Металлы в ядре земли
О вещественном составе глубинных зон прямых данных практически нет. Выводы базируются на геофизических данных, дополняемых результатами экспериментов и математического моделирования. Существенную информацию несут метеориты и фрагменты верхнемантийных пород, выносимые из недр глубинными магматическими расплавами.
Валовый химический состав Земли очень близок к составу углистых хондритов – метеоритов, по составу близких первичному космическому веществу, из которого формировалась Земля и другие космические тела Солнечной системы. По валовому составу Земля на 92% состоит всего из пяти элементов (в порядке убывания содержания): кислорода, железа, кремния, магния и серы. На все остальные элементы приходится около 8%.
Однако в составе геосфер Земли перечисленные элементы распределены неравномерно - состав любой оболочки резко отличается от валового химического состава планеты. Это связано с процессами дифференциации первичного хондритового вещества в процессе формирования и эволюции Земли.
Основная часть железа в процессе дифференциации сконцентрировалась в ядре. Это хорошо согласуется и с данными о плотности вещества ядра, и с наличием магнитного поля, с данными о характере дифференциации хондритового вещества, и с другими фактами. Эксперименты при сверхвысоких давлениях показали, что при давлениях достигаемых на границе ядра и мантии, плотность чистого железа близко к 11 г/см 3 , что выше фактической плотности этой части планеты. Следовательно, во внешнем ядре присутствует некоторое количество лёгких компонентов. В качестве наиболее вероятных компонентов рассматриваются водород или сера. Так расчёты показывают, что смесь 86% железа + 12% серы + 2% никеля соответствует плотности внешнего ядра и должна находится в расплавленном состоянии при Р-Т условиях этого участка планеты. Твёрдое внутреннее ядро, представлено никелистым железом, вероятно, в соотношении 80% Fe + 20% Ni, что отвечает составу железных метеоритов.
Для описания химического состава мантии к сегодняшнему дню предложено несколько моделей (табл.). Несмотря на имеющиеся между ними различия, всеми авторами принимается, что примерно на 90% мантия состоит из окислов кремния, магния и двухвалентного железа; еще 5 – 10% представлены окислами кальция, алюминия и натрия. Таким образом, на 98% мантия состоит всего из шести перечисленных окислов.
Окислы | Содержание, весовые % | ||
Пиролитовая модель | Лерцолитовая модель | Хондритовая модель | |
SiO2 | 45,22 | 45,3 | 48,1 |
TiO2 | 0,7 | 0,2 | 0,4 |
Al2O3 | 3,5 | 3,6 | 3,8 |
FeO | 9,2 | 7,3 | 13,5 |
MnO | 0,14 | 0,1 | 0,2 |
MgO | 37,5 | 41,3 | 30,5 |
CaO | 3,1 | 1,9 | 2,4 |
Na2O | 0,6 | 0,2 | 0,9 |
К2О | 0,13 | 0,1 | 0,2 |
Дискуссионным является форма нахождения этих элементов: в форме каких минералов и горных пород они находятся?
До глубины 410 км, согласно лерцолитовой модели, мантия состоит на 57% из оливина, на 27% из пироксенов и на 14% из граната; её плотность около 3,38 г/см 3 . На границе 410 км оливин переходит в шпинель, а пироксен – в гранат. Соответственно, нижняя мантия состоит из гранат-шпинелевой ассоциации: 57% шпинели + 39% граната + 4% пироксена. Превращение минералов в более плотные модификации на рубеже 410 км приводит к увеличению плотности до 3,66 г/см3, что отражается в возрастании скорости прохождения сейсмических волн через это вещество.
Следующий фазовый переход приурочен к границе 670 км. На этом уровне давление определяет разложение минералов, типичных для верхней мантии, с образованием более плотных минералов. Вследствие такой перестройки минеральных ассоциаций плотность нижней мантии у границы 670 км становится около 3,99 г/см3 и постепенно нарастает с глубиной под воздействием давления. Это фиксируется скачкообразным нарастанием скорости сейсмических волн и дальнейшим плавным нарастанием скорости границы 2900 км. На границе мантии и ядра, вероятно, происходит разложение силикатных минералов на металлическую и неметаллическую фазы. Этот процесс дифференциации мантийного вещества сопровождается ростом металлического ядра планеты и выделением тепловой энергии.
Суммируя приведённые данные, необходимо отметить, что разделение мантии обусловлено перестройкой кристаллической структуры минералов без значимого изменения её химического состава. Сейсмические границы раздела приурочены к участкам фазовых превращений и связаны с изменением плотности вещества.
Раздел ядро/мантия является, как отмечено ранее, очень резким. Здесь резко изменяются скорости и характер прохождения волн, плотность, температура и другие физические параметры. Такие радикальные изменения не могут быть объяснены перестройкой кристаллической структуры минералов и, несомненно, связаны с изменением химического состава вещества.
Более подробные сведения имеются в вещественном составе земной коры, верхние горизонты которой доступны для непосредственно изучения.
Химический состав земной коры отличается от более глубоких геосфер в первую очередь обогащённостью относительно лёгкими элементами – кремнием и алюминием.
Достоверные сведения имеются только о химическом составе самой верхней части земной коры. Первые данные о её составе были опубликованы в 1889 году американским ученым Ф. Кларком, как среднеарифметические из 6000 химических анализов горных пород. Позже, на основании многочисленных анализов минералов и горных пород, эти данные многократно уточнялись, но и сейчас процентное содержание химического элемента в земной коре называется кларком. Около 99 % в составе земной коры занимают всего 8 элементов, то есть они имеют наибольшие кларки (данные об их содержании приведены в таблице). Кроме того, могут быть названы ещё несколько элементов, имеющих относительно высокие кларки: водород (0,15%), титан (0,45%), углерод (0,02%), хлор (0,02%), которые в сумме составляют 0,64%. На все остальные элементы, содержащиеся в земной коре в тысячных и миллионных долях, остаётся 0,33%. Таким образом, в пересчёте на окислы, земная кора в основном состоит из SiO2 и Al2O3 (имеет «сиалический» состав, SIAL), что существенно отличает её от мантии, обогащённой магнием и железом.
Вместе с тем, нужно иметь в виду, что приведённые выше данные о среднем составе земной коры отражают лишь общую геохимическую специфику этой геосферы. В пределах земной коры по составу существенно различается океанический и континентальный типы коры. Океаническая кора образуется за счёт поступающих из мантии магматических расплавов, поэтому в значительно большей степени обогащена железом, магнием и кальцием, чем континентальная.
Среднее содержание химических элементов в земной коры
(по Виноградову)
Химический состав мантии и ядра Земли
Мантия Земли имеет особый состав, отличаясь от состава покрывающей ее земной коры. Данные о химическом составе мантии получены на основании анализов наиболее глубинных магматических горных пород, поступивших в верхние горизонты Земли в результате мощных тектонических поднятий с выносом мантийного материала. К таким породам относятся ультраосновные породы — дуниты, перидотиты, залегающие в горных системах. Горные породы островов Св. Павла в средней части Атлантического океана, по всем геологическим данным, относятся к мантийному материалу. Также к мантийному материалу относятся обломки пород, собранные советскими океанографическими экспедициями со дна Индийского океана в области Индоокеанского хребта. Что касается минералогического состава мантии, то здесь можно ожидать существенных изменений, начиная от верхних горизонтов и кончая основанием мантии в связи с ростом давления. Верхняя мантия сложена преимущественно силикатами (оливинами, пироксенами, гранатами), устойчивыми и пределах относительно низких давлений. Нижняя мантия сложена минералами высокой плотности.
Наиболее распространенным компонентом мантии является окись кремния в составе силикатов. Но при высоких давлениях кремнезем может перейти в более плотную полиморфную модификацию — стишовит. Этот минерал получен советским исследователем Стишовым и назван так по его имени. Если обычный кварц имеет плотность 2,533 r/см 3 , то стишовит, образующийся из кварца при давлении 150 000 бар, имеет плотность 4,25 г/см 3 .
Кроме того, в нижней мантии вероятны и более плотные минеральные модификации других соединений. Исходя из изложенного выше, можно с достаточным основанием полагать, что с ростом давления обычные железисто-магнезиальные силикаты оливины и пироксены разлагаются на окислы, которые в отдельности имеют более высокую плотность, чем силикаты, которые оказываются устойчивыми в верхней мантии.
Верхняя мантия состоит преимущественно из железисто-магнезиальных силикатов (оливинов, пироксенов). Некоторые алюмосиликаты могут переходить здесь в более плотные минералы типа гранатов. Под материками и океанами верхняя мантия имеет разные свойства и, вероятно, различный состав. Можно только предположить, что в области континентов мантия более дифференцирована и имеет меньше SiO2 за счет концентрации этого компонента в алюмосиликатной коре. Под океанами мантия менее дифференцирована. В верхней мантии могут возникать более плотные полиморфные модификации оливина со структурой шпинели и др.
Переходной слой мантии характеризуется постоянным возрастанием скоростей сейсмических волн с глубиной, что свидетельствует о появлении более плотных полиморфных модификаций вещества. Здесь, очевидно, появляются окислы FeO, MgO, GaO, SiO2 в форме вюстита, периклаза, извести и стишовита. Количество их с глубиной возрастает, а количество обычных силикатов уменьшается, и глубже 1000 км они составляют ничтожную долю.
Нижняя мантия в пределах глубин 1000—2900 км практически полностью состоит из плотных разновидностей минералов — окислов, о чем свидетельствует ее высокая плотность в пределах 4,08—5,7 г/см 3 . Под влиянием возросшего давления плотные окислы сжимаются, еще более увеличивая свою плотность. В нижней мантии также, вероятно, увеличивается содержание железа.
Ядро Земли. Вопрос о составе и физической природе ядра нашей планеты относится к наиболее волнующим и загадочным проблемам геофизики и геохимии. Только за последнее время наметилось небольшое просветление в решении этой проблемы.
Обширное центральное ядро Земли, занимающее внутреннюю область глубже 2900 км, состоит из большого внешнего ядра и малого внутреннего. По сейсмическим данным, внешнее ядро обладает свойствами жидкости. Оно не пропускает поперечных сейсмических волн. Отсутствие сил сцепления между ядром и нижней мантией, характер приливов в мантии и коре, особенности перемещения оси вращения Земли в пространстве, характер прохождения сейсмических волн глубже 2900 км говорят о том, что внешнее ядро Земли жидкое.
Некоторыми авторами состав ядра для химически однородной модели Земли допускался силикатным, причем под влиянием высокого давления силикаты перешли в «металлизированное» состояние, приобретая атомную структуру металлов, у которых внешние электроны являются общими. Однако перечисленные выше геофизические данные противоречат предположению о «металлизированном» состоянии силикатного материала в ядре Земли. В частности, отсутствие сцепления между ядром и мантией не может быть совместимо с «металлизированным» твердым ядром, что допускалось в гипотезе Лодочникова—Рамзая. Очень важные косвенные данные о ядре Земли получены во время опытов с силикатами под большим давлением. При этом давления достигали 5 млн. атм. Между тем в центре Земли давление 3 млн. атм., а на границе ядра — приблизительно 1 млн. атм. Таким образом, экспериментальным путем удалось перекрыть давления, существующие в самых глубинах Земли. При этом для силикатов наблюдалось только линейное сжатие без скачка и перехода в «металлизированное» состояние. Кроме того, при высоких температурах и давлениях в пределах глубин 2900—6370 км силикаты не могут находиться в жидком состоянии, как и окислы. Их температура плавления возрастает с увеличением давления.
За последние годы получены весьма интересные результаты исследований по влиянию очень высоких давлений на температуру плавления металлов. Оказалось, что ряд металлов при высоких давлениях (300 тыс. атм. и выше) переходит в жидкое состояние при относительно невысоких температурах. По некоторым расчетам, сплав железа с примесью никеля и кремния (76% Fe, 10% Ni, 14% Si) на глубине 2900 км под влиянием высокого давления должен находиться в жидком состоянии уже при температуре 1000° С. Но температура на этих глубинах, по самым скромным оценкам геофизиков, должна быть значительно выше.
Поэтому в свете современных данных геофизики и физики высоких давлений, а также данных космохимии, указывающих на ведущую роль железа как наиболее обильного металла в космосе, следует допустить, что ядро Земли в основном сложено жидким железом с примесью никеля. Однако расчеты американского геофизика Ф. Берча показали, что плотность земного ядра на 10% ниже, чем железоникелевый сплав при температурах и давлениях, господствующих в ядре. Отсюда следует, что металлическое ядро Земли должно содержать значительное количество (10—20%) какого-то легкого элемента. Из всех наиболее легких и распространенных элементов максимально вероятными |оказываются кремний (Si) и сера (S). Наличие одного или другого способно объяснить наблюдаемые физические свойства земного ядра. Поэтому вопрос о том, что является примесью земного ядра — кремний или сера, оказывается дискуссионным и связан со способом формирования нашей планеты в делом.
А. Ридгвуд в 1958 г. допустил, что земное ядро содержит кремний в качестве легкого элемента, аргументируя такое предположение тем, что элементарный кремний в количестве нескольких весовых процентов встречается в металлической фазе некоторых восстановленных хондритовых метеоритов (энстатитовых). Однако других доводов в пользу присутствия кремния в земном ядре нет.
Предположение о том, что в земном ядре имеется сера, вытекает из сравнения ее распространения в хондритовом материале метеоритов и мантии Земли. Так, сопоставление элементарных атомных соотношений некоторых летучих элементов в смеси коры и мантии и в хондритах показывает резкий недостаток серы. В материале мантии и коры концентрация серы на три порядка ниже, чем в среднем материале солнечной системы, в качестве которого принимаются хондриты.
Возможность потери серы при высоких температурах первичной Земли отпадает, поскольку другие более летучие элементы, чем сера (например, Н2 в виде Н2O), обнаружившие значительно меньший дефицит, были бы потеряны в значительно большей степени. Кроме того, при охлаждении солнечного газа сера химически связывается с железом и перестает быть летучим элементом.
В связи с этим, вполне возможно, большие количества серы поступают в земное ядро. Следует отметить, что при прочих равных условиях температура плавления системы Fe—FeS значительно ниже, чем температура плавления железа пли силиката мантии. Так, при давлении 60 кбар температура плавления системы (эвтектики) Fe—FeS составит 990° С, в то время как чистого железа — 1610°, а пиролита мантии — 1310. Поэтому при повышении температуры в недрах первично однородной Земли железный расплав, обогащенный серой, будет формироваться первым и ввиду своей низкой вязкости и высокой плотности будет легко стекать в центральные части планеты, образуя железисто-сернистое ядро. Таким образом, присутствие серы в железоникелевой среде действует в качестве флюса, снижая температуру ее плавления в целом. Гипотеза о присутствии в земном ядре значительных количеств серы является весьма привлекательной и не противоречит всем известным данным геохимии и космохимии.
Таким образом, современные представления о природе недр нашей планеты соответствуют химически дифференцированному земному шару, который оказался разделенным на две разные части: мощную твердую силикатно-окисную мантию и жидкое в основном металлическое ядро. Земная кора представляет собой наиболее легкую верхнюю твердую оболочку, состоящую из алюмосиликатов и имеющую наиболее сложное строение.
Подводя итог сказанному, можно сделать следующие выводы.
- Земля имеет слоистое зонарное строение. Она состоит на две трети из твердой силикатно-окисной оболочки — мантии и на одну треть из металлического жидкого ядра.
- Основные свойства Земли свидетельствуют о том, что ядро находится в жидком состоянии и только железо из наиболее распространенных металлов с примесью некоторых легких элементов (скорее всего, серы) способно обеспечить эти свойства.
- В верхних своих горизонтах Земля имеет асимметричное строение, охватывающее кору и верхнюю мантию. Океаническое полушарие в пределах верхней мантии менее дифференцировано, чем противоположное континентальное полушарие.
Задача любой космогонической теории происхождения Земли — объяснить эти основные особенности ее внутренней природы и состава.
Ядро Земли
Ядро́ Земли́ — центральная, наиболее глубокая часть планеты Земля, геосфера, находящаяся под мантией Земли и, предположительно, состоящая из железо-никелевого сплава с примесью других сидерофильных элементов. Глубина залегания — 2900 км. Средний радиус сферы — 3,5 тыс. км. Разделяется на твердое внутреннее ядро радиусом около 1300 км и жидкое внешнее ядро радиусом около 2200 км, между которыми иногда выделяется переходная зона. Температура в центре ядра Земли достигает 5000 С, плотность около 12,5 т/м³, давление до 361 ГПа (3,7 млн атм). Масса ядра — 1,932·10 24 кг.
Известно о ядре очень мало — вся информация получена косвенными геофизическими или геохимическими методами. Образцы вещества ядра недоступны.
Содержание
Обычное заблуждение
Иногда утверждается [кем?] , что источником магнитного поля Земли является железо ядра. Это заблуждение основано на представлении обывателей о постоянном магните. На самом деле ферромагнитные свойства железа (да и любого металла вообще) пропадают выше точки Кюри. Источником магнитного поля Земли является движущийся проводник — жидкий металл или водород.
История изучения
Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 12 мая 2011.
Вероятно, одним из первых предположение о существовании внутри Земли области повышенной плотности высказал Генри Кавендиш, который вычислил массу и среднюю плотность Земли и установил, что она значительно больше, чем плотность, характерная для пород, выходящих на земную поверхность.
Существование было доказано в 1897 году немецким сейсмологом Э. Вихертом, а глубина залегания (2900 км) определена в 1910 году американским геофизиком Б. Гутенбергом.
Основоположник геохимии В. М. Гольдшмидт в 1922 году предположил, что ядро образовалось путём гравитационной дифференциации первичной Земли в период её роста или позже.
Альтернативную гипотезу, что железное ядро возникло ещё в протопланетном облаке, развивали немецкий учёный А. Эйкен (1944), американский учёный Е. Орован и советский учёный А. П. Виноградов (1960-е—70-е годы).
В 1941 году Кун и Ритман, основываясь на гипотезе идентичности состава Солнца и Земли и на расчетах фазового перехода в водороде, предположили, что земное ядро состоит из металлического водорода. Эта гипотеза не прошла экспериментальную проверку. Эксперименты по ударному сжатию показали, что плотность металлического водорода примерно на порядок меньше, чем плотность ядра. Однако позже эта гипотеза была адаптирована для объяснения строения планет-гигантов — Юпитера, Сатурна и других. Сейчас [когда?] предполагается, что магнитное поле таких планет возникает именно в металлическом водородном ядре.
Кроме того В. Н. Лодочников и У. Рамзай предположили, что нижняя мантия и ядро имеют одинаковый химический состав — на границе ядро-мантия при 1.36 Мбар мантийные силикаты переходят в жидкую металлическую фазу (металлизованное силикатное ядро).
Состав ядра
Состав ядра непосредственно неизвестен, и может быть предположительно оценён из нескольких источников. Во-первых, видимо, наиболее близкими веществу ядра образцами являются железные метеориты, которые, представляют собой фрагменты ядер астероидов и протопланет. Однако железные метеориты не могут быть полностью эквивалентны веществу земного ядра, так как они образовались в гораздо меньших телах, а значит при других физико-химических параметрах.
С другой стороны, из данных гравиметрии известна плотность ядра, и это накладывает на его состав дополнительные ограничения. Так как плотность ядра примерно на 10 % меньше, чем плотность сплавов железо-никель, то предполагается, что ядро Земли содержит больше легких элементов, чем железные метеориты.
Наконец, состав ядра можно оценить, исходя из геохимических соображений. Если каким-либо образом рассчитать первичный состав Земли и вычислить, какая доля элементов находится в других геосферах, то тем самым можно построить оценки состава ядра. Большую помощь в таких вычислениях оказывают высокотемпературные и высокобарические эксперименты по распределению элементов между расплавленным железом и силикатными фазами.
О.Г. Сорохтин предложил гипотезу о составе внешнего ядра из так называемого "ядерного вещества", не существующего при нормальных условиях. "Ядерное вещество" представляет собой оксид одновалентного железа Fe2O. При давлении 250-300 ГПа "ядерное вещество" разлагается на железо и кислород, поэтому внутреннее ядро, давление в котором превышает упомянутое значение, состоит из железа с примесью никеля. По мнению Сорохтина, со временем оксиды железа из мантии Земли под действием силы тяжести опускаются в ядро, превращаясь в "ядерное вещество". При этом выделяется кислород, причём по мере уменьшения количества оксидов железа в мантии его выделяется всё больше. Часть этого кислорода поступает в атмосферу. До начала фанерозоя кислорода образовывалось крайне мало, затем увеличение его концентрации в атмосфере вызвало резкий всплеск развития жизни на Земле ("кембрийский взрыв"). Но именно ещё большее увеличение парциального давления кислорода в атмосфере Земли через 500-600 миллионов лет (до значения порядка 0,5 МПа) вызовет глобальное потепление и вымирание всех живых организмов, а затем и полное выкипание океана задолго до превращения Солнца в красный гигант.
Источник | Si, wt.% | Fe, wt.% | Ni, wt.% | S, wt.% | O, wt% | Mn, ppm | Cr, ppm | Co,ppm | P, ppm |
---|---|---|---|---|---|---|---|---|---|
Allegre et al., 1995 | 7.35 | 79.39 | 4.87 | 2.30 | 4.10 | 5820 | 7790 | 2530 | 3690 |
Mc Donough, 2003 | 6.0 | 85.5 | 5.20 | 1.90 | 0 | 300 | 9000 | 2500 | 2000 |
Литература
См. также
Ссылки
1) Кора (Континентальная кора · Океаническая кора): Осадочный слой • Верхняя кора • Граница Конрада • Нижняя кора • Литосфера (Литосферные плиты) • Поверхность Мохоровичича
2) Мантия: Верхняя мантия (Астеносфера) • Сейсмический раздел 660 км • Нижняя мантия • Граница Гутенберга
3) Ядро: Внешнее ядро • Внутреннее ядро
Откуда мы знаем, что находится в ядре Земли?
Люди заполнили Землю. Мы завоевывали земли, летали по воздуху, ныряли в глубины океана. Мы даже побывали на Луне. Но мы никогда не были в ядре планеты. Мы даже и близко к нему не подобрались. Центральная точка Земли находится в 6000 километрах внизу, и даже самая дальняя часть ядра находится в 3000 километрах под нашими ногами. Самая глубокая дыра, которую мы сделали на поверхности — это Кольская сверхглубокая скважина в России, да и то она уходит вглубь земли на жалкие 12,3 километра.
Все известные события на Земле происходят близко к поверхности. Лава, которая извергается из вулканов, сначала плавится на глубине нескольких сотен километров. Даже бриллианты, которым необходимо чрезвычайное тепло и давление для образования, рождаются в породах на глубине не более 500 километров.
Все, что ниже, окутано тайной. Кажется недостижимым. И все же мы знаем довольно много интересного о нашем ядре. У нас даже есть некоторое представление о том, как оно сформировалось миллиарды лет назад — и все без единого физического образца. Как же нам удалось узнать так много о ядре Земли?
Для начала нужно хорошо подумать о массе Земли, говорит Саймон Редферн из Кембриджского университета в Великобритании. Мы можем оценить массу Земли, наблюдая за эффектом гравитации планеты, который она оказывает на объекты на поверхности. Выяснилось, что масса Земли составляет 5,9 секстиллиона тонн: это 59 с двадцатью нулями.
Но на поверхности нет признаков такой массы.
«Плотность материала на поверхности Земли намного ниже, чем средняя плотность всей Земли, что говорит нам о том, что есть что-то более плотное, — говорит Редферн. — Это первое».
По существу, большая часть земной массы должна быть расположена по направлению к центру планеты. Следующим шагом будет выяснить, из каких тяжелых материалов состоит ядро. И оно состоит почти полностью из железа. 80% ядра — это железо, однако точную цифру еще придется выяснить.
Главным доказательством этого является огромное количество железа во Вселенной вокруг нас. Это один из десяти самых распространенных элементов в нашей галактике, который также часто встречается в метеоритах. При всем этом на поверхности Земли намного меньше железа, чем можно было бы ожидать. Согласно теории, когда Земли образовалась 4,5 миллиарда лет назад, много железа утекло вниз к ядру.
Там сосредоточена большая часть массы, а значит, и железо должно там быть. Железо также относительно плотный элемент при нормальных условиях, а под сильным давлением в ядре Земли оно будет еще плотнее. Железное ядро могло бы объяснить всю недостающую массу.
Но погодите. Как железо вообще там оказалось? Железо должно было каким-то образом притянуться — в буквальном смысле — к центру Земли. Но сейчас этого не происходит.
Большая часть остальной Земли состоит из горных пород — силикатов — и расплавленное железо с трудом через них проходит. Подобно тому, как вода на жирной поверхности образует капли, железо собирается в небольших резервуарах, отказываясь растекаться и разливаться.
Возможное решение было обнаружено в 2013 году Венди Мао из Стэнфордского университета и ее коллегами. Они задались вопросом, что происходит, когда железо и силикат подвергаются сильному давлению глубоко в земле.
Плотно сжимая оба вещества при помощи алмазов, ученым удалось протолкнуть расплавленное железо через силикат. «Это давление существенно изменяет свойства взаимодействия железа с силикатами, — говорит Мао. — При высоком давлении образуется «сеть плавления».
Это может говорить о том, что железо постепенно проскальзывало через породы Земли в течение миллионов лет, пока не достигло ядра.
В этот момент вы можете спросить: откуда мы, собственно, знаем размер ядра? Почему ученые считают, что оно начинается в 3000 километрах? Ответ один: сейсмология.
Когда происходит землетрясение, оно посылает ударные волны по всей планете. Сейсмологи записывают эти колебания. Будто бы мы бьем по одной стороне планеты гигантским молотом и прислушиваемся к шуму на другой стороне.
«В 1960-х годах произошло землетрясение в Чили, которое дало нам огромное количество данных, — говорит Редферн. — Все сейсмические станции по всей Земле записывали толчки этого землетрясения».
В зависимости от маршрута этих колебаний, они проходят через разные участки Земли, и это влияет на то, какой «звук» они издают на другом конце.
В начале истории сейсмологии стало очевидно, что некоторые колебания пропали без вести. Эти «S-волны» ожидали увидеть на другом конце Земли после происхождения на одном, но не увидели. Причина этому простая. S-волны реверберируют через твердый материал и не могут проходить через жидкость.
Должно быть, они столкнулись с чем-то расплавленным в центре Земли. Составив карту путей S-волн, ученые пришли к выводу, что на глубине примерно 3000 километров породы становятся жидкими. Это также говорит о том, что все ядро расплавленное. Но у сейсмологов был и другой сюрприз в этой истории.
В 1930-х годах датский сейсмолог Инге Леман обнаружила, что другой тип волн, P-волны, неожиданно прошли через ядро и были обнаружены на другом конце планеты. Сразу последовало предположение, что ядро разделено на два слоя. «Внутреннее» ядро, которое начинается в 5000 километрах внизу, были твердым. Расплавлено только «внешнее» ядро.
Идея Леман была подтверждена в 1970 году, когда более чувствительные сейсмографы показали, что P-волны действительно проходят через ядро и, в некоторых случаях, отражаются от него под некоторыми углами. Неудивительно, что в конце концов они оказываются на другой стороне планеты.
Ударные волны через Землю отправляют не только землетрясения. На самом деле, сейсмологи многим обязаны развитию ядерного оружия.
Ядерный взрыв тоже создает волны на земле, поэтому государства обращаются за помощью к сейсмологам во время испытания ядерного оружия. Во время холодной войны это было чрезвычайно важно, поэтому сейсмологи вроде Леман получили большую поддержку.
Конкурирующие страны узнавали о ядерном потенциале друг друга и параллельно с этим мы узнавали все больше и больше о ядре Земли. Сейсмология до сих пор используется для обнаружения ядерных взрывов сегодня.
Теперь мы можем нарисовать примерную картину строения Земли. Есть расплавленное внешнее ядро, которое начинается примерно на полпути к центру планеты, а внутри него расположено твердое внутреннее ядро с диаметром примерно 1220 километров.
Вопросов от этого не становится меньше, особенно на тему внутреннего ядра. К примеру, насколько оно горячее? Выяснить это оказалось не так-то просто, и ученые долгое время ломали голову, говорит Лидунка Вокадло из Университетского колледжа Лондона в Великобритании. Мы не можем засунуть туда термометр, поэтому единственный возможный вариант — это создать нужное давление в лабораторных условиях.
В 2013 году группа французских ученых произвели лучшую оценку на сегодняшний день. Они подвергли чистое железо давлению в половину того, что имеется в ядре, и отталкивались уже от этого. Температура плавления чистого железа в ядре составляет примерно 6230 градусов. Присутствие других материалов может немного снизить точку плавления, до 6000 градусов. Но это все равно горячее, чем на поверхности Солнца.
Будучи своего рода поджаренной картошкой в мундире, ядро Земли остается горячим, благодаря теплу, оставшемуся от образования планеты. Оно также извлекает тепло из трения, возникающего по мере движения плотных материалов, а также распада радиоактивных элементов. Остывает оно примерно на 100 градусов по Цельсию каждый миллиард лет.
Знать эту температуру полезно, поскольку она влияет на скорость прохождения колебаний через ядро. И это удобно, потому что в этих вибрациях есть что-то странное. P-волны проходят неожиданно медленно через внутреннее ядро — медленнее, чем если бы оно состояло из чистого железа.
«Скорости волн, которые сейсмологи измерили в землетрясениях, значительно ниже, чем показывает эксперимент или компьютерный расчет, — говорит Вокадло. — Никто пока не знает, почему так».
Очевидно, к железу примешивается другой материал. Возможно, никель. Но ученые посчитали, как сейсмические волны должны проходить через железо-никелевый сплав, и не смогли подогнать расчеты под наблюдения.
Вокадло и ее коллеги в настоящее время рассматривают возможность присутствия в ядре других элементов, например, серы и кремния. Пока никто не смог придумать теорию состава внутреннего ядра, которая удовлетворила бы всех. Проблема Золушки: туфелька никому не подходит. Вокадло пытается экспериментировать с материалами внутреннего ядра на компьютере. Она надеется найти комбинацию материалов, температур и давления, которые будут замедлять сейсмические волны на правильную величину.
Она говорит, что секрет может скрываться в том факте, что внутреннее ядро находится почти в точке плавления. В результате этого точные свойства материала могут отличаться от тех, что принадлежали бы совершенно твердому веществу. Также это могло бы объяснить, почему сейсмические волны проходят медленнее, чем ожидалось.
«Если этот эффект реален, мы могли бы примирить результаты минеральной физики с результатами сейсмологии, — говорит Вокадло. — Люди пока не могут этого сделать».
Существует еще много загадок, связаных с ядром Земли, которые еще предстоит решить. Но не имея возможности погрузиться на эти невообразимые глубины, ученые совершают подвиг, выясняя, что находится в тысячах километров под нами. Скрытые процессы недр Земли чрезвычайно важно изучать. У Земли есть мощное магнитное поле, которое генерируется благодаря частично расплавленному ядру. Постоянное движение расплавленного ядра порождает электрический ток внутри планеты, и он, в свою очередь, генерирует магнитное поле, которое уходит далеко в космос.
Это магнитное поле защищает нас от вредного солнечного излучения. Не будь ядро Земли таким, каким оно является, не было бы магнитного поля, а мы бы серьезно от этого страдали. Вряд ли кто-нибудь из нас сможет увидеть ядро своими глазами, но хорошо просто знать, что оно там есть.
Ядро Земли: строение, состав и температура внутри
В наше время констатирование факта, что есть ядро Земли, никого не удивит. А вот подкрепить это констатирование каким-нибудь доказательством значительно сложнее.
Для того, чтобы доказать наличие металлического и притом жидкого ядра, следует обратиться к оправдавшей себя дисциплине, какой является сейсмология.
Ядро Земли центральная геосфера находящаяся под мантией радиусом порядка 3500 км и состоящая, вероятно, из расплавленного железа и никеля температурой порядка 6000 градусов.
Попробуем собрать те немногие аргументы, которые говорят в пользу существования, состояния и состава земного ядра.
Доказательства по составу
Основные физические данные — масса, форма Земли, средняя плотность, момент количества движения — показывают, что по направлению вглубь планеты увеличивается количество материала, масса которого весьма отличается от массы верхних слоев горных пород. Это должна быть материя, которая значительно тяжелее, чем та, которая встречается на поверхности. Даже породы, из которых состоит верхняя мантия, не обладают такой высокой плотностью, какая соответствовала бы физическим свойствам требуемым средней плотностью всего земного шара. Конечно, состав и строение Солнца как звезды очевидно совсем другое.
Поэтому предположение о наличии тяжелого центра нашей планеты является, с физической точки зрения, в сущности, единственным решением. Возможно есть вырожденное вещество со свободными электронами. И с космохимической точки зрения, при сравнении количества элементов в метеоритах и состава звезд следует, что Земля должна иметь внутри гораздо больше тяжелых элементов, чем находится на ее поверхности: например, больше железа, чем встречается в верхних горных породах и в породах верхней мантии. Но где-то на планете оно должно быть.
Таким образом железо является самым подходящим кандидатом: оно обладает высокой плотностью, и в Космосе и на Земле его достаточно много.
Доказательство о наличии ядра Земли исходит от сейсмологии, из изучения распространения сейсмических волн при прохождении через планету.
Доказательство было получено в начале 20 века. Граница между мантией и внешним ядром лежит на глубине 2900 км. Ее называют разделом Вайхерта-Гуттенберга. Она значительно выразительнее, чем граница между земной корой и мантией (раздел Мохоровичича). Здесь происходит сильное изгибание и отклонение сейсмических волн. А волны одного типа, так называемые S-волны, через эту границу даже не проникают.
Именно это и является доказательством, что внешняя часть ядра Земли находится в жидком состоянии, поскольку S- волны в жидкости не распространяются.
Состав центра планеты
Лабораторные опыты, во время которых в течение более длительного времени проверялись физические условия, существующие на границе мантии и внешнего ядра, то есть на глубине 2900 км, удалось провести пока лишь в отдельных случаях и на короткий период, поэтому геологи надеются на изучение явлений, имеющих место при крупных взрывах.
Итак, внешнее ядро является жидким, тогда как внутренняя часть — субядро, называемое ядрышком, вероятно, твердое.
Но само железо не имеет соответствующих свойств, поэтому предполагается, что в земном ядре присутствует еще один металл — никель, а некоторые ученые полагают, что там есть еще довольно значительное количество (около 10-20%) металлического кремния. При этом проводится сравнение с металлическими метеоритами, которые, помимо железа, содержат значительное количество никеля.
А поскольку весьма возможно, что железные метеориты являются остатками какой-то небольшой, распавшейся или разбитой в результате столкновения планетки (результат столкновения в Космосе), ученые считают, что центр Земли обладает железно-никелевым составом. Однако ответ на эти вопросы ученые смогут получить только в будущем, сначала экспериментальным путем в лаборатории. Может быть, удастся сконструировать и такую аппаратуру, которая проникнет в фантастические глубины мантии или даже в само ядро.
В нынешнее время бурение к центру планеты невозможно технически. Самое глубокое бурение было на глубину в 12 262 метра на Кольском полуострове в СССР и закончилось в далеком уже 1991 году.
В настоящее время нет информации про бурение к центру Земли в каких-либо странах.
Читайте также: