы по выбранной технологии, и косвенные — основанные на замене сварочного процесса имитирующим его процессом.

Определение стойкости металла к образованию горячих трещин. Стойкость сварного соединения металла к образования горячих трещин определяют по результатам следующих испытаний:

  • машинных испытаний, основанных на принудительном деформировании образцов, подвергнутых сварочному нагреву, в температурном интервале возникновения горячих трещин;
  • технологических испытаний, или сварки проб, при проведении которых условия деформирования в температурном интервале образования горячих трещин регулируют выбором формы и размеров образцов, а также последовательности выполнения сварных швов и режимов сварки.

Машинные испытания заключаются в испытаниях образцов, проплавляемых сварочной дугой, на растяжение и изгиб, а образцов, нагреваемых по сварочному циклу, — на растяжение. Для машинных испытаний применяют специальные установки.

Процедура машинных испытаний включает в себя сварку серии образцов с одновременным деформированием шва при разной скорости перемещения активного захвата и определение критической скорости деформирования, вызывающей появление горячих трещин в нескольких образцах.

Технологические испытания основываются на положении о том, что металл, в котором не возникает трещин в искусственно созданных жестких условиях (что достигается выбором форм и размеров специальных технологических проб и типов их закрепления), не должен разрушаться и в реальных изделиях. При сварке кристаллизующийся металл подвергается деформации вследствие усадки шва и формоизменения технологических проб. Специальная конструкция и технология сварки проб обусловливают повышенные темпы высокотемпературной деформации.

Технологические пробы можно условно подразделить на два класса: количественные и качественные.

К количественным относятся технологические пробы, в которых образование горячих трещин можно связать с каким-либо конструктивным параметром (размерами пробы, глубиной или расположением надрезов и др.) или параметром режима сварки (скорость, температура подогрева). Сравнив такие пробы, можно выделить сплавы с меньшим и бо́льшим сопротивлением образованию горячих трещин.

Качественные технологические пробы предусматривают выполнение сварных швов на образцах постоянной формы в строго заданной последовательности и при соблюдении определенных режимов сварки. Сопротивление металла шва образованию горячих трещин оценивают в этом случае по их наличию или отсутствию на поверхности проб и шлифов или в изломах сварных швов. Качественные пробы не позволяют оценить количественно стойкость сплавов к образованию горячих трещин и предназначены лишь для отбраковки плохо сваривающихся сплавов.

Для определения стойкости металла к образованию горячих трещин используют различные виды проб.

Составная тонколистовая проба содержит несколько пластин разной ширины, соединенных с одной стороны прихватками. Сварку производят в направлении расширения пластин. При этом в местах пересечения стыков пластин сварным швом образуются горячие трещины. Показателем стойкости металла шва к образованию горячих трещин служит минимальная (критическая) ширина пластины, при сварке которой горячие трещины не возникают: чем меньше критическая ширина пластины, тем больше стойкость металла шва.

Проба ИМЕТ из тонколистового металла представляет собой пластину с постоянными размерами и надрезом, параллельным ее короткой стороне. Пластину проплавляют вольфрамовым электродом в струе аргона или электронным лучом таким образом, чтобы ось шва проходила через вершину надреза. Вероятность появления трещины от надреза зависит от его положения на пластине: чем больше длина шва до надреза, тем выше стойкость металла шва к образованию горячих трещин.

Проба Хоулдкрофтарыбья кость») используется для оценки сопротивления металла шва образованию горячих трещин при сварке тонких листов легированных сталей, алюминиевых и магниевых сплавов. Данная проба представляет собой пластину с боковыми прорезями увеличивающейся длины. При испытании выполняют наплавку или проплавляют пластину вольфрамовым электродом в защитном газе. Критерием оценки стойкости металла служит длина горячей трещины.

Крестовидная тонколистовая проба применяется для определения склонности к образованию горячих трещин главным образом алюминиевых и магниевых сплавов. Две прямоугольные пластины сваривают друг с другом четырьмя валиковыми швами в определенных последовательности и направлениях. Критерием наличия склонности к появлению горячих трещин служит отношение длины швов с трещинами к общей длине швов.

Кольцевая сегментная проба для испытания листов большой толщины состоит из четырех заготовок с шлифованными торцевыми поверхностями, свариваемых друг с другом с двух сторон. Размеры такой пробы после сборки составляют 90 × 90 × 25 мм. На ее верхней стороне протачивают кольцевую канавку. При испытании пробу сваривают по канавке по ходу часовой стрелки. После ее охлаждения до температуры ниже 50 °С выполняют замыкающий шов. Горячие трещины образуются в местах стыка заготовок и распространяются вдоль сварного шва. Критерием стойкости металла шва к образованию горячих трещин служит процентное отношение суммарной длины образовавшихся трещин к длине шва.

Пробу с канавками изготовляют из пластин толщиной более

40 мм. При толщине пластины менее 60 мм ее приваривают к жесткой плите по флангам швом с катетом 20 мм, а канавки располагают с шагом 100 мм. При толщине пластины более 60 мм канавки выполняют с двух сторон образца, а пластины сваривают по канавкам с минимальной скоростью. Склонность к образованию горячих трещин в этом случае определяют по отношению суммарной длины образовавшихся трещин или их площади соответственно к длине или площади поперечного сечения шва, а также по коэффициенту периодичности — числу трещин на единице длины шва. При отсутствии горячих трещин в швах, выполненных на рекомендованных для анализа режимах сварки, переходят к сварке более узких образцов либо к сварке с повышенной скоростью.

Способы оценки склонности металла к образованию холодных трещин. Все способы оценки склонности (стойкости, сопротивления) металла сварного соединения к образованию холодных трещин подразделяются следующим образом. По операции оценки различают косвенные и прямые способы, по форме представления показателей — количественные, полуколичественные и качественные, по варианту использования результатов оценки — сравнительные и прикладные.

Косвенные способы позволяют оценить склонность сварного соединения к образованию холодных трещин посредством расчета без непосредственного испытания материалов.

Прямые способы оценки склонности к образованию холодных трещин предусматривают сварку технологических проб и проведение специализированных испытаний сварных соединений или основного материала, подлежащего сварке, в условиях, имитирующих сварочные.

Количественные способы оценки склонности к образованию холодных трещин обеспечивают получение числового значения показателя, связанного с изменением одного из факторов, обеспечивающих контроль этого процесса.

Качественные способы не обеспечивают количественной оценки склонности к образованию холодных трещин и по существу служат для отбраковки материалов.

Способы оценки, которые могут использоваться только для сопоставления материалов и технологических вариантов сварки в целях выбора лучших из них, относятся к сравнительным.

Способы, позволяющие оценить стойкость реальных сварных конструкций к образованию холодных трещин, относятся к прикладным.

По тем же признакам подразделяются и технологические пробы. Пробы отраслевого назначения, или прикладные, позволяют оценить склонность материалов к образованию холодных трещин в условиях, максимально приближенных к технологическим и климатическим условиям изготовления реальных сварных конструкций.

Проба «Геккен» представляет собой плоский прямоугольный образец толщиной 12 … 40 мм, имеющий в центре продольную прорезь с V-образной разделкой. Этот образец заваривается в свободном состоянии и затем выдерживается в течение 20 ч. Сварку выполняют вручную покрытыми электродами, под флюсом или в защитных газах. При этом трещины образуются в корневой части сварного соединения. Обязательное условие пробы — наличие в корне шва непровара, служащего концентратором напряжений. Количественным показателем стойкости к образованию холодных трещин в этом случае могут служить процентное отношение суммарной длины трещин к длине шва; процентное отношение площади трещин к площади сечения шва, температура подогрева, при которой не образуются трещины.

Крестовая проба состоит из трех пластин, собранных в крестовидное соединение. Все поверхности касания этих пластин предварительно шлифуются для обеспечения хорошего контакта. На пробе выполняют четыре угловых шва длиной 160 мм в определенной последовательности. Температура пробы перед сваркой очередного шва не должна превышать (28 ± 3)°С. Через 48 ч после сварки для снятия напряжений производится двухчасовой отжиг пробы при температуре 595 … 650 °С. Пробу разрезают на поперечные темплеты для изготовления микрошлифов и выявления трещин в околошовной зоне. Результаты испытаний считаются удовлетворительными, если на двух первых темплетах не обнаружено ни одной трещины.

Лихайская модифицированная проба состоит из образцов с прорезями, завариваемыми на разных режимах при различных температурах предварительного подогрева. При этом начало и концы прорезей образцов (по 2 … 3 мм) оставляют незаплавленными. Наличие трещин на поверхности сварного соединения, в корне шва и поперечном сечении выявляют через 24 ч после окончания сварки. Для оценки склонности материала к образованию холодных трещин определяют процентную долю разрушений сварных соединений в зависимости от скорости охлаждения металла с температурой 300 °С или от продолжительности его охлаждения в температурном интервале 800 … 300 °С. Скорость охлаждения, при превышении которой разрушение швов заметно усиливается, принимается в качестве критерия оценки сопротивления материала образованию холодных трещин. Также оценку можно производить и по критическому времени охлаждения материала или по минимальной температуре предварительного нагрева, необходимой для устранения холодных трещин.

Оценка влияния термического цикла сварки на изменение структуры и свойств свариваемых металлов. Предварительную оценку в этом случае выполняют по методикам, предусматривающим нагрев и охлаждение образцов по программе с заданными скоростями и механические испытания на любом этапе термической обработки. Такие испытания позволяют имитировать сварочные термические циклы любого участка сварного соединения и выявлять их воздействие на структуру и свойства металла. Для этой же цели используют и специальные технологические пробы, например валиковую. Для такой пробы на пластины металла толщиной 14 … 30 мм наплавляют валики на режимах с разной погонной энергией. Из пластин вырезают поперечные образцы для определения структуры и твердости, а также для испытаний на ударный и статический изгиб.

Расчетная оценка свариваемости конструкционных сталей по химическому составу выполняется следующим образом. Технологическая свариваемость металлов и их сплавов зависит от ряда факторов: их химической активности, степени легирования, содержания примесей и особенностей структуры. Чем выше химическая активность металла, тем больше его склонность к взаимодействию с окружающей средой и в первую очередь к окислению, а следовательно, требуется более эффективная его защита и металлургическая обработка при сварке. Защита расплавленных сталей и сплавов на основе железа от взаимодействия с воздухом обеспечивается с помощью электродных покрытий, флюсов и инертных газов.

Наибольшее влияние на свариваемость сталей оказывает углерод: при увеличении содержания углерода и ряда других легирующих элементов их свариваемость ухудшается.

Ориентировочным количественным показателем свариваемости стали является эквивалент углерода, рассчитываемый по формуле

Сэкв = С + Мn/6 + Si/24 (1)

в которой содержание углерода и легирующих элементов выражено в процентах.

В зависимости от эквивалента углерода (и связанной с этой величиной склонности материала к закалке и образованию трещин) все конструкционные стали подразделяются на четыре группы соответственно с хорошей, удовлетворительной, ограниченной и плохой свариваемостью.

Стали с Сэкв = 0,25 … 0,35 % свариваются удовлетворительно. Они не склонны к образованию холодных трещин при правильном выборе режимов сварки, однако в ряде случаев необходим их подогрев.

Стали с Сэкв = 0,36 … 0,45 % свариваются ограниченно с образованием трещин. Возможность регулирования сопротивления этих сталей образованию трещин посредством изменения режимов сварки ограничена, а следовательно, требуется их подогрев.

Стали с Сэкв > 0,45 % плохо свариваются. Они весьма склонны к закалке и возникновению холодных трещин. При сварке необходим их подогрев и применение специальных технологических приемов, а после сварки требуется термическая обработка.

Химический анализ и коррозионные испытания сварного соединения

Химический анализ служит для отбраковки материалов по составу и установления причин появления дефектов в сварном соединении. При исследовании соединения обычно производят химический анализ основного, присадочного (электродов и проволоки) и наплавленного металлов шва.

При анализе металла шва необходимо выяснить соответствие содержания в нем углерода, кремния, марганца и легирующих элементов значениям, рекомендуемым для различных способов сварки, марок электродов, составов основного металла и т. д. Кроме того, важно знать, что содержание вредных элементов (серы, фосфора и др.) в стали не превышает допустимых пределов. В некоторых случаях, особенно при разработке нового состава покрытия или технологии сварки, выполняют также анализ металла шва на содержание азота, кислорода и водорода.

Пробы для химического анализа в виде стружки отбирают в соответствии с ГОСТ 7122 — 81 с таким расчетом, чтобы в них содержалось небольшое количество основного металла. Иногда стружку получают из образцов, предназначенных для механических испытаний.

Необходимая для анализа масса стружки зависит от числа проверяемых химических элементов: для определения углерода достаточно 3 … 5 г стружки, для определения азота и кислорода — 50 … 60 г, а для полного анализа состава — 50 г.

Стружка должна быть обезжирена спиртом или эфиром. Содержание кислорода и азота определяют методом горячей экстракции или расплавлением стружки в вакууме в специальных муфельных печах. Если полученные результаты сомнительны, то производят повторный отбор не менее двух проб.

В тех случаях, когда отбор проб затруднен, химический состав сварных швов определяют с помощью спектрального анализа, выполняемого на специальных приборах — спектрометрах, позволяющих с высокой точностью установить количественный состав элементов, входящих в металл шва. При спектральном анализе на поверхности образца зажигают микродугу. Пары́ металла, попадающие в эту дугу, создают присущий им спектр, который разлагается на аналитические линии. Сравнением этих линий с эталонными определяют количественный и качественный состав элементов в сплаве.

Один из способов изучения структуры металлов основывается на применении радиоактивных изотопов. Чаще всего для изучения состава металла используются радиоактивные изотопы серы и фосфора, которые вводят в шов через проволоку или основной металл. Из шва, содержащего радиоактивные изотопы, изготовляют шлифы, отпечаток которых на фотопленке или фотобумаге отображает характер распределения этих изотопов: наибольшее потемнение отвечает их максимальной концентрации. По характеру распределения изотопов определяют распределение соответствующих химических элементов в металле шва и скорости их выгорания в процессе сварки.

При оценке коррозионных свойств сварного соединения используют такие показатели, как скорость коррозии, механические, физические, электрохимические и другие свойства, а при оценке сопротивляемости разрушению — время или число циклов нагружения до растрескивания, пороговые напряжения, коэффициенты интенсивности напряжений и т. д.

Для оценки эксплуатационно-коррозионной прочности проводятся сравнительные испытания сварных соединений и основного металла в ненапряженном и напряженном состояниях.

Методы испытаний оценки коррозионной стойкости сварных соединений подразделяют:

  • по целевому назначению;
  • типу испытуемого объекта;
  • виду напряженного состояния;
  • типам используемых сред;
  • показателям стойкости в зависимости от вида коррозионного разрушения.

По целевому назначению различают группы испытаний, предназначенные:

  • для выявления причин, характера, кинетики и в целом механизма разрушения изделия;
  • для обоснованного выбора материала, конструкции и технологии изготовления изделия;
  • для решения задач экспертного типа при выяснении причин отказов конструкций.

При этом предусматриваются анализ условий эксплуатации, выявление причин разрушений, разработка мер по повышению сопротивляемости разрушению.

По типу испытуемого объекта различают испытания трех видов:

  • сравнительные испытания образцов;
  • модельные испытания элементов, узлов и макетов конструкций;
  • натурные испытания конструкций.

Для научно-обоснованной оценки стойкости, прочности и надежности конструкций, эксплуатирующихся в агрессивных средах, необходимо проведение испытаний всех трех видов.

Испытания образцов, которые проводятся в лабораторных и натурных условиях, относительно простые и позволяют решить ряд принципиальных вопросов: выявить механизмы разрушений, дать сравнительную оценку влияния некоторых факторов и др.

Такие испытания необходимы, однако их недостаточно для обоснованной оценки прочности и надежности, так как в связи с трудностью воспроизведения в образцах реальных условий нагружения и эксплуатации результаты этих испытаний нельзя непосредственно переносить на конструкцию. Натурные испытания позволяют непосредственно оценить прочность и надежность конструкций, однако они длительные, дорогие и не обеспечивают в полной мере дифференцированной оценки влияния различных конструктивных и технологических факторов.

Модельные испытания элементов, узлов и макетов конструкций, учитывающие конструктивные и технологические особенности изделий и условия их эксплуатации, сочетают в себе достоинства лабораторных испытаний образцов (простоту, экономичность, относительно малую длительность) и возможность дифференцированной и в различных сочетаниях оценки влияния характерных конструктивных и технологических особенностей конструкций.

Все испытания образцов проводятся в два этапа:

  1. испытания стойкости к общей и местной коррозии без нагрузки (результаты этих испытаний необходимы, но их недостаточно для оценки стойкости материала в напряженной конструкции);
  2. испытания стойкости к коррозионным разрушениям в напряженном состоянии (проводятся при благоприятных результатах испытаний первого этапа).

Все испытания условно подразделяются на основные — являющиеся определяющими при оценке и расчете стойкости, прочности и надежности (весовые, профилографические, механические, на стойкость к растрескиванию в напряженном состоянии и др.), и специальные — позволяющие исследовать механизм и причины коррозионных разрушений (электрохимические, металлографические, электронно-скопические и др.). При этом свойства сварных соединений сопоставляются со свойствами основного металла.

Целесообразно использовать сочетание рассмотренных видов испытаний с окончательной оценкой конструкций по результатам натурных испытаний.

В целях экономии времени испытания в ненапряженном и напряженном состояниях целесообразно проводить параллельно.

Различают ускоренные испытания в специальных средах для выполнения сравнительного анализа и испытания в производственных средах. Последние обеспечивают непосредственное получение данных о коррозионной стойкости, но не позволяют в связи с продолжительностью процесса оперативно оценивать влияние тех или иных конструктивных и технологических факторов, поэтому на практике широко используют ускоренные методы коррозионных испытаний.

При выборе ускоренного метода испытания необходимо учитывать состав и свойства коррозионной среды, а также условия эксплуатации конструкции. Механизм и характер коррозионного разрушения металла в среде для ускоренных испытаний должен быть идентичен механизму разрушения конструкции в эксплуатационной среде. Ускорение процесса возможно за счет ускорения электрохимических реакций агрессивными компонентами и деполяризаторами, повышения напряжений, температуры испытаний, а также посредством изменения условий контактирования металла со средой. При выборе метода ускорения коррозионного процесса необходимо учитывать контролирующий фактор.

Метод и режимы испытания должны обеспечивать протекание процесса с повышенной скоростью, но при этом не следует чрезмерно ускорять процессы коррозии, так как это усложняет получение сравнительных результатов.

При оценке коррозионной стойкости сплавов и средств противокоррозионной защиты важно правильно выбрать показатели коррозии, отражающие эксплуатационно-коррозионную стойкость сплава. Методы испытаний необходимо разрабатывать и выбирать отдельно для каждой группы сплавов.

Ускоренные лабораторные испытания следует по возможности использовать для получения сравнительных данных. Учитывая, что пока еще не имеется надежных коэффициентов пересчета результатов ускоренных испытаний на условия длительной эксплуатации, при выборе новых материалов и технологий целесообразно проводить параллельные испытания родственных материалов, для которых уже имеются данные по эксплуатационной стойкости.

При оценке сравнительной коррозионной стойкости сварных соединений в целях достоверности выявления влияния термического цикла сварки целесообразно проведение испытаний в средах, обеспечивающих нахождение исследуемого материала на границе перехода из активного в пассивное состояние.

В связи с повышенной чувствительностью сварных соединений к разрушению в агрессивных средах особое значение приобретает оценка их надежности при работе в этих условиях.

Количественная оценка надежности сварных соединений и конструкций производится с учетом их особенностей двумя способами:

  • по классической схеме, являющейся универсальной, т. е. на основе статистической обработки эксплуатационных наблюдений и результатов натурных и стендовых испытаний;
  • по результатам сравнительных испытаний образцов из основного металла, надежность которого условно принимается за единицу, и сварных соединений, используемых для оценки предельных состояний материалов (прочности, сопротивляемости растрескиванию, допустимой глубины коррозии и др.).

Часто постепенное развитие сплошной и местной коррозии удовлетворительно описывается математическими зависимостями нормального закона безотказности (Гаусса), однако для сварных соединений, работающих в агрессивных средах в напряженном состоянии, возможно использование и других законов безотказности.

Расчетная оценка свариваемости по химическому составу конструкционных сталей.

Сталь представляет собой сплав железа с углеродом, в котором могут быть примеси других металлов. Приближенный метод оценки свариваемости стали по ее химическому составу заключается в суммировании содержащихся в ней примесей и в сопоставлении полученной величины с процентным содержанием углерода в стали.

При суммарном содержании в стали примесей марганца, кремния, хрома и никеля меньше 1 % сталь хорошо сваривается, если содержание углерода не превышает 0,25 %; удовлетворительно — при 0,25—0,35 % углерода; ограниченно — при 0,35—0,45 % углерода и плохо — при содержании углерода свыше 0,45 %.

При суммарном содержании указанных примесей 1— 3 % сталь сваривается хорошо при содержании до 0,20 % углерода, удовлетворительно при 0,2—0,3 %, ограниченно при 0,3—0,4 % и плохо сваривается при содержании в стали более 0,4 % углерода.

При суммарном содержании указанных примесей в стали свыше 3 % сталь хорошо сваривается при содержании до 0,18 % углерода, удовлетворительно при 0,18—0,28%, ограниченно при 0,28—0,38 % и плохо, когда в стали более 0,38 % углерода.

Свойства, физические и механические качества конструкционных сталей обусловлены составом сплавов, в которых нередко сдержатся всевозможные вредные примеси. Самыми опасными из химических элементов, влияющих на прочностные характеристики конструкционных сталей, являются сера и фосфор, которые придают сплавам хрупкость и ломкость.

В зависимости от количества их содержания конструкционные стали подразделяются на обыкновенные, качественные, высококачественные и особовысококачественные. Содержание вредных примесей в них колеблется от 0,05 до 0,015%.

Конструкционные обыкновенные стали имеют несколько подгрупп, классификация по которым осуществляется не только по наличию тех или иных химических компонентов, но и на основании технических характеристик получаемых сплавов. Основное их предназначение – изготовление балок, швеллеров, заклепок, уголков, болтов, труб, гвоздей и проволоки, т.е. тех деталей и предметов, которые при эксплуатации не подвержены повышенным физическим и механическим нагрузкам.

Конструкционные качественные стали имеют гораздо меньше химических добавок и механических вкраплений. При их производстве допустимый уровень таких вредных примесей, как сера и фосфор, не может превышать 0,04%.

Качественные конструкционные стали имеют более широкую область применения. В частности, из них методом холодной штамповки изготавливают различные детали, используемые в машиностроении, а также всевозможные пружины и рессоры.

Следует отметить, что обыкновенные и качественные конструкционные стали являются углеродистыми, однако содержание этого химического вещества в них является незначительным. Именно этим объясняется их мягкость и легкость в механической обработке.

К высококачественной конструкционной группе относятся практически все виды легированных сталей, которые отличаются повышенными прочностными характеристиками. Они используются в тяжелом и легком машиностроении, применяются для изготовления инструментов, различных строительных конструкций, востребованы при изготовлении всевозможных деталей для сельхозтехники.

При этом высококачественные конструкционные стали имеют более десятка различных подргупп, классификация по которым осуществляется на основе их физико-химических свойств и области применения.

Так, высококачественные конструкционные стали могут быть арматурными, строительными, цементируемыми. Кроме этого, существуют стали, предназначенные исключительно для холодной штамповки или же обладающие свойствами улучшения прочностных характеристик при термической обработке.

Тем не менее, изделия, изготовленные и высококачественной конструкционной стали, не рассчитаны на повышенные нагрузки. Для этих целей применяются различные виды особовысококачественной конструкционной стали, которые обладают уникальными характеристиками.

К наиболее распространенной группе особовысококачественных конструкционный сталей относятся так называемые мартенисто-стареющие сплавы, обладающие повышенным пределом выносливости. Основная их область применения заключается в изготовлении высоконагруженных деталей, а также тросов и крепежей.

К числу особовысококачественный видов также относятся шарикоподшипниковые конструкционные стали и специальные сплавы, обладающие повышенной износостойкостью, жаростойкостью и пониженной чувствительностью к коррозии.

Кроме этого, для работы в агрессивной среде нередко применяются двухслойные стали, в состав которых входит никель и хром.

Следует также отметить, что к особовысококачественным видам относятся криогенные виды конструкционной стали, которые не утрачивают своих прочностных характеристик при низких температурах, поэтому могут использоваться в условиях вечной мерзлоты при строительстве объектов, а также для изготовления особо прочных емкостей, применяемых при транспортировке сжиженных газов.

Конфликтные ситуации в медицинской практике: Наиболее ярким примером конфликта врача и пациента является.

Социальное обеспечение и социальная защита в РФ: Понятие социального обеспечения тесно увязывается с понятием .

Поиск по сайту

Читайте также: