Металлы в современной технике
Производство и использование металлов в промышленности постоянно растет. Область применения металлов определяется их индивидуальными физическими свойствами. При этом применение цветных и черных металлов в промышленности обеспечивает приблизительно 72-74% в общем объеме мировой продукции.
Области применения черных металлов
Более 90% от объема используемых в производстве металлов составляет железо и его сплавы с углеродом (чугун, сталь, ферросплавы) и другими элементами. Значение металлов в современной промышленности трудно переоценить. В настоящее время именно они являются основными конструкционными материалами и широко используются в различных сферах производства.
- Стали применяют в приборо- и машиностроении, строительстве для изготовления рессор, амортизаторов, пружин и прочих упругих элементов, а также проволоки, болтов и тому подобное.
- Чугун, в частности ковкий, благодаря высокой прочности и сопротивлению удару используется в автомобилестроении для изготовления всевозможных деталей: тормозных колодок, угольников, тройников и тому подобное.
В каких отраслях промышленности используют цветные металлы?
Цветная металлургия производит полный цикл производства цветных металлов и их сплавов, которые в дальнейшем используются в различных сферах. Особенно распространено применение металлов в пищевой промышленности и машиностроении. Попробуем разобраться, в каких отраслях промышленности используют цветные металлы чаще всего.
1. Медь применяется в:
- электротехнике – благодаря высокой электропроводимости широко используется для производства силовых кабелей и проводов, используемых в дальнейшем в обмотке электроприводов и трансформаторов;
- трубной промышленности – высокая прочность меди обеспечивает возможность создания бесшовных труб, используемых для газо- и водоснабжения, а также в системах кондиционирования и холодильных установках;
- ювелирной промышленности – в качестве сплавов с золотом, для улучшения прочности последнего;
- архитектуре – кровельные и фасадные материалы, произведенные из листовой меди, имеют крайне длительный срок эксплуатации (100-150 лет) без необходимости проведения ремонтных работ.
2. Свинец в виде химических соединений используется:
- в производстве взрывчатых веществ в качестве детонатора либо окислителя;
- в аккумуляторах и резервных источниках тока в качестве катодного материала;
- при обогащении руд;
- в химической промышленности, например, при производстве пигментов, инсектицидов;
- в медицинской промышленности – при приготовлении мазей, для защиты от радиации в рентгеновских установках.
3. Цинк применяется в:
- металлургии – при восстановлении драгметаллов, для защиты стали от коррозии (оцинковка поверхностей, которые не подвергаются постоянным механическим воздействиям, а также металлизация – для защиты мостов и металлических конструкций);
- медицине – как антисептик и противовоспалительное средство;
- полиграфии – цинковые пластины используются в качестве клише для тиражирования иллюстраций в изданиях;
- машиностроении – в виде сплава с алюминием и магнием применяется для точного литья разнообразной технической фурнитуры (например, ручек для автомобилей), корпусов карбюраторов, всевозможных уменьшенных моделей и миниатюр.
4. Олово в качестве сплавов используется:
- в качестве антикоррозионного покрытия – в припоях для электроники, трубопроводах, сплавов для изготовления подшипников;
- при производстве красок, используемых для имитации эффекта позолоты;
- в электротехнике для создания сверхпроводниковых проводов;
- при производстве посуды, тары для хранения пищевых продуктов, упаковочной фольги.
5. Никель используется:
- в химической промышленности в качестве катализатора и при производстве химреактивов;
- для получения жаропрочных сплавов, используемых в аэрокосмической промышленности;
- в медицине – для изготовления брекет-систем и протезов;
- для производства аккумуляторов в составе сплавов с железом, кадмием, цинком.
6. Алюминий применяется в следующих отраслях промышленности:
- авиационной и авиакосмической – в сплавах с добавлением меди или магния как конструкционный материал;
- пищевой – используется для изготовления кухонной посуды, пищевой фольги и упаковочных материалов;
- электротехнике – при производстве проводов и экранировании сигнальных кабелей;
- микроэлектронике – в процессе напыления проводников на микросхемы;
- строительной промышленности – в качестве газообразователя используются алюминиевые пасты и суспензии, используемые в производстве газобетона.
7. Титан является одним из важнейших конструктивных материалов в:
- ракето-, авиа- и кораблестроении;
- военной и автомобильной промышленности;
- производстве медицинских инструментов, ювелирных изделий, мобильных телефонов.
Сплавы титана используются в:
- химической промышленности – для производства белил и пластика, а также в роли отвердителя и катализатора при изготовлении лакокрасочной продукции;
- ювелирной промышленности – благодаря внешней схожести с золотом для создания бижутерии.
Роль металлов в промышленности крайне важна. Практически невозможно найти хотя бы одну промышленную область, которая бы обходилась без использования металлов, их сплавов и химических соединений. В связи с повышенным спросом на продукцию металлургических предприятий многие из них предлагают услуги по добыче металлов в Казахстане, а также мониторинг полезных ископаемых.
Биржевые котировки LME
* Котировки по драгоценным металлам даны за тройскую
Применение металлов в технике
Материальный фундамент, на котором стоит современная человеческая цивилизация, образует железо. Из сплавов железа - сталей - изготовлена и построена подавляющая часть машин, аппаратов, сооружений. На долю железа от общего объема производства металлов приходится более 90%.
Второе место по масштабам использования занимает алюминий, хотя его история насчитывает всего около двух столетий. Конструкторов - создателей новой техники привлекают такие качества алюминия, как малая плотность (в 3 раза меньше, чем у меди и железа), пластичность при относительно высокой прочности, коррозионная стойкость. По электро- и теплопроводности он лишь немного уступает меди. В результате легирования другими элементами (Si, Мg, Ве, Тi, Сu, Ni) и термообработке удается получать сплавы, значительно превосходящие по прочности и твердости чистый алюминий. Благодаря этим свойствам алюминий является основным металлом в авиационной и ракетно-космической промышленности. Алюминий составляет примерно половину массы ракет, а в пассажирских самолетах его доля доходит до 2/3 или даже до 3/4. Непрерывно увеличиваются масштабы использования алюминия и в других видах транспорта.
В последние годы интенсивно развивается индустрия строительных конструкций из алюминиевых сплавов. Крупный потребитель алюминия - электротехническая промышленность: провода, кабели, обмотки моторов и трансформаторов, конденсаторы и др.
Коррозионная стойкость алюминия обусловлена образованием на его поверхности тончайшей (0,0001 мм) оксидной пленки, надежно защищающей металл от дальнейшего окисления воздухом.
Алюминий широко применяется и в металлургии: в качестве активного химического элемента-восстановителя для раскисления стали и в алюмотермических способах получения многих металлов и сплавов.
Третье место по объему производства и потребления занимает медь. Медь - главный металл электротехники, обладающий наивысшей электропроводностью (за исключением серебра). В сочетании с хорошей пластичностью и достаточно высокой прочностью медь является «идеальным» материалом для изготовления токопроводящих изделий: проводов, кабелей, контактов и др. Очень высокая теплопроводность меди делает ее незаменимой в производстве многих теплотехнических устройств: нагревателей, холодильников.
Широкое распространение в промышленности нашли сплавы меди с цинком (латуни) и с оловом (бронзы). Сплавы меди с никелем служат для изготовления монет (денежных знаков).
Примерно половина производимой меди в настоящее время используется в радиотехнике и электротехнической промышленности. Древнейший сплав меди с цинком - латунь и в настоящее время производится в больших количествах. Содержание цинка в латуни составляет 30-45%. Она применяется для изготовления различной арматуры, соприкасающейся с водой (краны, вентили и т.д.), а также для производства различных труб.
Добыча и производство рафинированной меди в мире резко увеличилось за последние 30 лет. Это связано, в первую очередь с увеличением спроса на металл, так как большие развивающиеся страны, такие как Китай, Индия и Бразилия вышли на мировой рынок. В тот же период крупнейшей областью добычи меди стала Южная Америка. Чили - лидер по добыче меди в мире.
Медь - важная составляющая в двигателях, радиаторах, соединителях, тормозах и других комплектующих, используемых в легковых автомобилях и грузовиках. Средний автомобиль содержит 1,5 километра медного провода, а общая масса медных деталей составляет от 20 килограммов в маленьких автомобилях до 45 килограмм в роскошных и гибридных автомобилях.
Никель. В течение почти 150 лет со времени открытия никель не находил промышленного применения. И лишь во второй половине XIX века, когда были открыты замечательные свойства никеля улучшать качество сталей, его производство начало быстро расти.
До 70% никеля используется в производстве жаропрочных и нержавеющих сталей. Совместно с другими металлами никель входит в состав твердых и сверхтвердых сплавов. Сплав «инвар» обладает очень малым коэффициентом термического расширения; сплав «нихром» используется в нагревательных приборах; упругий сплав «элинвар» - отличный материал для пружин; ряд никелевых сплавов обладает высокими магнитными свойствами. Всего в технике и в быту используется более 3000 сплавов, в состав которых входит никель.
Никель используется как катализатор ряда химических процессов, как прекрасное декоративное и антикоррозионное покрытие других металлов (меди, железа). В промышленности налажено широкое производство железоникелевых щелочных аккумуляторов. Находят применение и некоторые соли никеля.
Магний. Одной из отличительных особенностей магния является его низкая плотность - 1,74 г/см 3 , что в 4,5 раза меньше, чем у железа и в 1,5 раза меньше, чем у алюминия. Ученым удалось создать с участием магния ряд сплавов - легких, прочных, термостойких. Для легирования Мg используют Тi, Аl, Zn, Мn, Ве, Li, Сd, Се, Сu.
Элементы ракет и ядерных реакторов, детали моторов, баки для бензина и масел, корпуса вагонов, автобусов, легковых автомобилей, колеса, фото- и киноаппараты - вот неполный перечень изделий из магниевых сплавов. Немаловажную роль играет магний и в металлургии: в качестве раскислителя сталей, восстановителя ряда других металлов (титана, ванадия, хрома, циркония), для модификации чугунов. Наконец, оксид магния используют для производства огнеупорных материалов, применяющихся при строительстве металлургических печей.
Не потеряли своей ценности и старые хорошо известные человеку металлы. Цинкиспользуют в качестве антикоррозионного покрытия железа, для изготовления электрических батарей, в качестве осадителя золота и серебра из цианистых растворов, для производства сплавов с медью и другими металлами. Олово входит в состав сплавов с Сu и Рb - бронз и бабиттов (материалов для изготовления подшипников скольжения). Около одной трети свинцарасходуется на производство электрических аккумуляторов для автомобильного и других видов транспорта; свинцовыми пластинами облицовывают помещения для защиты от проникающих излучений (рентгеновских лучей, излучения радиоактивных изотопов); свинцом покрывают внутренние поверхности многих химических реакторов (учитывая его высокую химическую стойкость против воздействия некоторых кислот и щелочей).
Благодаря своей химической стойкости, привлекательному внешнему виду и высокой стоимости золото и серебро в эпоху развития товарно-денежных отношений приобрели значение меновых эквивалентов и меры стоимости, выполняя функции денег. В дальнейшем функции денежного эквивалента стало выполнять только золото.
Из благородных металлов и сплавов изготавливают припои, электроконтакты, термосопротивления, термопары, фильеры для искусственного волокна, постоянные магниты, нагреватели лабораторных печей, химическую посуду, антикоррозионные покрытия на других металлах, медицинский инструмент, катализаторы, зубные протезы, ювелирные, наградные и другие изделия промышленного и бытового назначения.
Серебро находит широкое применение в химической промышленности в качестве катализатора ряда химических процессов, в производстве светочувствительных эмульсий для фото- и киноматериалов (до недавнего времени). Значительное количество серебра расходуется на изготовление припоев, применяемых при пайке. Серебряные припои образуют прочные и пластичные спаи. Их стойкость к окислению послужила причиной широкого применения в авиационной и космической технике, а высокая электропроводность - в электротехнике. Золото и серебро в настоящее время кроме производства ювелирных изделий используют в электронных приборах – для изготовления надежных неокисляющихся контактов.
Наряду с электронной промышленностью потребителями золота выступают и другие отрасли: химическая, аэрокосмическая, часовая, легкая, а также архитектура. Использование золота в этих отраслях может быть объединено термином «золочение». Золотом стали покрывать архитектурные детали, а также купола церквей, мечетей и соборов.
По итогам 2011 года Россия добыла и произвела 212 тонн золота.
В результате технической революции середины XX века появились новые процессы, технологии, отрасли промышленности: электроника, ядерная энергетика, ракетно-космические комплексы. Оказалось, что многие редкие металлы способны удовлетворять заданным требованиям.
Бериллий – высокая радиационная стойкость (замедлитель нейтронов в ядерных реакторах), самая высокая удельная прочность (отношение прочности к плотности).
Литий – самый легкий металл (вдвое легче воды), литиевые аккумуляторы (срок службы в 3 раза, емкость в 6-7 раз выше), литиевые смазки (-60 о С).
Вольфрам, молибден – нагреватели в электропечах, выплавка легированных сталей (инстр., быстрореж., жаропроч.), производство твердых сплавов (инструменты).
Титан - реактивная авиация, ракетно-космическая техника, твердые, жаростойкие сплавы (карбид титана).
Цирконий – изготовление элементов ядерных реакторов (трубы, оболочки), огнеупоры, фарфор, эмали (ZrO2).
Уран – основное горючее ядерных реакторов.
Германий – полупроводниковая электроника.
Рений – химическая и нефтяная промышленность в качестве катализаторов, электровакуумная техника.
Селен, теллур – электро- и радиотехника, фототранзисторы, солнечные батареи, термоэлектрические устройства.
Металлы в современной технике
Металлы применяются во всех отраслях промышленности и хотя современная техника немыслима без использования не металлических материалов, всё равно металлы являются основной составляющей. В обиходе считается, что есть чёрные металлы и цветные. К чёрным относятся железо и его сплавы. Эти продукты являются важнейшими и основными конструкционными материалами в технике и в промышленном производстве. Остальные металлы относят к цветным.
Физические свойства металлов обуславливают применения их в различных технических устройствах и оборудовании. Металлы, обладающие высокой электропроводностью – серебро, медь, алюминий используют в электротехнической промышленности. Лёгкие и прочные металлы незаменимы в самолётостроении и авто строении. Автомобили, самолёты и другая транспортная техника не мыслима без титана и алюминия. Для улучшения потребительских свойств техники разрабатывают и применяют сплавы металлов. В частности, дюралюминий – сплав алюминия с медью, магнием и марганцем. Современные самолёты на 75-80% состоят из дюралюминия. Дюралюминий, обладающий лёгкостью алюминия и, благодаря добавкам, большой прочностью, сделал настоящею революцию в производстве самолётной технике. Строительство самолётов не обходится без других металлов и многие из них также представляют собой сплавы с улучшенными свойствам.
Чёрные металлы применяют в технике, подверженной длительным и тяжёлым нагрузкам. Это в первую очередь железнодорожная и сельскохозяйственная техника. Тяжёлая и постоянная нагрузка в железнодорожном транспорте требует использования самой прочных и недорогих материалов. По этим показателям лучшим считается чугун. Чугун используют при производстве вагонных колёс. Чтобы повысить долговечность работы пары колесо-рельс, соприкасающиеся детали делают из металлов с различными свойствами. Если колесо чугунное, с содержанием углерода не менее 2,14%, то рельсы – стальные с небольшим содержанием углерода, с добавками повышающими пластичность и вязкость металла.
Сельскохозяйственная техника работает не просто в полевых условиях, а в тяжёлых и напряжённых условиях. Металлы, используемые в сельхозтехнике должны быть прочными и долговечными. Здесь, конечно, незаменимы чугун и конструкционная сталь.
В чистом виде металлы, за исключением некоторых, в технике применяются редко. Современная химия и металлургия делают сплавы с улучшенными, чем у основы, свойствами, а главное свойства имеют узконаправленное действие – большую прочность, лучшую защиту от коррозии, более высокую электропроводимость и т.д.
В строительстве, в подавляющем большинстве случаев , используют чёрный металл. Несущий металлопрокат — трубы, швеллер, балки, делают из конструкционной стали. Этот материал применяют во всех сферах строительной индустрии. Особую популярность, в первую очередь при строительстве малоэтажных сооружений, приобрели в последнее время профильные трубы и оцинкованные лёгкие, тонкостенные конструкции.
Лестница из нержавеющей стали
Часто при строительстве даже небольших объектов используют целый спектр различных материалов. К примеру, при сооружении лестницы на металлокаркасе, сам каркас делают из конструкционной стали. Ограждения лестницы – из нержавеющей стали. Стойки, опоры, столбы лестниц, а также элементы холодной ковки делают из чугуна. Крепёжные элементы лестниц защищают цинком. Поручни и декоративные узлы лестниц хромируют и никелируют. Как видно, даже для небольшого строения – лестница, применяют достаточно большую номенклатуру металла.
Вся информация размещенная на сайте носит ознакомительный характер и ни при каких условиях не может считаться публичной офертой!
Роль металлов в современной технике
СОДЕРЖАНИЕ
1. Роль металлов в современной технике………………………………………..3
2. Тенденция создания и рационального выбора конструкционных материалов. ……………………………………………………………………. 5
3. Испытание на усталостную прочность.……………………………………….9
Роль металлов в современной технике
Сплавы — это металлообразные макроскопически однородные вещества, обладающие металлическими свойствами и состоящие из двух или более химических элементов.
Составной частью сплава может быть любой элемент, хотя в значительных количествах в них содержатся только металлы. По свойствам сплавы практически всегда отличаются от исходных веществ. Могут быть улучшены качества того металла, который лег в основу. Например, чугун и сталь превосходят железо по твердости и прочности. Очень часто они приобретают свойства, которые отсутствовали у составляющих, например устойчивость к той или иной агрессивной среде, способность выдерживать высокие температуры, магнитные свойства и т. д. Словом, металл в сплаве как бы обретает новые качества, и возникают материалы, без которых сегодня немыслим прогресс.
Ядерная энергетика немыслима без металлов или сплавов, устойчивых к коррозии при одновременном воздействии радиоактивного излучения. Все новые и новые сплавы, более легкие, прочные и выносливые, требуются авиационной и космической технике. Полупроводниковая промышленность стала мощно развиваться, когда были найдены методы получения чистых металлов.
Подводя итоги развития нашей страны за прошедшие годы и определяя основные задачи по развитию народного хозяйства, науки и техники как на ближайшие годы, так и перспективу на дальнейшее развитие, в качестве основ такого развития необходимо включить задачи которые выдвигают на первый план использование не только и не столько самих металлов в чистом виде, но в гораздо большей степени их различных сплавов.
Сейчас на первое место по объему применения выходят титановые сплавы. Они характеризуются малой плотностью (4,5 г/см3), высоким пределом прочности, хорошей коррозийной стойкостью (большей, чем у нержавеющей стали) и высокой жаропрочностью. Титановые сплавы превосходят высокопрочные конструкционные стали и алюминиевые сплавы и являются ценным конструкционным материалом в ракетостроении, авиационной промышленности, судостроении, химической промышленности и при изготовлении некоторых деталей ядерных реакторов. В промышленности применяют изделия из титана в виде листов, прутьев, проволоки, труб, поковок и штамповок. Для получения титановых сплавов с более ценными свойствами титан легируется различными металлами — алюминием, хромом, железом, марганцем, молибденом, ванадием и др.
Все шире человек использует энергию атома. К металлам и сплавам атомной техники предъявляют особые требования, так как они подвергаются облучению. Оно влияет на физико-механические свойства металлов: повышаются твердость и прочность, снижаются пластичность и вязкость, падает плотность, увеличивается скорость коррозии и усиливается процесс старения. К материалам, используемым для постройки реакторов, предъявляют особые требования, например сопротивляемость разрушению от излучения и отсутствие радиоактивных продуктов. Для строительства ядерных реакторов применяют чаще всего бористые стали, а также бериллий, цирконий и их сплавы. В атомном реакторе в качестве ядерного горючего применяют металлы уран, плутоний и торий.
Пробивают себе дорогу композиционные материалы. Легкие, прочные и устойчивые к коррозии и действию температур, они знаменуют собой технику грядущего дня
Металлы - основа техники
статья по химии на тему
За лето ребенок растерял знания и нахватал плохих оценок? Не беда! Опытные педагоги помогут вспомнить забытое и лучше понять школьную программу. Переходите на сайт и записывайтесь на бесплатный вводный урок с репетитором.
Вводный урок бесплатно, онлайн, 30 минут
Предварительный просмотр:
Металлы – основа техники
Почти все важнейшие части орудий производства, начиная с простейших механизмов и заканчивая сложными машинами, изготовлены из металлов. Хотя широко используемые пластмассы частично заменяют металлы, производство металлов всё время возрастает.
Металлы можно отливать, ковать, вальцевать, вытягивать в проволоку, гнуть, сваривать, паять, обтачивать, сверлить, пилить, строгать.
Сплавляя металлы или вводя в них небольшие добавки неметаллов, можно получать материалы, отвечающие специальным требованиям. Инструменты для обработки металлов должны обладать повышенной твердостью, а листовые или винтовые рессоры, напротив, отличаться эластичностью и одновременно прочностью.
Без металлов не было бы электротехники. Хорошая проводимость электрического тока характерна для всех «настоящих металлов» и не присуща неметаллическим материалам.
Из химических элементов, встречающихся в природе, большинство причисляют к металлам.
Еще 200 лет назад большая часть этих металлов не имела никакого технического значения. Довольствовались обычными, в основном легко получаемыми, металлами. Только с наступлением атомного века, при постройке сверхзвуковых самолетов и космических ракет, требования к металлическим материалам резко повысились. Потребности авиационной промышленности привели к развитию производства легких металлов: алюминия и магния. Многочисленные изобретения сделали возможным создание установок для получения таких металлов, названия которых сравнительно недавно были известны немногим. Это прежде всего титан и цирконий, которые встречаются часто, но в основном рассеяны в горных породах и редко встречаются в виде чистых руд. Техническое значение приобрели также бериллий, гафний, индий, ниобий и другие металлы.
Олово сейчас ценнейший цветной металл, с которым необходимо обходиться очень бережно. Если раньше металл тратили на изготовление монет, фигурок, кубков, кувшинов и другой посуды, а также вплоть до нашего времени из него получали станиоль для закупоривания винных бутылок, то теперь олово чаще всего употребляют в виде покрытия на тонком листовом железе (белая жесть) или в качестве припоя (в сплаве со свинцом, цинком или кадмием).
Значение и применение железа трудно переоценить. Достаточно сказать только, что в мире его производится примерно в двадцать раз больше, чем всех остальных металлов, вместе взятых.
Металлы в чистом виде применяют на практике гораздо реже их сплавов. Это связано с тем, что сплавы часто обладают более высокими техническими качествами, чем чистые металлы, их свойства можно регулировать.
1. «История химии», Ю. И. Соловьев, Д. Н. Трифонов, А. Н. Шамин
М. Просвещение 1978
2. «Химия для любознательных». Э. Гроссе, Х. Вайсмантель. Ленинград 1987.
Читайте также: