Металлы в твердом состоянии обладают рядом характерных свойств тест ответы

Обновлено: 06.01.2025

Металлы в твердом и отчасти в жидком состоянии обладают рядом характерных свойств:
– высокими теплопроводность и электрической проводимостью;
– положительным температурным коэффициентом электрического сопротивления; с повышением температуры электрическое сопротивление чистых металлов возрастает; большое число металлов обладают сверхпроводимостью (у этих металлов при температуре, близкой к абсолютному нулю, электрическое сопротивление падает скачкообразно, практически до нуля);
– термоэлектронной эмиссией, т. е. способностью испускать электроны при нагреве;
– хорошей отражательной способностью: металлы непрозрачны и обладают металлическим блеском;
– повышенной способностью к пластической деформации.
Данные свойства обусловлены особенностями строения металлов. Согласно теории металлического состояния, металл представляет собой вещество, состоящее из положительных ядер, вокруг которых по орбиталям вращаются электроны. На последнем уровне число электронов невелико и они слабо связаны с ядром. Эти электроны имеют возможность перемещаться по всему объему металла, т.е. принадлежать целой совокупности атомов.
Таким образом, пластичность, теплопроводность и электропроводность обеспечиваются наличием «электронного газа».

Какая температура разделяет районы холодной и горячей пластической деформации и почему? Рассмотрите на примере меди.
В зависимости от отношения температуры деформации к температуре рекристаллизации различают холодную и горячую деформацию.
Холодной деформацией называют такую, которую проводят при температуре ниже температуры рекристаллизации. Поэтому холодная деформация сопровождается упрочнением (наклепом) металла.
Деформацию называют горячей, если ее проводят при температуре выше температуры рекристаллизации для получения для получения полностью рекристаллизованной структуры.
При этих температурах деформация также вызывает упрочнение («горячий наклеп»), которое полностью или частично снимается рекристаллизацией, протекающей при температурах обработки и при последующем охлаждении.
При горячей обработке давлением (прокатке, прессовании, ковке, штамповке и т. д.) упрочнение в результате наклепа (повышение плотности дислокаций) непосредственно в процессе деформации непрерывно чередуется с процессом разупрочнения (уменьшением плотности дислокаций) при динамической полигонизации и рекристаллизации во время деформации и охлаждения. В этом основное отличие динамической полигонизации и рекристаллизации от статической.
Горячую деформацию в зависимости от состава сплава и скорости деформации обычно проводят при температурах (0,7 – 0,75 Тпл).
Полигонизация – процесс деления зерен на части: фрагменты, полигоны в результате скольжения и переползания дислокаций. Рекристаллизация – процесс зарождения и роста новых недеформированных зерен при нагреве наклепанного металла до определенной температуры.
А.А. Бочвар показал, что между температурным порогом рекристаллизации и температурой плавления металлов имеется простое соотношение: рекристаллизация начинается при температуре, составляющей одинаковую для всех металлов долю от температуры плавления по абсолютной шкале, а именно Тп.р. = (0,3¸0,4)Тпл.
Для меди температурный порог рекристаллизации равен
Тп.р. = (1083+273)0,4–273 = 268 °С.
Выше этой температуры деформация называется горячей, ниже – холодной.

Вычертите диаграмму состояния железо-карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения (с применением правила фаз) для сплава, содержащего 4,3% С. Какова структура этого сплава при комнатной температуре и как такой сплав называется?


Первичная кристаллизация сплавов системы железо-углерод начинается по достижении температур, соответствующих линии ABCD (линии ликвидус), и заканчивается при температурах, образующих линию AHJECF (линию солидус).
При кристаллизации сплавов по линии АВ из жидко­го раствора выделяются кристаллы твердого раствора углерода в α-железе (δ-раствор). Процесс кристаллиза­ции сплавов с содержанием углерода до 0,1 % заканчи­вается по линии АН с образованием α (δ)-твердого раст­вора. На линии HJB протекает перитектическое превращение, в результате которого образуется твердый раствор углерода в γ-железе, т. е. аустенит. Процесс первичной кристаллизации сталей заканчивается по линии AHJE.
При температурах, соответствующих линии ВС, из жидкого раствора кристаллизуется аустенит. В сплавах, содержащих от 4,3 % до 6,67 % углерода, при темпера­турах, соответствующих линии CD, начинают выделяться кристаллы цементита первичного. Цементит, кристал­лизующийся из жидкой фазы, называется первичным. B точке С при температуре 1147°С и концентрации углерода в жидком растворе 4,3% образуется эвтектика, которая называется ледебуритом. Эвтектическое превращение с образованием ледебурита можно записать формулой ЖР4,3→Л[А2,14+Ц6,67]. Процесс первичной кристаллизации чугунов заканчивается по линии ECF образованием ледебурита.
Таким образом, структура чугунов ниже 1147°С будет: доэвтектических – аустенит + ледебурит, эвтектических – ледебурит и заэвтектических – цементит (первичный) + ледебурит.
Превращения, происходящие в твердом состоянии, называются вторичной кристаллизацией. Они связаны с переходом при охлаждении γ-железа в α-железо и распадом аустенита.
Линия GS соответствует температурам начала превращения аустенита в феррит. Ниже линии GS сплавы состоят из феррита и аустенита.
Линия ЕS показывает температуры начала выделения цементита из аустенита вследствие уменьшения растворимости углерода в аустените с понижением температуры. Цементит, выделяющийся из аустенита, называется вторичным цементитом.
В точке S при температуре 727°С и концентрации углерода в аустените 0,8 % образуется эвтектоидная смесь состоящая из феррита и цементита, которая называется перлитом. Перлит получается в результате одновременного выпадения из аустенита частиц феррита и цементита. Процесс превращения аустенита в перлит можно записать формулой А0,8П[Ф0,03+Ц6,67].
Линия PQ показывает на уменьшение растворимости углерода в феррите при охлаждении и выделении цементита, который называется третичным цементитом.
Следовательно, сплавы, содержащие менее 0,008% углерода (точкаQ), являются однофазными и имеют структуру чистого феррита, а сплавы, содержащие углерод от 0,008 до 0,03% – структуру феррит + цементит третичный и называются техническим железом.
Доэвтектоидные стали при температуре ниже 727ºС имеют структуру феррит + перлит и заэвтектоидные – перлит + цементит вторичный в виде сетки по границам зерен.
В доэвтектических чугунах в интервале температур 1147–727ºС при охлаждении из аустенита выделяется цементит вторичный, вследствие уменьшения растворимости углерода (линия ES). По достижении температуры 727ºС (линия PSK) аустенит, обедненный углеродом до 0,8% (точка S), превращаясь в перлит. Таким образом, после окончательного охлаждения структура доэвтектических чугунов состоит из перлита, цементита вторичного и ледебурита превращенного (перлит + цементит).
Структура эвтектических чугунов при температурах ниже 727ºС состоит из ледебурита превращенного. Заэвтектический чугун при температурах ниже 727ºС состоит из ледебурита превращенного и цементита первичного.
Правило фаз устанавливает зависимость между числом степеней свободы, числом компонентов и числом фаз и выражается уравнением:
C = K + 1 – Ф,
где С – число степеней свободы системы;
К – число компонентов, образующих систему;
1 – число внешних факторов (внешним фактором считаем только температуру, так как давление за исключением очень высокого мало влияет на фазовое равновесие сплавов в твердом и жидком состояниях);
Ф – число фаз, находящихся в равновесии.
Сплав железа с углеродом, содержащий 4,3% С, называется эвтетическим чугуном. Его структура при комнатной температуре Ледебурит (П+Fe3C).

а) б)
Рисунок 1: а-диаграмма железо-цементит, б-кривая охлаждения для сплава, содержащего 4,3% углерода

С помощью диаграммы состояния железо-цементит определите температуру нормализации, отжига и закалки для стали У10. Охарактеризуйте эти виды термической обработки и опишите структуру и свойства стали после каждого режима термообработки.


Отжигом называется нагрев стали выше температур фазовых превращений с последующим медленным охлаждением (обычно вместе с печью). При медленном охлаждении стали приближаются к фазовому и структурному равновесию. Структуры, полученные после отжига, указаны на диаграмме железо-цементит. После отжига сталь имеет низкую твердость и прочность. Основные цели отжига: перекристаллизация стали (измельчение зерна), снятие внутренних напряжений, снижение твердости и улучшение обрабатываемости. При комнатной температуре сталь У10 имеет структуру цементита и перлита. До температуры Аc1 сохраняется исходная структура. При температуре Аc1 происходит превращение перлита в аустенит с содержанием углерода 0,8%. При нагреве выше точки Ас1 происходит растворение цементита в аустените (в соответствии с линией SE). Увеличение температуры выше точки Асm вызывает рост зерна аустенита.
При нагреве заэвтектоидной стали выше Аcm (линия ES) и медленном охлаждении после такого нагрева образуется грубая сетка вторичного цементита, ухудшающая механические свойства. Для устранения грубой сетки вторичного цементита заэвтектоидные стали подвергают нормализации. Критические точки для стали У10: Аc1 = 730°С; Аcm = 800°С. Нормализация заэвтектоидной стали заключается в нагреве стали до температуры выше точки Асm на 40-50°С, в непродолжительной выдержке для прогрева садки и завершения фазовых превращений и охлаждении на воздухе. При температуре нагрева заэвтектоидной стали выше Аcm на 40-50°С имеем структуру аустенита (100%). При снижении температуры до Аrm начинают появляться первые зерна цементита. При дальнейшем снижении температуры до Аr1 из аустенита будут образовываться только зерна цементита, а содержание углерода в остающемся аустените будет уменьшаться и при температуре Аr1 достигнет 0,8%. Ускоренное охлаждение на воздухе способствует тому, что цементит не успевает образовать грубую сетку, понижающую свойства стали. При снижении температуры ниже Аr1 из аустенита будет образовываться перлит. Заэвтектоидная сталь после нормализации имеет структуру перлита и цементита.
Для закалки заэвтектоидные стали нагревают на 50-70°С выше точки Ас1. Таким образом, температура нагрева под закалку составляет 780-800°С. При этих температурах в стали наряду с аустенитом имеется цементит. Поэтому после закалки в структуре заэвтектоидных сталей будет мартенсит с цементитом и небольшое количество остаточного аустенита. Охлаждающая среда при закалке – индустриальное масло. Твердость поверхности после закалки 62-64 HRC. Для снятия напряжений и стабилизации структуры после закалки изделия подвергают низкому отпуску. В результате закалки из аустенита образуется неустойчивая, метастабильная структура мартенсит и цементит. Мартенсит представляет собой пересыщенный твердый раствор углерода в α-железе.

Углеродистые стали 45 и У8 после закалки и отпуска имеют структуру мартенсит отпуска и твердость: первая – 50 HRC, вторая – 60 HRC. Используя диаграмму состояния железо – карбид железа и учитывая превращения, происходящие в этих сталях в процессе закалки и отпуска, объясните, почему сталь У8 имеет большую твердость, чем сталь 45.

Тема: "Свойства и способы испытаний металлов". Занятие 1.

Из всех известных в настоящее время элементов более половины являются металлами.

В твердом состоянии металлы обладают рядом характерных свойств:

- высокой тепло- и электропроводностью;

- положительным температурным коэффициентом электросопротивления; с повышением температуры электросопротивление чистых металлов возрастает; большое число металлов (~30) обладает сверхпроводимостью (у этих металлов при температуре, близкой к абсолютному нулю, электросопротивление падает скачкообразно, практически до нуля); эффект Мейснера , заключающемся в полном вытеснении магнитного поля из объёма сверхпроводника

- термоэлектронной эмиссией, т. е. способностью испускать электроны при нагреве;

- хорошей отражательной способностью, т. е. обладают специфическим металлическим блеском;

- повышенной способностью к пластической деформации.

Наличие этих свойств и характеризует так называемое металлическое состояние вещества.

Неметаллические вещества (металлоиды) не обладают металлическим блеском, характеризуются низкой тепло- и электропроводимостью и отрицательным коэффициентом электросопротивления, т. е. с повышением температуры электросопротивление уменьшается.

Свойства металлов можно подразделить на физические, химические, технологические, механические, эксплуатационные (служебные).

Под физическими свойствами подразумевают удельный вес, плотность, температуру плавления, тепло- и электропроводность, магнитные свойства, тепловое расширение.

Удельный вес — физическая величина, которая определяется как отношение веса вещества P к занимаемому им объёму V .

В отдельных случаях удельным весом называют безразмерное число, которое показывает, во сколько раз вещество тяжелее воды такого же объема при 4°C. (относительная плотность) .

Плотностью называется отношение массы однородного материала к единице его объема. Это свойство важно при использовании материалов в авиационной и ракетной технике, где создаваемые конструкции должны быть легкими и прочными.

Температура плавления — это такая температура, при которой металл переходит из твердого состояния в жидкое. Чем ниже температура плавления металла, тем легче протекают процессы его плавления, сварки и тем они дешевле.

Электропроводностью называется способность материала, хорошо и без потерь на выделение тепла, проводить электрический ток. Хорошей электропроводностью обладают металлы и их сплавы, особенно медь и алюминий. Большинство неметаллических материалов не способны проводить электрический ток, что также является важным свойством, используемом в электроизоляционных материалах.

Теплопроводность — это способность материала переносить теплоту от более нагретых частей тел к менее нагретым. Хорошей теплопроводностью характеризуются металлические материалы.

Магнитными свойствами т. е. способностью хорошо намагничиваться обладают только железо, никель, кобальт и их сплавы.

Коэффициенты линейного и объемного расширения характеризуют способность материала расширяться при нагревании. Это свойство важно учитывать при строительстве мостов, прокладке железнодорожных и трамвайных путей и т. д.

Химические свойства характеризуют склонность материалов к взаимодействию с различными веществами и связаны со способностью материалов противостоять вредному действию этих веществ. Способность металлов и сплавов сопротивляться действию различных агрессивных сред называется коррозионной стойкостью, а аналогичная способность неметаллических материалов — химической стойкостью.

К механическим свойствам металлов относятся: упругость, жесткость, пластичность, твердость, ударная вязкость, прочность и усталостная прочность.

Под упругостью подразумевают способность материалов внутренними силами восстанавливать первоначальную форму после снятия нагрузки, вызвавшей деформацию. Соответственно деформация называется упругой.

Жесткость — способность материала сопротивляться упругой деформации.

Пластичность — способность материала к остаточной (пластической) деформации, т. е. способность материала без разрушения получать большие остаточные деформации . К пластичным материалам относятся свинец, индий, алюминий, медь.

Прочность — способность материала сопротивляться возникновению и развитию пластической деформации.

Твердость — способность материала сопротивляться внедрению в него другого, более твердого тела; твердость представляет производную от жесткости и прочности материала.

Вязкость — способность материала противостоять разрушению при ударе.

Выносливость , или сопротивление усталости, — способность материала выдерживать длительное действие знакопеременных нагрузок. Усталостью металлов и сплавов называется явление разрушения в результате многократного повторно-переменного нагружения.

Под технологическими свойствами подразумевают способность металла обрабатываться с помощью различных технологических приемов (литья, штамповки, ковки, обработки резанием, сварки, термической обработки).

Литейные свойства характеризуются способностью металлов и сплавов в расплавленном состоянии хорошо заполнять полость литейной формы и точно воспроизводить ее очертания.

Ковкость — это способность металлов и сплавов подвергаться различным видам обработки давлением без разрушения.

Свариваемость определяется способностью материалов образовывать прочные сварные соединения.

Обрабатываемость резанием определяется способностью материалов поддаваться обработке режущим инструментом.

К эксплуатационным (служебным) свойствам относятся жаростойкость, жаропрочность, износостойкость, радиационная стойкость, коррозионная и химическая стойкость и др.

Жаростойкость характеризует способность металлического материала сопротивляться окислению в газовой среде при высокой температуре.

Жаропрочность характеризует способность материала сохранять механические свойства при высокой температуре.

Износостойкость — это способность материала сопротивляться разрушению его поверхностных слоев при трении.

Радиационная стойкость характеризует способность материала сопротивляться действию ядерного облучения.

2. Основные методы определения механических свойств металлов

Механические испытания могут быть статические и динамические. К статическим испытаниям относятся испытания на растяжение, изгиб, кручение, определение твердости. Статические испытания проводят под действием статической нагрузки, т. е. прилагаемая к образцу нагрузка возрастает медленно и плавно.

К динамическим испытаниям относятся испытания на ударную вязкость и усталость.

Тесты по материаловедению с ответами


А) нитрид бора, алмаз, кремень, электрокорунд, наждак.

Б) алмаз, электрокорунд, кремень, нитрид бора, наждак.

В) алмаз, нитрид бора, электрокорунд, наждак, кремень.

Г) алмаз, нитрид бора, электрокорунд, кремень, наждак.

12. По крупности абразивные материалы подразделяются на …

А) 4 группы и 28 номеров.

Б) 6 групп и 24 номера.

В) 2 группы и 10 номеров.

Г) 4 группы и 24 номера.

13. Абразивный инструмент принято маркировать

обозначениями, характеризующими:

А) абразивный материал, связку, твёрдость, прочность.

Б) зернистость, твёрдость, прочность, связку.

В) твёрдость, зернистость, прочность, ударную вязкость.

Г) абразивный материал, связку, зернистость, твёрдость.

14. На маркировке шлифовального круга

ПП450х50х127ЗАЗЭ50С1Б цифра 450 обозначает …

А) диаметр отверстия круга.

Б) зернистость круга.

Г) наружный диаметр круга.

15. Процесс термообработки, заключающийся в нагреве стали

до определённой температуры, выдержке и последующим

медленном охлаждении вместе с печью, называется …

16. Процесс термообработки, заключающийся в нагреве стали

до температур, превышающих фазовые превращения,

выдержке и последующим быстрым охлаждением называется …

17. Процесс термообработки, применяемый после закалки, и

заключающийся в нагреве стали, выдержке и

последующим охлаждением, называется …

18. Процесс насыщения поверхностного слоя одновременно

азотом и углеродом в расплавленных цианистых солях

называется …

19. Получение стали с высокой твёрдостью, прочностью,

износоустойчивостью достигается …

20. Неметаллический композиционный материал на основе

полимеров (смол) называется …

Сталью называется сплав железа с углеродом, в котором углерода содержится …

А) от 2,14% до 6,67%.

В каких печах сталь не производят?

В) кислородных конверторах.

Сталь, содержащая в своём составе углерод, марганец,

кремний, серу и фосфор называется …

Г) с особыми свойствами.

У углеродистой конструкционной стали обыкновенного

качества, поставляемой по химическому составу, впереди

маркировки ставится буква …

Г) буква не пишется.

У углеродистой конструкционной стали обыкновенного

качества, поставляемой по механическим свойствам, впереди

6. Углеродистые стали, содержащие до 0,25% углерода

называются …

Г) с повышенным содержанием углерода.

7. В углеродистых инструментальных сталях впереди маркировки

ставится буква …

8. Сталь, в состав которой вводят специальные элементы для

придания ей требуемых свойств, называется …

9. Сталь, в которой легирующих элементов содержится свыше

10%, называется …

10. У быстрорежущих сталей впереди маркировки ставится

У высококачественных сталей в конце маркировки

Коррозионностойкие (хромистые) стали содержат хрома

К сталям и сплавам с особыми физическими и химическими свойствами относится …

В маркировке легированных сталей буквой Г

обозначают …

15. В маркировке легированных сталей буквой Ф

16. Какой металл не является цветным?

17. Какой из перечисленных цветных металлов является

самым легкоплавким?

18. Какой из перечисленных цветных металлов имеет

наименьшую плотность?

19. Какой из перечисленных цветных металлов имеет

наилучшую электропроводность?

20. Сплав меди с цинком называется …

Процесс термообработки, заключающийся в нагреве

стали до определённой температуры, выдержке и

последующим медленном охлаждении вместе с печью,

называется …

Процесс термообработки, заключающийся в нагреве стали до

температур, превышающих фазовые превращения, выдержке

и последующим быстрым охлаждением называется …

стали до температуры 800-1150 0 , выдержке и

последующим охлаждением на воздухе, называется …

Процесс термообработки, применяемый после закалки,

и заключающийся в нагреве стали, выдержке и

5. Недостатком закалки в одной среде является …

А) неравномерное охлаждение и термическое напряжение.

Б) определение точного времени охлаждения.

В) большая продолжительность процесса.

Г) большие затраты на процесс.

6. Процесс насыщения углеродом поверхностного слоя стали при

нагреве в соответствующей среде называется …

7. Процесс насыщения поверхностного слоя одновременно азотом

и углеродом в расплавленных цианистых солях называется …

8. Процесс насыщения поверхностного слоя одновременно

азотом и углеродом в газовой среде называется …

9. Ковкий чугун получают после отжига …

А) белого чугуна.

Б) серого чугуна.

В) высокопрочного чугуна.

Г) специального чугуна.

Улучшение микроструктуры стали, её механических свойств и подготовка изделий к последующей термообработки достигается …

Устранение внутренних напряжений, уменьшение

хрупкости, понижение твёрдости, увеличение вязкости и

улучшение обрабатываемости достигается …

12. Получение стали с высокой твёрдостью, прочностью,

13. Уменьшение внутренних напряжений в деталях после

механической обработки, изменение структуры в целях

облегчения условий обработки, выравнивание

химического состава стали в слитках достигается …

14. Свойства металлов и сплавов, характеризующие способность подвергаться обработке в холодном и горячем состояниях, называются …

15.Свойства металлов и сплавов, характеризующие способность

сопротивляться воздействию внешних сил, называются …

16. Свойства металлов и сплавов, характеризующие способность

сопротивляться окислению, называются …

17. К физическим свойствам металлов и сплавов относится:

Г) ударная вязкость.

18. К механическим свойствам металлов и сплавов относится:

В) температура плавления.

19. К технологическим свойствам металлов и сплавов

Б) ударная вязкость.

20. К химическим свойствам металлов и сплавов относится:

Б) коррозионная стойкость.

Г) температура плавления.

1. Свойства металлов и сплавов, характеризующие

способность подвергаться обработке в холодном и горячем

состояниях, называются …

2. К механическим свойствам металлов и сплавов относится:

3. Масса вещества, заключённая в единице объёма называется …

В) тепловым расширением.

4. Способность металла принимать новую форму и размеры

под действием внешних сил, не разрушаясь, называется …

Б) ударной вязкостью.

5. К физическим свойствам металлов и сплавов относится:

6. Чугуном называется сплав железа с углеродом, где углерода

содержится …

Б) от 2,14% до 6,67%.

7. Чугун выплавляют в….

А) доменных печах.

Б) мартеновских печах.

8. Вредными примесями при производстве стали и чугуна

А) сера и фосфор.

Б) кремний и марганец.

В) углерод и кислород.

Г) все примеси вредные.

9. Сухой перегонкой угля при t=1000 0 С без доступа кислорода

Контрольная работа 1 Вариант 9

Охарактеризуйте особенности металлического типа связи и основные свойства металлов.
Свойства обусловлены особенностями строения металлов. Согласно теории металлического состояния, металл представляет собой вещество, состоящее из положительных ядер, вокруг которых по орбиталям вращаются электроны. На последнем уровне число электронов невелико и они слабо связаны с ядром. Эти электроны имеют возможность перемещаться по всему объему металла, т.е. принадлежать целой совокупности атомов.
Металлы в твердом и отчасти в жидком состоянии обладают рядом характерных свойств:
– высокими теплопроводностью и электрической проводимостью;
– положительным температурным коэффициентом электрического сопротивления; с повышением температуры электрическое сопротивление чистых металлов возрастает; большое число металлов обладают сверхпроводимостью (у этих металлов при температуре, близкой к абсолютному нулю, электрическое сопротивление падает скачкообразно, практически до нуля);
– термоэлектронной эмиссией, т. е. способностью испускать электроны при нагреве;
– хорошей отражательной способностью: металлы непрозрачны и обладают металлическим блеском;
– повышенной способностью к пластической деформации.
Таким образом, пластичность, теплопроводность и электропроводность обеспечиваются наличием «электронного газа».

Какими стандартными характеристиками механических свойств оценивается прочность металлов и сплавов? Как эти характеристики определяются?
Прочность – свойство материалов в определенных условиях и пределах, не разрушаясь, воспринимать те или иные воздействия.
Диаграмма растяжения образца из низкоуглеродистой стали

Рисунок 1 – Диаграмма растяжения образца из низкоуглеродистой стали
Механические свойства стали (в т. ч. и прочность) обычно определяют по условной диаграмме растяжения. ГОСТ 1497-84 регламентирует следующие прочностные свойства:
– временное сопротивление разрыву (или предел прочности при растяжении) σВ – условное напряжение, соответствующее наибольшей нагрузке PD, предшествующей разрушению образца: σB = PD/F0 кгс/мм2;
– предел текучести σТ (физический) – наи­меньшее условное напряжение, при котором образец деформируется без заметного уве­личения растягивающей нагрузки: σT=PC/F0 кгс/мм2; его определяют для низкоуглеро­дистой отожженной стали;
– предел текучести σ0,2 (условный) – на­пряжение, при котором остаточная дефор­мация составляет 0,2% первоначальной рас­четной длины; его определяют для большин­ства марок конструкционной среднеуглеродистой и легированной стали, у которых на диаграмме растяжения отсутствует «площад­ка текучести». Для определения условного предела текучести от начала координат диаграммы растяжения по оси абсцисс от­кладывают в соответствующем масштабе отрезок, составляющий 0,2% первоначаль­ной длины; через полученную точку прово­дят прямую, параллельную начальному ли­нейному участку (ОА) диаграммы (до пе­ресечения с диаграммой). Ордината точки пересечения и соответствует условному пре­делу текучести σ0,2. Предел текучести σ0,2 можно определить по формуле σ0,2 = P0,2/F0 кгс/мм2;
– предел пропорциональности σп.ц. (услов­ный) – напряжение, при котором отклоне­ние от линейной зависимости между нагру­зкой и деформацией достигает такой вели­чины, что тангенс угла наклона диаграммы растяжения к оси нагрузок увеличивается на 50% по отношению к тангенсу угла меж­ду начальным линейным участком диаграм­мы и осью нагрузок. Допуск на увеличение тангенса этого угла может быть равным 10 или 25% (при наличии особых указаний в технических условиях). Величину допуска указывают в обозначении (например, σп.ц. 10; σп.ц. 25);
– предел упругости (условный) σ0,05 – напряжение, при котором остаточное удли­нение достигает 0,05% первоначальной дли­ны образца. Величину условного предела упругости определяют по той же методике, что и величину условного предела текучести;
– истинное сопротивление разрыву Sк – напряжение, определяемое отношением нагрузки Рк в момент разрыва к фактической площади поперечного сечения образца в месте разрыва Fк: Sк = Рк/Fк кгс/мм2.


Вычертите диаграмму состояния железо-карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения (с применением правила фаз) для сплава, содержащего 4,8% С. Какова структура этого сплава при комнатной температуре и как такой сплав называется?
Первичная кристаллизация сплавов системы железо-углерод начинается по достижении температур, соответствующих линии ABCD (линии ликвидус), и заканчивается при температурах, образующих линию AHJECF (линию солидус).
При кристаллизации сплавов по линии АВ из жидко­го раствора выделяются кристаллы твердого раствора углерода в α-железе (δ-раствор). Процесс кристаллиза­ции сплавов с содержанием углерода до 0,1 % заканчи­вается по линии АН с образованием α (δ)-твердого раст­вора. На линии HJB протекает перитектическое превращение, в результате которого образуется твердый раствор углерода в γ-железе, т. е. аустенит. Процесс первичной кристаллизации сталей заканчивается по линии AHJE.
При температурах, соответствующих линии ВС, из жидкого раствора кристаллизуется аустенит. В сплавах, содержащих от 4,3 % до 6,67 % углерода, при темпера­турах, соответствующих линии CD, начинают выделяться кристаллы цементита первичного. Цементит, кристал­лизующийся из жидкой фазы, называется первичным. B точке С при температуре 1147°С и концентрации углерода в жидком растворе 4,3 % образуется эвтектика, которая называется ледебуритом. Эвтектическое превращение с образованием ледебурита можно записать формулой ЖР4,3Л[А2,14+Ц6,67]. Процесс первичной кристаллизации чугунов заканчивается по линии ECF образованием ледебурита.
Таким образом, структура чугунов ниже 1147°С будет: доэвтектических — аустенит + ледебурит, эвтектических — ледебурит и заэвтектических — цементит (первичный) + ледебурит.
Превращения, происходящие в твердом состоянии, называются вторичной кристаллизацией. Они связаны с переходом при охлаждении γ-железа в α-железо и распадом аустенита.
Линия GS соответствует температурам начала превращения аустенита в феррит. Ниже линии GS сплавы состоят из феррита и аустенита.
Линия ЕS показывает температуры начала выделения цементита из аустенита вследствие уменьшения растворимости углерода в аустените с понижением температуры. Цементит, выделяющийся из аустенита, называется вторичным цементитом.
В точке S при температуре 727°С и концентрации углерода в аустените 0,8 % образуется эвтектоидная смесь состоящая из феррита и цементита, которая называется перлитом. Перлит получается в результате одновременного выпадения из аустенита частиц феррита и цементита. Процесс превращения аустенита в перлит можно записать формулой А0,8П[Ф0,03+Ц6,67].
Линия PQ показывает на уменьшение растворимости углерода в феррите при охлаждении и выделении цементита, который называется третичным цементитом.
Следовательно, сплавы, содержащие менее 0,008% углерода (точкаQ), являются однофазными и имеют структуру чистого феррита, а сплавы, содержащие углерод от 0,008 до 0,03% – структуру феррит + цементит третичный и называются техническим железом.
Доэвтектоидные стали при температуре ниже 727ºС имеют структуру феррит + перлит и заэвтектоидные – перлит + цементит вторичный в виде сетки по границам зерен.
В доэвтектических чугунах в интервале температур 1147–727ºС при охлаждении из аустенита выделяется цементит вторичный, вследствие уменьшения растворимости углерода(линия ES). По достижении температуры 727ºС (линия PSK) аустенит, обедненный углеродом до 0,8% (точка S), превращаясь в перлит. Таким образом, после окончательного охлаждения структура доэвтектических чугунов состоит из перлита, цементита вторичного и ледебурита превращенного (перлит+цементит).
Структура эвтектических чугунов при температурах ниже 727ºС состоит из ледебурита превращенного. Заэвтектический чугун при температурах ниже 727ºС состоит из ледебурита превращенного и цементита первичного.

Рисунок 2: а — диаграмма железо-цементит, б — кривая охлаждения для сплава, содержащего 4,8% углерода
Правило фаз устанавливает зависимость между числом степеней свободы, числом компонентов и числом фаз и выражается уравнением:
C = K + 1 – Ф,
где С – число степеней свободы системы;
К – число компонентов, образующих систему;
1 – число внешних факторов (внешним фактором считаем только температуру, так как давление за исключением очень высокого мало влияет на фазовое равновесие сплавов в твердом и жидком состояниях);
Ф – число фаз, находящихся в равновесии.
Сплав железа с углеродом, содержащий 4,8 %С, называется заэвтектическим чугуном. Его структура при комнатной температуре Цементит (первичный) + Ледебурит(П+Fe3C).

С помощью диаграммы состояния железо-карбид железа установите температуру полного и неполного отжига и нормализации стали 20. Охарактеризуйте эти режимы термической обработки и опишите структуру и свойства стали.

Полный отжиг.
При полном отжиге доэвтектоидная сталь нагревается выше АС3 на 30-50°С, выдерживается при этой температуре до полного прогрева и медленно охлаждается. В этом случае ферритно-перлитная структура переходит при нагреве в аустенитную, а затем при медленном охлаждении превращается обратно в феррит и перлит. Происходит полная перекристаллизация.
Основные цели полного отжига: устранение пороков структуры, возникших при предыдущей обработке металла (литье, горячей деформации, сварке и термообработке), смягчение стали перед обработкой резанием и снятие внутренних напряжений.
Для стали 20 отжиг проводится при температуре 880-900 °С.

Неполный отжиг.
Заключается в нагреве выше АС1 и медленном охлаждении. При этом происходит частичная перекристаллизация перлитной составляющей.
Неполному отжигу подвергаются доэвтектоидные стали с целью снятия внутренних напряжений и улучшения обрабатываемости резанием в том случае, если предварительная горячая обработка не привела к образованию крупного зерна.
Для стали 20 неполный отжиг проводится при температуре 760-790°С.

Нормализация.
Нормализация заключается в нагреве доэвтектоидной стали до температуры, превышающей точку АС3 на 40-50 °С, в непродолжительной выдержке для прогрева садки и завершения фазовых превращений и охлаждении на воздухе. Нормализация вызывает полную фазовую перекристаллизацию стали и устраняет крупнозернистую структуру, полученную при литье, прокатке, ковке или штамповке. Нормализацию широко применяют для улучшения свойств стальных отливок вместо закалки и отпуска.
Ускоренное охлаждение на воздухе приводит к распаду аустенита при более низких температурах, что повышает дисперсность феррито-цементитной структуры и увеличивает количество перлита или, точнее, сорбита или троостита. Это повышает прочность и твердость нормализованной средне- и высокоуглеродистой стали по сравнению с отожженной.
Нормализация горячекатаной стали повышает ее сопротивление хрупкому разрушению, что характеризуется снижением порога хладноломкости и повышением работы развития трещины.
Назначение нормализации различно в зависимости от состава стали. Для низкоуглеродистых сталей нормализацию применяют вместо отжига. При повышении твердости нормализация обеспечивает большую производительность при обработке резанием и получение более чистой поверхности. Для стали 20 нормализация проводится при температуре 900-920 °С.

Почему для изготовления инструмента применяется сталь с исходной структурой зернистого перлита? В результате какой термической обработки можно получить эту структуру? Приведите конкретный режим для любой инструментальной стали.
Углеродистые инструментальные стали У8 (У8А), У10 (У10А), У11 (У11А), У12 (У12А) и У13 (У13А) вследствие малой устойчивости переохлажденного аустенита имеют небольшую прокаливаемость, и поэтому эти стали применяются для инструментов небольших размеров.
Для заэвтектоидных сталей полный отжиг с нагревом выше Аст (линия ES) вообще не используют, так как при медленном охлаждении после такого нагрева образуется грубая сетка вторичного цементита, ухудшающая механи­ческие свойства. К заэвтектоидным углеродистым сталям широко применяют отжиг с нагревом до 740—780 °С и по­следующим медленным охлаждением. После такого нагре­ва в аустените остается большое число нерастворившихся включений цементита, которые служат центрами кристал­лизации во время распада аустенита при охлаждении.
В результате образуется структура зернистого перлита (сферодита), почему этот отжиг и называют сфероидизирующим. Мелкие частицы цементита при температуре отжига в интервале А1–Аст получаются в результате деления цементитных пластин.
Для режима сфероидизирующего отжига заэвтектоидных сталей характерен узкий температурный «интервал отжигаемости». Нижняя его граница должна находиться выше точки А1, а верхняя граница не должна быть слишком высокой, так как иначе из-за растворения в аустените центров карбидного выделения при охлаждении образуется пластинчатый перлит. Так как точки Аст и А1 сходятся при эвтектоидной концентрации, то у сталей, близких к эвтектоидному составу, «интервал отжигаемости» особенно узок. Например, для сталей У9А и У10А границы этого интервала 740-750 °С, в то время как для сталей У11А, У12А и У13А они находятся в пределах 750-780 °С.
Конечная структура зависит от скорости охлаждения и температуры сфероидизирующего отжига. Чем меньше скорость охлаждения, тем до больших размеров вырастают глобули карбида при распаде аустенита. Регулируя ско­рость охлаждения, можно получать структуры глобулярно­го перлита от точечного до крупнозернистого. Более мел­козернистый перлит обладает повышенной твердостью.
С повышением температуры от­жига до 800-820 °С твердость снижается из-за развития сфероидизации, а при дальнейшем увеличении температу­ры отжига твердость растет из-за появления все в большем количестве пластинчатого перлита.
Сфероидизирующему отжигу подвергают углеродистые и легированные инструментальные и шарикоподшипнико­вые стали.
Сталь со структурой зернистого перлита обладает наименьшей твердостью, легче обрабатывается резанием. Кроме того, зернистый перлит является оптимальной исходной структурой перед закалкой. При исходной структуре зернистого перлита меньше склонность к росту аустенитного зерна, шире допустимый интервал закалочных температур, меньше склонность к растрескиванию при закалке, выше прочность и вязкость закаленной стали (мелкие глобули равномерно распределены в мартенсите закаленной заэвтектоидной стали.
Поэтому металлургические заводы поставляют отожженную инструментальную сталь со структурой зернистого перлита.

Контрольная работа 1 Вариант 21

Каковы характерные свойства металлов и чем они определяются?
Свойства обусловлены особенностями строения металлов. Согласно теории металлического состояния, металл представляет собой вещество, состоящее из положительных ядер, вокруг которых по орбиталям вращаются электроны. На последнем уровне число электронов невелико и они слабо связаны с ядром. Эти электроны имеют возможность перемещаться по всему объему металла, т.е. принадлежать целой совокупности атомов.
Металлы в твердом и отчасти в жидком состоянии обладают рядом характерных свойств:
– высокими теплопроводностью и электрической проводимостью;
– положительным температурным коэффициентом электрического сопротивления; с повышением температуры электрическое сопротивление чистых металлов возрастает; большое число металлов обладают сверхпроводимостью (у этих металлов при температуре, близкой к абсолютному нулю, электрическое сопротивление падает скачкообразно, практически до нуля);
– термоэлектронной эмиссией, т. е. способностью испускать электроны при нагреве;
– хорошей отражательной способностью: металлы непрозрачны и обладают металлическим блеском;
– повышенной способностью к пластической деформации.
Таким образом, пластичность, теплопроводность и электропроводность обеспечиваются наличием «электронного газа».

Как устанавливается температура порога рекристаллизации металла и сплава? Приведите несколько конкретных примеров.
Рекристаллизация – процесс зарождения и роста новых недеформированных зерен при нагреве наклепанного металла до определенной температуры.
Наименьшую температуру начала рекристаллизации, при которой протекает рекристаллизация и происходит разупрочнение металла, называют температурным порогом рекристаллизации. Эта температура не является постоянной физической величиной. Для данного металла (сплава) она зависит от длительности нагрева, степени предварительной деформации, величины зерна до деформации и т. д.
Температура начала рекристаллизации металлов, подвергнутых значительной деформации, для технически чистых металлов составляет примерно 0,4 Тпл (правило А.А. Бочвара), для чистых металлов снижается до (0,1. 0,2)Тпл, а для сплавов твердых растворов возрастает до (0,5. 0,6)Тпл.
Т. е. с повышением чистоты металла температурный порог рекристаллизации снижается:

Сильно влияет на температуру начала рекристаллизации степень деформации при обработке давлением. С увеличением степени деформации температура начала рекристаллизации снижается. Объясняется это тем, что с увеличением степени деформации растут плотность дислокаций и энергия, накопленная при деформации, т. е. возрастает термодинамический стимул рекристаллизации.

Т. к. плотность дислокаций и соответственно накопленная при деформации энергия с увеличением степени деформации растут с затуханием, то и температура начала рекристаллизации снижается при увеличении степени деформации с затуханием, достигая определенного предела при данном времени отжига.
Рекристаллизационный отжиг используют в промышленности как первоначальную операцию перед холодной обработкой давлением (для придания материалу наибольшей пластичности), как промежуточный процесс между операциями холодного деформирования (для снятия наклепа) и как окончательную (выходную) термическую обработку (для придания полуфабрикату или изделию необходимых свойств).


Вычертите диаграмму состояния железо – карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения (с применением правила фаз) для сплава, содержащего 0,3% С. Какова структура этого сплава при комнатной температуре и как такой сплав называется?
Первичная кристаллизация сплавов системы железо-углерод начинается по достижении температур, соответствующих линии ABCD (линии ликвидус), и заканчивается при температурах, образующих линию AHJECF (линию солидус).
При кристаллизации сплавов по линии АВ из жидко­го раствора выделяются кристаллы твердого раствора углерода в α-железе (δ-раствор). Процесс кристаллиза­ции сплавов с содержанием углерода до 0,1 % заканчи­вается по линии АН с образованием α (δ)-твердого раст­вора. На линии HJB протекает перитектическое превращение, в результате которого образуется твердый раствор углерода в γ-железе, т. е. аустенит. Процесс первичной кристаллизации сталей заканчивается по линии AHJE.
При температурах, соответствующих линии ВС, из жидкого раствора кристаллизуется аустенит. В сплавах, содержащих от 4,3 % до 6,67 % углерода, при темпера­турах, соответствующих линии CD, начинают выделяться кристаллы цементита первичного. Цементит, кристал­лизующийся из жидкой фазы, называется первичным. B точке С при температуре 1147°С и концентрации углерода в жидком растворе 4,3 % образуется эвтектика, которая называется ледебуритом. Эвтектическое превращение с образованием ледебурита можно записать формулой ЖР4,3Л[А2,14+Ц6,67]. Процесс первичной кристаллизации чугунов заканчивается по линии ECF образованием ледебурита.
Таким образом, структура чугунов ниже 1147°С будет: доэвтектических – аустенит+ледебурит, эвтектических – ледебурит и заэвтектических – цементит (первичный)+ледебурит.
Превращения, происходящие в твердом состоянии, называются вторичной кристаллизацией. Они связаны с переходом при охлаждении γ-железа в α-железо и распадом аустенита.
Линия GS соответствует температурам начала превращения аустенита в феррит. Ниже линии GS сплавы состоят из феррита и аустенита.
Линия ЕS показывает температуры начала выделения цементита из аустенита вследствие уменьшения растворимости углерода в аустените с понижением температуры. Цементит, выделяющийся из аустенита, называется вторичным цементитом.
В точке S при температуре 727°С и концентрации углерода в аустените 0,8 % образуется эвтектоидная смесь состоящая из феррита и цементита, которая называется перлитом. Перлит получается в результате одновременного выпадения из аустенита частиц феррита и цементита. Процесс превращения аустенита в перлит можно записать формулой А0,8П[Ф0,03+Ц6,67].
Линия PQ показывает на уменьшение растворимости углерода в феррите при охлаждении и выделении цементита, который называется третичным цементитом.
Следовательно, сплавы, содержащие менее 0,008% углерода (точкаQ), являются однофазными и имеют структуру чистого феррита, а сплавы, содержащие углерод от 0,008 до 0,03% – структуру феррит+цементит третичный и называются техническим железом.
Доэвтектоидные стали при температуре ниже 727ºС имеют структуру феррит+перлит и заэвтектоидные – перлит+цементит вторичный в виде сетки по границам зерен.
В доэвтектических чугунах в интервале температур 1147–727ºС при охлаждении из аустенита выделяется цементит вторичный, вследствие уменьшения растворимости углерода (линия ES). По достижении температуры 727ºС (линия PSK) аустенит, обедненный углеродом до 0,8% (точка S), превращаясь в перлит. Таким образом, после окончательного охлаждения структура доэвтектических чугунов состоит из перлита, цементита вторичного и ледебурита превращенного (перлит+цементит).
Структура эвтектических чугунов при температурах ниже 727ºС состоит из ледебурита превращенного. Заэвтектический чугун при температурах ниже 727ºС состоит из ледебурита превращенного и цементита первичного.
Правило фаз устанавливает зависимость между числом степеней свободы, числом компонентов и числом фаз и выражается уравнением:
C = K + 1 – Ф,
где С – число степеней свободы системы;
К – число компонентов, образующих систему;
1 – число внешних факторов (внешним фактором считаем только температуру, так как давление за исключением очень высокого мало влияет на фазовое равновесие сплавов в твердом и жидком состояниях);
Ф – число фаз, находящихся в равновесии.
Сплав железа с углеродом, содержащий 0,3 %С, называется доэвтектоидной сталью. Его структура при комнатной температуре – перлит + ферррит.

а) б)
Рисунок 1: а-диаграмма железо-цементит, б-кривая охлаждения для сплава, содержащего 0,3% углерода

После закалки углеродистой стали была получена структура мартенсит + цементит. Нанесите на диаграмму состояния железо-цементит ординату (примерно) обрабатываемой стали, укажите температуру ее нагрева под закалку. Опишите превращения, которые произошли при нагреве и охлаждении стали.
Структура мартенсит + цементит соответствует закаленной заэвтектоидной углеродистой стали. Стали, содержащие от 0,8 до 2,14% углерода, называются заэвтектоидными. Выше линии ES в этих сплавах будет только аустенит.
При температурах, соответствующих линии ES, аустенит оказывается насыщенным углеродом, и при понижении температуры из него выделяется вторичный цементит. Поэтому при температуре ниже линии ES сплавы становятся двухфазными (аустенит + вторичный цементит). По мере выделения цементита концентрация углерода в аустените уменьшается согласно линии ES.
При снижении температуры до А1 (727°С) аустенит, содержащий 0,8%С (точка S), превращается в перлит. После охлаждения заэвтектоидные стали состоят из перлита и вторичного цементита, который выделяется в виде сетки по границам бывшего зерна аустенита или в виде игл (пластин), закономерно ориентированных относительно аустенита. Количество избыточного (вторичного) цементита возрастает с увеличением содержания в стали углерода.
Выделение вторичного цементита в виде сетки и игл делает таль хрупкой. Поэтому специальной термической обработкой и деформацией его придают зернистую форму.
Из заэвтектоидных сталей выбираем сталь У10, содержащую 0,95 -1,04 %С. Ее критические точки: Ас1=730°С, Аcm=800°С. Температура нагрева под закалку назначается из условия: Ас1 + (30 ¸ 50) = 760 ¸ 780°С.
Закалкой называется нагрев стали до температур выше фазовых превращений, выдержка при этой температуре и быстрое охлаждение со скоростью больше критической.
В результате закалки из аустенита образуется неустойчивая структура мартенсит.
Закалка стали У10 заключается в нагреве до температуры 760 – 780°С, выдержке и охлаждении в воде. Охлаждение в воде обеспечивает скорость охлаждения выше критической. В результате закалки получаем структуру мартенсит. Мартенсит представляет собой пересыщенный твердый раствор углерода в α-железе.

Изделия из стали 45 требуется подвергнуть улучшению. Назначьте режим термической обработки, опишите сущность происходящих превращений, структуру и свойства стали после обработки.
Улучшение заключается в закалке и высоком отпуске стали.
Закалка доэвтектоидной стали заключается в нагреве стали до температуры выше критической (Ас3), в выдержке и последующем охлаждении со скоростью, превышающей критическую.
Доэвтектоидные стали для закалки следует нагревать до температуры на 30-50°С выше Ас3. Температура точки Ас3 для стали 45 составляет 755°С, а Ас1 равна 730°С. Структура доэвтектоидной стали при нагреве её до критической точки Ас1 состоит из зерен перлита и феррита. В точке Ас1 происходит превращение перлита в мелкозернистый аустенит. При дальнейшем нагреве от точки Ас1 до Ас3 избыточный феррит растворяется в аустените и при достижении Ас3 (линия GS) превращения заканчиваются.
Температура нагрева стали под закалку, таким образом, составляет 800-820°С. Структура стали 45 при температуре нагрева под закалку – аустенит, после охлаждения со скоростью выше критической – мартенсит.
Высокий отпуск проводится при температуре 580-600˚С. В результате получаем структуру – сорбит отпуска. Высокий отпуск создает наилучшее соотношение прочности и вязкости.
Закалка с высоким отпуском (по сравнению с нормализацией или отжигом) повышает временное сопротивление, предел текучести, относительное сужение и особенно ударную вязкость. Высокие отпуск почти полностью снимает остаточные напряжения, возникшие при закалке.
Свойства стали 45 после улучшения: σВ = 870 МПа; σт= 700 МПа; δ= 13%; ψ = 65%; KCU = 1,3 МДж/м2; НВ = 255.

Читайте также: