Металлы в древнем мире

Обновлено: 06.01.2025

Какие изделия из металла производились в первую очередь? При изготовлении каких предметов шлифовали свое искусство и развивали профессиональные навыки древние мастера? Оказывается, в течение нескольких тысячелетий главной движущей силой развития металлургии являлось ювелирное дело.

На первый взгляд, между грандиозными стальными конструкциями небоскребов и миниатюрными аксессуарами из коррозионностойкой стали мало общего. Трудно представить, что может почерпнуть технология конструкционных сталей в ювелирном деле, и, тем не менее, передовым краем инновационных технологий, как правило, оказывается «индустрия» малых форм. Если же рассматривать историю металлургии, то легко убедиться в неукоснительном выполнении правила, согласно которому передовые технологии сначала внедряются в ювелирном деле, потом совершенствуются в военной сфере, затем осваивают предметы быта и орудия труда и лишь в последнюю очередь применяются в строительстве.

Самый технологичный металл

Металлургия древности. Ювелирное искусство - основа металлургии

Первыми металлическими изделиями были украшения, а самым «технологичным» металлом для их изготовления – золото. Оно стало первым металлом, который научились обрабатывать холодной ковкой, паять и полировать, из которого стали получать проволоку и отливать изделия.

Золото впервые подвергли рафинированию, к нему впервые были применены технологии гидрометаллургии и металлотермической обработки.

В древнеегипетских и шумерских текстах часто находят упоминания о разновидностях употреблявшегося в древности золота. Усматривалось различие в его происхождении: «речное», «горное», «скалистое», «золото в камне», а также по цвету. Цвет нерафинированного золота зависит от его природных примесей – меди, серебра, мышьяка, олова, железа и пр. Древние металлурги принимали все эти сплавы золота за разновидности самого металла. Археологами найдены древние золотые изделия, охватывающие большую гамму цветов: от тускло-желтого и серого до разных оттенков красного цвета. Золото различных желтых оттенков по своему составу приближается к чистому золоту, оно содержит лишь небольшие примеси серебра или меди. В сером золоте высока доля серебра, которое на поверхности изделия со временем превращается в хлорид, разлагающийся на свету с выделением микрокристаллов серебра, которые придают поверхности сероватую окраску. Розовые и пурпурные оттенки золота обусловлены присутствием в нем примесей меди. Золото красно-коричневых цветов содержит в значительных количествах и медь, и железо.

Технология очистки золота от примесей была изобретена шумерами в начале 3-го тысячелетия до н. э. Ее описание содержится в рукописях библиотеки ассирийского царя Ашшурбанипала. Согласно этой технологии золото плавили вместе со свинцом, оловом, солью и ячменными отрубями в специальных горшках из глины, смешанной с костной золой. Образующийся шлак впитывался пористыми стенками горшка, а на его дне оставался очищенный сплав золота с серебром. Таким образом, из золота удалялись все примеси, кроме серебра. В одной из рукописей библиотеки Ашшурбанипала содержится гимн богу огня Гибилю:

«О, Гибиль, ты расплавляешь медь и свинец, ты очищаешь золото и серебро…».

Отдельные этапы работы золотых дел мастеров изображены в стенных росписях некоторых египетских гробниц эпохи фараонов IV–VI династий. Известность получило изображение процесса изготовления золотой отливки, найденное в гробнице фараона Мереруба, на котором можно видеть чиновника, отвешивающего необходимую порцию золота, и писца, записывающего его количество. Далее следует изображение шести человек, раздувающих горн специальными дутьевыми трубками. Затем видим мастера, разливающего расплавленный металл из тигля в форму, стоящую на земле, и его помощника, задерживающего шлак. На завершающей стадии два кузнеца отбивают слиток камнями, придавая ему товарный вид.

Металлургия древности. Ювелирное искусство - основа металлургии


Процесс изготовления золотой отливки в Древнем Египте (2315–2190 гг. до н. э.)

Уже в 3-м тысячелетии до н. э. жильное золото добывалось на территории Европы, Азии и Северной Африки практически из всех известных его месторождений. Значительные запасы находились на Балканском полуострове и островах Эгейского моря. О месторождениях золота во Фракии в античных источниках имеется множество свидетельств, подтверждающих их особое значение. Существует версия о том, что добыча золота на горе Пангее была начата финикийцами, и с этим связано легендарное богатство их царя Кадма. Самым знаменитым из фракийских рудников был Скаптегила (Скаптесула), он продолжал разрабатываться в эпоху Римской империи и неоднократно упоминался в произведениях римского поэта Лукреция. Помимо Балкан крупные месторождения золота в Европе находились на территории современных Испании, Франции, Венгрии, Румынии и Австрии; их разработка была начата древними иберами, кельтами, франками и даками. Главной золотоносной провинцией древней Европы была Иберия, которая впоследствии стала называться финикийским словом «Испания». Именно в Иберии, на северо-западе Пиренейского полуострова, римляне создали самое грандиозное горнодобывающее предприятие эпохи Древнего мира – знаменитые арругии (техногенные золотые россыпи). Золото в этом районе находилось не в отдельных кварцевых жилах, а в толще песчаников и сланцев. Огромные по площади и по мощности рудные участки, гористый рельеф, рыхлость пород – все это подсказало изобретение нового способа золотодобычи. Сначала обрушивали всю рудовмещающую породу. Для этого в ней делали параллельные штольни длиной до 450 м с постепенно вынимаемыми перемычками и подпорками. В результате происходило обрушение и раздробление породы. Затем эта горная масса размывалась водами из водохранилищ, специально устраиваемых на уровне 50–100 м выше горных разработок. Из созданных таким образом россыпей извлекалось золото. По такой технологии и добывалась большая его часть для Римской империи.

Металлургия древности. Ювелирное искусство - основа металлургии


Применение ртути для рециклинга золотой проволоки

На новую ступень добыча и металлургия золота поднялись после того, как в горно-металлургических технологиях стала широко применяться ртуть. Метод извлечения золота из руды с помощью ртути, изобретенный на Ближнем Востоке, и стал основным в Риме в начале новой эры. Согласно описанию Плиния Старшего (I в. до н. э.) руду, содержащую золото, дробили и смешивали с ртутью, затем пустую породу отделяли от ртути фильтрацией через кожаный (замшевый) фильтр, а золото получали из амальгамы путем выпаривания ртути. Технология огневого золочения металлических изделий также получила распространение во времена Римской империи. В результате римляне сумели поднять организацию, технику и технологию разработки золотоносных районов на качественно новый уровень, что позволило достичь максимально возможных для того времени масштабов золотодобычи.

Свинцовое серебро

Металлургия древности. Ювелирное искусство - основа металлургии

Благородный металл № 2 – серебро – встречается в природе достаточно часто. Его содержание в земной коре в 20 раз превышает содержание золота, но распространенность самородков серебра по отношению к золотым составляет не более 20 %, а к медным – менее 2 %. Кроме того, серебряные самородки редко располагаются на поверхности горных пород и не захватываются водными потоками, разрушающими эти породы.

Следовательно, серебряные самородки в отличие от золотых очень редко встречаются в речных песках. Поэтому металлургия серебра получила распространение не вследствие обработки самородков, а в связи с переработкой свинцовых руд, содержащих серебро. Такие руды распространены во многих регионах мира. Известны их месторождения в Испании, Греции, Иране, на Кавказе. Процесс отделения серебра от свинца, называемый купеляцией, был разработан в 4-м тысячелетии до н. э. Однако еще в течение тысячи лет он не имел широкого распространения, и серебро практически повсеместно ценилось дороже золота.

Крупнейшими серебряными рудниками, разрабатывавшимися в эпоху Древнего мира, были Лаврионские в Греции и римские вблизи Нового Карфагена. О последних из трудов римских авторов известно, что они занимали территорию более 400 стадий в окружности и на них постоянно работало около 40 тыс. человек. Подробные сведения имеются об эксплуатации свинцово-серебряных месторождений Древней Греции. Разработка этих знаменитых рудников, расположенных в южной части Аттики, была начата еще во 2-м тысячелетии до н. э. Именно серебро Лаврионских рудников стало основой могущества Афинского государства. Общая протяженность горных выработок в них достигала 120 км, глубина шахт Лаврионских рудников – 120 м. Высота штолен превышала 1 м, поэтому рудокопы работали чаще всего лежа на спине или на животе. Поднятую на поверхность руду дробили в ступах из твердого камня – трахита, а затем измельчали в специальных мельницах. Дробленую руду промывали и плавили с использованием древесного угля в круглых каменных печах диаметром около 1 м. Производительность такой печи составляла 4 т руды в сутки. В результате плавки достигалось отделение от свинца серы, меди, железа, цинка и других примесей, за исключением серебра, т.е. получался свинцово-серебряный сплав, или «сырой» свинец. Для разделения свинца и серебра применяли купеляцию. По этой причине производство требовало больших затрат древесного угля. Готовые серебро и свинец разливали в слитки, на которые ставилась марка владельца выработки или плавильной мастерской.

Металлургия древности. Ювелирное искусство - основа металлургии


Схема производства серебра и свинца на Лаврионских рудниках, Древняя Греция

Из серебра изготовляли, главным образом, посуду и ювелирные изделия. Быстро научились делать серебряную фольгу и фурнитуру, которыми украшали одежду и мебель. Уже в 3-м тысячелетии до н. э. серебро использовали для пайки медных изделий.

Волочение благородных металлов

Металлургия древности. Ювелирное искусство - основа металлургии

В эпоху Древнего мира ювелирные ремесла потребляли огромное количество благородных металлов и их сплавов, прежде всего в виде проволоки. Практически повсеместно широкий размах получило изготовление шитых золотыми и серебряными нитями одежд. Особенность этого вида искусства заключается в умении получать тончайшие нити проволоки, которые с основой материала образуют эластичную ткань.

Золотая и серебряная проволока использовалась также в качестве эквивалента стоимости в торговле. Наиболее древние образцы проволоки изготовлены либо ковкой, либо разрезкой кованого листового металла. В городе Абидосе (Египет) найден проволочный браслет, датируемый 3400 г. до н. э. Он состоит из двух групп бусинок, соединенных прядью из свитых вместе золотых проволочек и толстого волоса. Искусно отделанной проволоке придан диаметр, равный диаметру волоса (0,33 мм).

Существовало два основных способа получения кованой проволоки. При первом способе слиток или кусок металла расковывался молотком в пруток заданной толщины и профиля. При втором способе из слитка или куска металла ковкой получали лист, а затем разрезали его на полоски, края которых закругляли ударами молотка. При циркулярной резке получались длинные куски проволоки – в этом заключалось ее преимущество. Примером практического применения циркулярной резки металла могут служить полоски из золота длиной более 1,5 м, найденные в одной из гробниц Ура. В Уре найдены также изделия из скани (филиграни), датированные 3-м тысячелетием до н. э. Сущность сканного производства состоит в том, что из тонкой золотой, серебряной или медной проволоки круглого или прямоугольного сечения выполняются ажурные или напаянные на металлическую основу узоры. Предварительно проволока скручивается в две или три нити и сплющивается.

Попытки производить более изящную и тонкую проволоку привели к тому, что постепенно был выработан новый способ ее получения. Для сглаживания неровностей и уплотнения проволоку стали проталкивать через отверстия в твердых материалах. Образцы такой проволоки из золота, датируемые 4-м тысячелетием до н. э., найдены в Египте. Впоследствии эта операция выравнивания поверхности проволоки превратилась в технологию волочения.

Считают, что в самом примитивном виде способ волочения начали применять еще до появления металлических орудий для отделки стержней дротиков и гарпунов. Стержни изготовляли из сырого дерева и затем протаскивали (калибровали) через костяные выпрямители. Раскопки погребений в Египте периода Среднего царства (2800–2500 гг. до н. э.) подтверждают, что техника выпрямления деревянных прутков была широко распространена в древности. Обнаружена роспись, изображающая двух ремесленников, занятых выпрямлением таких прутков. Можно предположить, что в дальнейшем аналогичное калибрование стали применять и к кованым пруткам из цветных металлов, используя деревянные калибры. В результате такой протяжки поверхность прутка становилась гладкой, как полированная.

Первые калибры изготовляли из твердых деревянных досок путем выжигания в них конических отверстий. Впоследствии дерево было заменено более прочными материалами. С древнейших времен употреблялись кремневые калибры. Древние мастера умели высверливать в камнях отверстия не только больших, но и малых диаметров, при этом сверление осуществлялось смычковой дрелью. Конические отверстия просверливали медным либо каменным острием при использовании абразивного материала – кварцевого песка или толченого кремня. Наиболее простое приспособление для протяжки проволоки состояло из волочильной доски (волоки), которую прикрепляли к опоре, и инструмента (клещей) для захватывания заостренного конца проволоки.

Раскрытые тайны древних ювелиров

Металлургия древности. Ювелирное искусство - основа металлургии

На Ближнем Востоке и в Египте также широко применялось листовое золото и серебро – фольга. Фольгой покрывали самые различные предметы – как металлические, так и деревянные. Например, с помощью ковки или органического клея фольгу прикрепляли к изделиям из бронзы, меди и серебра.

При этом золотое покрытие защищало медь и бронзу от коррозии. Золотой фольгой часто покрывали деревянную мебель, прикрепляя ее с помощью маленьких золотых заклёпок. Тонкие золотые листы приклеивали к дереву, предварительно покрытому слоем специальной штукатурки.

Непревзойденными мастерами Древнего мира в области ювелирных технологий являются этруски. Территорией их расселения было западное побережье Апеннинского полуострова – район современных Тосканы и Лацио. Политически Этрурия представляла собой федерацию 12 самостоятельных городов-государств.

Искусством, в котором этруски, безусловно, опередили свое время, является зубоврачебная техника. Археологические находки рассказывают, какими изобретательными были древние дантисты. Для протезирования они использовали обточенные зубы телят и волов, а также вырезали протезы и коронки из кости, крепя их крошечными золотыми крючками. Этрусское изобретение – мосты – выполнялись из очень мягкого золота и крепились над линией десен с опорой на здоровые зубы. Интересно, что все известные челюсти, над которыми потрудились древнейшие из дантистов, принадлежали женщинам. Некоторые эксперты полагают, что золотые протезы могли подчеркивать положение их владелиц в обществе. Изящная форма некоторых мостов свидетельствует о том, что дантисты преследовали не только восстановительные, но и косметические цели.

Металлургия древности. Ювелирное искусство - основа металлургии


Фигурка быка, 4-е тысячелетие до н.э.

Всеобщее восхищение вызывают так называемые гранулированные (зерненые) украшения этрусков. Они представляют собой медные пластинки со сложными узорами, выложенными зернью – тысячами мельчайших (диаметром около 0,2 мм) золотых шариков. Ни у одного другого народа гранулированные изделия не достигали такой высокой степени совершенства. К концу 1-го тысячелетия искусство изготовления подобных украшений было утеряно. Только в XIX в. исследователи предприняли попытки восстановить секреты техники, но безрезультатно. Долгое время не могли объяснить, как можно прикрепить золотую крупинку к медному основанию, не расплавляя ее при этом. Если бы крупинка расплавилась, капля жидкого золота растеклась бы по меди. При охлаждении растекшаяся капля приварилась бы «намертво», но был бы утрачен изысканный внешний вид изделия.

Секрет был раскрыт только в 1933 г. Технология оказалась далеко не простой. Наиболее реальной представляется следующая версия: сначала узор из золотых шариков приклеивали к листу папируса, который затем накладывался на медную основу шариками вниз. Затем драгоценный «бутерброд» постепенно нагревали. Во время нагрева успевала произойти незначительная диффузия золота в медь, и наоборот. В результате в чрезвычайно узкой зоне контакта шарика и пластины образовывался медно-золотой сплав. Температура плавления чистого золота равна 1063 °С, а сплавы золота с медью плавятся при более низких температурах. Например, при 910 °С плавится сплав, состоящий из равного количества атомов золота и меди. Именно это обстоятельство является ключевым для разгадки секрета ювелиров Этрурии. Они повышали температуру до тех пор, пока расплавлялась только зона образовавшегося сплава, а сами золото и медь оставались в твердом состоянии. При последующем охлаждении расплав затвердевал, и золотая крупинка, практически не потеряв сферической формы, приваривалась к основанию из меди. Этот процесс одновременно происходил во всех крупинках, и весь приклеенный к папирусу узор оказывался как бы «сведенным» (по аналогии с переводными картинками) на медь. Папирус при столь высокой температуре сгорал дотла, и изделие было готово. Медь окислиться не успевала, так как процесс происходил достаточно быстро и значительную часть кислорода принимал на себя при сгорании папирус.

Секрет изготовления самих золотых шариков, применявшихся для зернения, был открыт еще позже – в 1992 г., когда удалось выяснить и доказать на практике (эксперименты были проведены в городе Мурло в Тоскане), что этрусские ювелиры сначала разрезали золотую проволоку на крошечные сегменты, которые затем смешивались с угольной пылью и нагревались в глиняных тиглях до 1100 °С – температуры, при которой зернышки золота начинали приобретать сферическую форму. Охлажденное содержимое высыпалось из тигля, уголь размывался, после чего зернышки сортировались по размерам.

Источник: Энциклопедия «Металлургия и время», Голубев О.В., Карабасов Ю.С., Коротченко Н.А., Черноусов П.И.

История металла, в каких годах был обнаружен

Есть в настоящее время 97 известных металлов , до 19 — го века, только 47 были обнаружены и из этих металлов, 33 из них были обнаружены в 18 — м веке. Семь металлов, которые люди идентифицировали и нашли применение в доисторические времена, были названы металлами древности . Они состояли из золота, серебра, меди, олова, свинца, железа, ртути.


Металлы древности

Золото

Золото было обнаружено примерно в доисторические времена, в каменном веке. Оно использовалось для денежных систем. Золото было найдено путем просеивания песка возле рек и пляжей, обнаружив твердые частицы золота. Во время правления царя Креза (561 — 547 гг. До н.э.) чеканились первые монеты из чистого золота

Медь была обнаружена примерно в доисторические времена и была очень значительным открытием, поскольку все первые инструменты, оружие и приспособления были сделаны из меди. В северном Ираке был обнаружен медный кулон, который, как полагают, датируется примерно 8700 г. до н.э.,

Серебро

Серебро было обнаружено примерно в 3000 году до нашей эры и в основном использовался в денежных системах, особенно в Римской и Китайской империях. Этот тип серебра представлял собой грубую огранку, известную как рубленое серебро, которую можно было использовать в торговле или для хранения богатства. В древней культуре серебро также можно было использовать для изготовления украшений, посуды и предметов, используемых в религиозных ритуалах.

Свинец

Свинец был обнаружен в древние времена и использовался для различных вещей. Римляне использовали этот металл для производства водопроводных труб и в качестве облицовки для ванн. Фактически, один из самых старых известных свинцовых артефактов, которому, как считается, 5820 лет, — это статуя, найденная в храме Осириса на месте Абидоса.

Олово

Олово было обнаружено примерно в 2100 году до нашей эры и использовалось как полироль для предотвращения коррозии, а также в качестве сплава. Например, олово и медь производили бронзу в процессе плавки, которое включало нагревание двух материалов с целью их плавления в жидкую форму. В этом случае олово и медь смешиваются вместе, образуя жидкую бронзу, которую затем охлаждают, чтобы создать металл.

Железо

Железо было обнаружено около 3500 г. до н.э. в процессе плавки. Это породило железный век примерно в 1200 году до нашей эры, когда металл обычно использовался для изготовления инструментов и оружия.

Ртуть

Ртуть была обнаружена около 1500 г. до н.э. Каждая цивилизация, знающая о ртути (Китай, Греция, Рим и некоторые части Индии), имела свои легенды о ртути, начиная от использования ее в качестве лекарства и заканчивая талисманом. Ртуть также была объединена с серой для создания красноватого минерала, который использовался в качестве пигмента для окрашивания одежды и полотенец. Он также использовался, чтобы помочь мех склеивать в фетровых шапках в 18 — м и 19 — го века.

Основные металлы и когда они были приблизительно открыты

Другие металлы

Трансурановые элементы

Металлический забавный факт

Знаете ли вы, что существует множество различных типов стали, включая нержавеющую сталь, оцинкованную сталь и углеродистую сталь?

Вы хотите сдать металлолом в Симферополе?

Если вы хотите сдать металлолом в Симферополе, то вы попали в нужное место. Продажа металлолома — отличный способ заработать дополнительные деньги, а также оказать положительное влияние на окружающую среду.

Древняя металлургия

Собственно металлургическое производство, т.е. процесс извлечения (экстракция) металлов из руд, берет свое начало в эпоху «неолитической революции» (10–6 тыс. лет до н.э.), когда человечеством была освоена технология термической обработки изделий. Первыми такими изделиями были керамические, а первым термическим агрегатом – костер без принудительного дутья, обеспечивающий температурный уровень 600–700 °С. С этого момента начинается постепенный рост температурного потенциала цивилизации, т.е. температурного уровня термообработки изделий и извлечения металлов из руд.

Температуры, необходимые для экстракции некоторых металлов из руд и термомеханической обработки основных материалов и металлов древности, а также основные термические устройства (печи), обеспечивающие эти температуры, представлены в таблице 2.

Таблица 2 – Температурный уровень производства основных материалов древности

и основные термические устройства

материал Температурный уровень производства, °С Тип агрегата Температурный уровень, °С
Бронза 650-1100 Костер без принудительного дутья 600-700
Керамика 700-1200 Горн – печь с принудительным дутьем; предназначена для обжига керамики и тигельной плавки металлов 700-950
Свинец и олово 800-900 «Волчья яма» - первый специальный агрегат для извлечения металлов из руд 900-1200
Медь 750-1200 Сыродутный горн До 1350
Железо 1150-1450 Домница и печь Телуэлла для стекловарения Свыше 1350
Стекло 1350-1700

Когда человек научился получать железо из руд, процесс его получения заключался в использовании сыродутных горнов и был малопроизводителен. Этот процесс стали улучшать - ввели обогащение железа углеродом и последующую его закалку. Так получилась сталь. И к 1-му тысячелетию до н.э. железо стало наиболее распространенным среди используемых человеком материалов (Европа, Азия) (рисунок 18).

Способы производства железа (стали) из руд в тиглях, помещенных в специальные горны (подобные древнейшим горнам, применявшимся для изготовления керамических изделий), и в ямах, получивших в Западной Европе название «волчьих», стали первыми в истории. Оба способа являются металлургическими приемами, унаследованными от освоенного ранее производства меди и бронзы, с существенными усовершенствованиями, связанными с природными отличиями руд металлов и их поведением в ходе плавки. Тигельная плавка была общедоступным кустарным способом производства, «домашняя» технология. С освоением же технологии получения металлов в «волчьих ямах» металлургия превратилась в первую настоящую индустрию (рисунок 19). Однако уже к началу Новой эры архаичная «волчья яма» была практически повсеместно вытеснена гораздо более прогрессивным металлургическим агрегатом – сыродутным горном, тигельный же процесс выплавки железа из руд получил дальнейшее развитие (прежде всего в странах Азии), поскольку позволял, хотя и в небольших количествах, получать сталь высочайшего, даже по современным стандартам, качества.


Рисунок 18 - Железная колонна в Дели (IV—V вв. н. э.)

Отличия металлургических агрегатов, в которых обрабатывалась железная руда, от их предшественников, заключались в следующем:

1) для восстановления железа из оксидов требовалось значительно большее количество древесного угля, чем при плавке медной руды, где он играл роль только источника тепла;

2) конструкция горна и технология плавки должны были обеспечивать существенно более высокий температурный уровень процесса, поскольку разделение железа и пустой породы возможно только после перевода одного из материалов в расплавленное состояние, в конкретном случае – после образования шлака.

Минимальная температура формирования шлакового расплава, основной составляющей которого является минерал фаялит (Fe2SiO4) составляет около 1200 °С. При производстве меди и бронзы температура в печи составляла не более 1000 °С. Поэтому для повышения температурного уровня процесса необходимо было применение более мощных воздуходувных средств или создание условий для интенсивного естественного притока воздуха. В древности пытались снизить температуру плавления шлака путем добавления в шихту специальных флюсующих добавок, например в Месопотамии и Малой Азии для этих целей еще во II тыс. до н.э. использовалась смесь костной золы и доломита. Однако этот способ мог давать ощутимый эффект лишь в отдельных случаях и только при тигельной плавке.

Рисунок 19 – «Волчья» яма

Тигельный способ производства ковкого железа, а впоследствии стали, был повсеместно распространён уже в Древнем Мире. Тяготение европейской металлургии к сыродутной плавке железа наметилось лишь в последние столетия этой эпохи. В Азии тигельная плавка просуществовала в качестве основной металлургической технологии до конца 19 в.

Для тигельной плавки применялись тигли цилиндрической формы высотой до 1,2 м и внутренним диаметром до 12 см (рисунок 20). Толщина стенок составляла от 2 до 4 см. Материалом для изготовления тиглей служила специальная смесь из песка и жаростойкой глины. Тигли изготавливались по «шаблону» – матерчатому чулку. Они могли выдерживать температуру до 1650 ºС. Сверху тигли закрывались полусферическими крышками с отверстиями в центральной части для выхода газов во время плавки.



Рисунок 20 – Конструкция тигля (а) и схема горна для тигельной плавки (б)

В состав шихты входили: железная руда, древесный уголь и флюсы, из которых наиболее часто использовался доломит. Все шихтовые материалы предварительно дробили до крупности лесного ореха и тщательно перемешивали. Шихту загружали в предварительно обожженные тигли, которые затем помещались в горн и частично засыпались гравием для устойчивости.

Окончательный состав стали формировался в нижней части тигля в результате просачивания капель металла через слой ранее образовавшегося и более легкого шлака.

Тигель оставался в горне после окончания процесса до полного остывания. Остывший слиток металла извлекали, разбивая тигель. Его масса редко превышала 2–3 кг, но этого количества было вполне достаточно для изготовления клинка или деталей доспехов.

Секрет высокого качества тигельной стали заключался в длительном контакте сначала крицы, а позднее – расплавленного металла, с железистым шлаком. При этом из металла в шлак переходили наиболее вредные, с точки зрения качества металла, примеси: фосфор и сера.

Сыродутный горн(рисунок 21) стал первым металлургическим агрегатом, специально предназначенным для производства железа из руд. Его конструкция – следствие желания древних металлургов повысить интенсивность поступления в агрегат воздуха, что было необходимо для повышения температуры процесса.

Высота сыродутного горна составляла не более 1,5 м, и он легко обслуживался вручную (рисунок 22).

Сыродутный горн примерно на две трети высоты наполняли древесным углем и лишь после этого укладывали шихту. Над верхней частью горна снова укладывали древесный уголь так, чтобы образовалось небольшое коническое возвышение. Воспламенение древесного угля осуществляли через канал для выпуска шлака, который наполняли мелкими дровами и хворостом. Подача в горн дутья приводила к разжиганию угля, углерод которого в условиях недостатка кислорода горел до оксида углерода (СО). Таким образом, в печи создавалась восстановительная среда, способствовавшая восстановлению железа из оксидов.


Рисунок 21 - Общее устройство сыродутного горна

и принципиальная схема процесса

Температура нагрева материалов в горнах не превышала 1300 ºС, что недостаточно для плавления получавшегося в результате процесса низкоуглеродистого железа. Поэтому продуктом процесса была «крица». Крица представляла собой пористый (похожий на губку) материал – спек неравномерного по химическому составу железа со шлаком.

Нагретые до тестообразного состояния пластичные частицы железа, слипаясь и свариваясь вместе на лещади горна, образовывали крицу (от старославянского слова «кръч» – кузнец).

Пористую крицу, пропитанную железистым шлаком, отжимали для его удаления под специальными деревянными прессами около горна.

В результате процесса, продолжавшегося около суток, формировалась одна или несколько криц. На первых порах освоения технологии масса крицы редко превышала 1–2 кг. Однако впоследствии научились производить крицы массой 25–40 кг, а в наиболее производительных каталонских горнах – до 120–150 кг.


Рисунок 22 – Работа сыродутных горнов

Шлак постоянно вытекал из печи через специальный канал в ее нижней части. Конечный шлак, вытекавший из сыродутного горна, содержал до 50–55% FeO, 10–15% Fe2O3 (Fe2O3 относится к переходящему в шлак магнетиту FeO-Fe2O3).

Состав конечного шлака одного из якутских сыродутных горнов был следующим, %: FeO – 48,5; Fe2O3 – 14,82; SiO2 – 23,01; А12О3 – 2,67; MnO – 3,48; CaO – 2,84; P2O5 – 0,87.

Для сравнения, шлак современной доменной печи содержит 0,5–1,0% FeO, и из каждой 1000 кг шихты лишь 3–5 кг железа переходит в шлак, а 997-995 кг железа – в чугун. В сыродутном горне из каждой 1000 кг Fe-шихты в металлическую крицу переходило железа не более 600–700 кг. Вся остальная масса железа (300–400 кг) не восстанавливалась и терялась безвозвратно с вытекающим из горна шлаком.

Основность (CaO/SiO2) шлаков сыродутных горнов не превышала 0,1–0,3, поэтому десульфурации металла (FeS + CaO = CaS + FeO) почти не имела места и сера шихты переходила в крицу. Качественный металл получали из чистых по сере руд. Кричное малоуглеродистое железо легко ковалось, но не позволяло получать литые изделия.

Необходимость извлечения крицы из горна требовала периодических остановок горна. Приходилось выламывать переднюю стенку горна, вытаскивать крицу и вновь восстанавливать кладку горна. Прерывистость, периодичность сыродутной плавки была одним из главных ее недостатков, обусловивших низкую производительность горнов.

Извлеченная из горна с помощью ломов или специальных клещей крица содержала большое количество включений шлака и несгоревшего угля. Поэтому ее подвергали механической обработке деревянными молотами для удаления вышеупомянутых примесей. Только после этого приступали к термомеханической обработке металла.

Сыродутные горны отличались большим разнообразием конструкций (рисунок 23).


в - переходная форма от «волчьей ямы» к низкому горну; г – сыродутный горн из горных районов Румынии

Рисунок 23 – Конструкции сыродутных горнов

К важнейшим недостаткам сыродутного процесса относятся: низкие температура зоны горения древесного угля и степень использования энергии газов, высокий уровень потерь железа со шлаком, прерывистость процесса. Дальнейшее развитие техники плавки железных руд шло по пути совершенствования конструкции сыродутных горнов и устранения недостатков.

После предварительной обработки раскованное кричное железо-сырец поступало в кузницу. Главным технологическим приемом здесь служила горячая ковка. Кузнечную ковку можно производить только с металлом, находящимся в пластичном состоянии, поэтому железо подвергали нагреву в кузнечном горне. Окалину удаляли, применяя специальные флюсы, которыми посыпали места сварки.

Древнейшие металлы человечества

“Семь металлов создал свет по числу семи планет” — в этих немудреных стишках был заключен один из важнейших постулатов средневековой алхимии. В древности и в средние века и было известно лишь семь металлов и столько же небесных тел (Солнце, Луна и пять планет, не считая Земли). По мнению тогдашних светил науки, не увидеть в этом глубочайшую философскую закономерность могли только глупцы да невежды. Стройная алхимическая теория гласила, что золото представлено на небесах Солнцем, серебро — это типичная Луна, медь, несомненно, связана родственными узами с Венерой, железо олицетворяется Марсом, ртуть соответствует Меркурию, олово — Юпитеру, свинец — Сатурну. До XVII века металлы и обозначались в литературе соответствующими символами.


Рисунок 1 - Алхимические знаки металлов и планет

В 1789 г. французский химик Лавуазье дает перечень известных тогда 17 металлов: к перечисленным выше добавились - сурьма, мышьяк, висмут, кобальт, марганец, молибден, никель, платина, вольфрам, цинк.

В настоящее время известно более 80 металлов, большинство которых используется в технике.

С 1814 г. по предложению шведского химика Берцелиуса для обозначения металлов используются буквенные знаки.

Первым металлом, который человек научился обрабатывать, было золото. Самые древние вещи из этого металла изготовлены в Египте примерно 8 тыс. лет назад. В Европе 6 тыс. лет тому назад первыми начали изготовлять из золота и бронзы ювелирные украшения и оружие фракийцы, жившие на территории от Дуная до Днепра.

Историки выделяют три этапа в развитии человечества: каменный век, бронзовый и железный.

В 3 тыс.до н.э. люди начали широко применять в своей хозяйственной деятельности металлы. Переход от каменных орудий к металлическим имел колоссальное значение в истории человечества. Пожалуй, никакое другое открытие не привело к таким значительным общественным сдвигам.

Первым металлом, получившим широкое распространение, была медь (рисунок 2).


Рисунок 2 - Карта-схема территориально-хронологического распространения металлов в Евразии и Северной Африке

На карте хорошо видно расположение древнейших находок металлических изделий. Почти все известные артефакты, относящиеся к периоду с конца IX по VI тыс. до н.э. (т.е. до того, как в Месопотамии широко распространилась культура типа Урук), происходят всего из трех десятков памятников, рассеянных по обширной территории в 1 млн. км 2 . Отсюда извлечено около 230 мелких образцов, причем 2/3 из них принадлежат двум поселениям докерамического неолита — Чайоню и Ашикли.

Постоянно разыскивая необходимые им камни, наши предки, надо думать, уже в древности обратили внимание на красновато-зеленые или зеленовато-серые куски самородной меди. В обрывах берегов и скал им попадались медный колчедан, медный блеск и красная медная руда (куприт). Поначалу люди использовали их как обыкновенные камни и обрабатывали соответствующим способом. Вскоре они открыли, что при обработке меди ударами каменного молотка ее твердость значительно возрастает, и она делается пригодной для изготовления инструментов. Таким образом, вошли в употребление приемы холодной обработки металла или примитивной ковки.

Затем было сделано другое важное открытие — кусок самородной меди или поверхностной породы, содержавшей металл, попадая в огонь костра, обнаруживал новые, не свойственные камню особенности: от сильного нагрева металл расплавлялся и, остывая, приобретал новую форму. Если форму делали искусственно, то получалось необходимое человеку изделие. Это свойство меди древние мастера использовали сначала для отливки украшений, а потом и для производства медных орудий труда. Так зародилась металлургия. Плавку стали осуществлять в специальных высокотемпературных печах, представлявших собой несколько измененную конструкцию хорошо известных людям гончарных печей (рисунок 3).


Рисунок 3 - Плавка металла в Древнем Египте (дутьё подаётся мехами, сшитыми из шкур животных)

В Юго-Восточной Анатолии археологи открыли очень древнее поселение докерамического неолита Чайоню Тепеси (рисунок 4), которое поразило неожиданной сложностью каменной архитектуры. Ученые обнаружили среди руин около сотни мелких кусочков меди, а также множество осколков медного минерала — малахита, некоторые из них были обработаны в виде бусин.


Рисунок 4 - Поселение Чайоню Тепеси в Восточной Анатолии: IX-VIII тысячелетия до н.э. Здесь был обнаружен древнейший металл планеты

Вообще говоря, медь — мягкий металл, сильно уступающий в твердости камню. Но медные инструменты можно было быстро и легко затачивать. (По наблюдениям С.А. Семенова, при замене каменного топора на медный, скорость рубки увеличивалась примерно в три раза.) Спрос на металлические инструменты стал быстро расти.

Люди начали настоящую «охоту» за медной рудой. Оказалось, что она встречается далеко не везде. В тех местах, где обнаруживались богатые залежи меди, возникала их интенсивная разработка, появлялось рудное и шахтное дело. Как показывают открытия археологов, уже в древности процесс добычи руды был поставлен с большим размахом. Например, вблизи Зальцбурга, где добыча меди началась около 1600 году до Р.Х., шахты достигали глубины 100 м, а общая длина отходящих от каждой шахты штреков составляла несколько километров.

Древним рудокопам приходилось решать все те задачи, которые стоят и перед современными шахтерами: укрепление сводов, вентиляция, освещение, подъем на гора добытой руды. Штольни укрепляли деревянными подпорками. Добытую руду плавили неподалеку в невысоких глиняных печах с толстыми стенками. Подобные центры металлургии существовали и в других местах (рисунки 5,6).


Рисунок 5 – Древние рудники


Рисунок 6 – Орудия древних рудокопов

В конце 3 тыс.до н.э. древние мастера начали использовать свойства сплавов, первым из которых стала бронза. На открытие бронзы людей должна была натолкнуть случайность, неизбежная при массовом производстве меди. Некоторые сорта медных руд содержат незначительную (до 2%) примесь олова. Выплавляя такую руду, мастера заметили, что медь, полученная из нее, намного тверже обычной. Оловянная руда могла попасть в медеплавильные печи и по другой причине. Как бы то ни было, наблюдения за свойствами руд привели к освоению значения олова, которое и стали добавлять к меди, образуя искусственный сплав — бронзу. При нагревании с оловом медь плавилась лучше и легче подвергалась отливке, так как становилась более текучей. Бронзовые инструменты были тверже медных, хорошо и легко затачивались. Металлургия бронзы позволила в несколько раз повысить производительность труда во всех отраслях человеческой деятельности (рисунок 7).

Само производство инструментов намного упростилось: вместо того, чтобы долгим и упорным трудом оббивать и шлифовать камень, люди наполняли готовые формы жидким металлом и получали результаты, которые и во сне не снились их предшественникам. Техника литья постепенно совершенствовалась. Сначала отливку производили в открытых глиняных или песчаных формах, представлявших собой просто углубление. Их сменили открытые формы, вырезанные из камня, которые можно было использовать многократно. Однако большим недостатком открытых форм было то, что в них получались только плоские изделия. Для отливки изделий сложной формы они не годились. Выход был найден, когда изобрели закрытые разъемные формы. Перед литьем две половинки формы крепко соединялись между собой. Затем через отверстие заливалась расплавленная бронза. Когда металл остывал и затвердевал, форму разбирали и получали готовое изделие.


Рисунок 7 – Бронзовые инструменты

Такой способ позволял отливать изделия сложной формы, но он не годился для фигурного литья. Но и это затруднение было преодолено, когда изобрели закрытую форму. При этом способе литья сначала лепилась из воска точная модель будущего изделия. Затем ее обмазывали глиной и обжигали в печи.

Воск плавился и испарялся, а глина принимала точный слепок модели. В образовавшуюся таким образом пустоту заливали бронзу. Когда она остывала, форму разбивали. Благодаря всем этим операциям мастера получили возможность отливать даже пустотелые предметы очень сложной формы. Постепенно были открыты новые технические приемы работы с металлами, такие как волочение, клепка, пайка и сварка, дополнявшие уже известные ковку и литье (рисунок 8).


Рисунок 8 – Золотая шляпа кельтского жреца

Пожалуй, самую крупную отливку из металла удалось сделать японским мастерам. Было это 1200 лет назад. Весит она 437 т и представляет собой Будду в позе умиротворения. Высота скульптуры вместе с пьедесталом — 22 м. Длина одной руки — 5м. На раскрытой ладони могли бы свободно танцевать четыре человека. Добавим, что знаменитая древнегреческая статуя — Колосс Родосский — высотой 36 м весила 12 т. Отлита она была в III в. до н. э.

С развитием металлургии бронзовые изделия, повсюду стала вытеснять каменные. Но не нужно думать, что это произошло очень быстро. Руды цветных металлов имелись далеко не везде. Причем олово встречалось гораздо реже, чем медь. Металлы приходилось транспортировать на далекие расстояния. Стоимость металлических инструментов оставалась высокой. Все это мешало их широкому распространению. Бронза не могла до конца заменить каменные инструменты. Это оказалось под силу только железу.

Кроме меди и бронзы широко использовались и другие металлы.

Древнейшими изделиями из свинца считаются найденные в Малой Азии при раскопках Чатал-Хююка бусы и подвески и обнаруженные в Ярым-Тепе (Северная Месопотамия) печати и фигурки. Эти находки датируются VI тыс. до н. К тому же времени относятся и первые железные раритеты, представляющие собой небольшие крицы, найденные в Чатал-Хююке. Старейшие серебряные изделия обнаружены на территории Ирана и Анатолии. В Иране их нашли в местечке Тепе-Сиалк: это пуговицы, датируемые началом V тыс. до н. В Анатолии, в Бейджесултане, найдено серебряное кольцо, датируемое концом того же тысячелетия.

В доисторические времена золото получали из россыпей путем промывки. Оно выходило в виде песка и самородков. Затем начали применять рафинирование золота (удаление примесей, отделение серебра), во второй половине 2-го тысячелетия до н.э. В 13-14 веках научились применять азотную кислоту для разделения золота и серебра. А в 19 веке был развит процесс амальгамации (хоть он и был известен в древности, но нет доказательств, что его использовали для добычи золота из песков и руд).

Серебро добывали из галенита, вместе со свинцом. Затем, через столетия, их начали выплавлять совместно (примерно к 3-му тысячелетию до н.э. в Малой Азии), а широкое распространение это получило еще спустя 1500-2000 лет.

Около 640 г. до н. э. начали чеканить монеты в Малой Азии, а около 575 г. до н. э. — в Афинах. По сути дела, это начало штамповочного производства.

Олово когда-то давно выплавляли в простых шахтных печах, после чего делалась его очистка специальными окислительными процессами. Сейчас в металлургии олово получают путем переработки руд по сложным комплексным схемам.

Ну, а ртуть производили путем обжига руды в кучах, при котором она конденсировалась на холодных предметах. Затем уже появились керамические сосуды (реторты), на смену которым пришли железные. А с ростом спроса на ртуть ее стали получать в специальных печах.

Железо было известно в Китае уже в 2357 г. до н. э., а в Египте — в 2800 г. до н. э., хотя еще в 1600 г. до н. э. на железо смотрели как на диковинку. “Железный век” в Европе начался приблизительно за 1000 лет до н. э., когда в государства Средиземноморья проникло от скифов Причерноморья искусство выплавки железа.

Использование железа началось намного раньше, чем его производство. Иногда находили куски серовато-черного металла, который, перекованный в кинжал или наконечник копья, давал оружие более прочное и пластичное, чем бронза, и дольше держал острое лезвие. Затруднение состояло в том, что этот металл находили только случайно. Теперь мы можем сказать, что это было метеоритное железо. Поскольку железные метеориты представляют собой железоникелевый сплав, можно предположить, что качество отдельных уникальных кинжалов, например, могло соперничать с современным ширпотребом. Однако, та же уникальность, приводила к тому, что такое оружие оказывалось не на поле боя, а в сокровищнице очередного правителя.

Железные орудия решительно расширили практические возможности человека. Стало возможным, например, строить рубленные из брёвен дома — ведь железный топор валил дерево уже не в три, как медный, а в 10 раз быстрее, чем каменный. Широкое распространение получило и строительство из тесаного камня. Он, естественно, употреблялся и в эпоху бронзы, но большой расход сравнительно мягкого и дорогого металла решительно ограничивал такие эксперименты. Значительно расширились также и возможности земледельцев.

Впервые железо научились обрабатывать народы Анатолии. Древнегреческая традиция считала открывателем железа народ халибов, для которых в литературе использовалось устойчивое выражение «отец железа», и само название народа происходит именно от греческого слова Χ?λυβας («железо»).

«Железная революция» началась на рубеже I тысячелетия до н. э. в Ассирии. С VIII века до н. э сварное железо быстро стало распространяться в Европе, в III веке до н. э. вытеснило бронзу в Галлии, во II веке новой эры появилось в Германии, а в VI веке нашей эры уже широко употреблялось в Скандинавии и в племенах, проживающих на территории будущей Руси. В Японии железный век наступил только в VIII веке нашей эры.

Вначале получали только маленькие партии железа, и в течение нескольких столетий оно стоило порой в сорок раз дороже серебра. Торговля железом восстановила процветание Ассирии. Открылся путь для новых завоеваний (рисунок 9).


Рисунок 9 - Печь для выплавки железа у древних персов

Увидеть же железо жидким металлурги смогли только в XIX веке, однако, ещё на заре железной металлургии — в начале I тысячелетия до новой эры — индийские мастера сумели решить проблему получения упругой стали без расплавления железа. Такую сталь называли булатом, но из-за сложности изготовления и отсутствия необходимых материалов в большей части мира эта сталь так и осталась индийским секретом на долгое время.

Более технологичный путь получения упругой стали, при котором не требовались ни особо чистая руда, ни графит, ни специальные печи, был найден в Китае во II веке нашей эры. Сталь перековывали очень много раз, при каждой ковке складывая заготовку вдвое, в результате чего получался отличный оружейный материал, называемый дамаском, из которого, в частности, делались знаменитые японские катаны.

Металлы в древнем мире

Подписатся

Тайны древних сплавов

12 июля 2017

Фото: Владислав Стрекопытов

Результаты исследований древнейших находок металлических изделий показывают, что древние мастера не только владели обширными познаниями в области свойств металла и способах его обработки, но и то, что эти знания были универсальными.

Как могло получиться, что в период раннего и среднего бронзового века на огромной территории от Южного Урала до Адриатики, Персидского залива и Восточного Средиземноморья существовала единая технология выплавки металлов, да и составы получаемых сплавов были во многом идентичные? Ведь если принять за основу общепринятую теорию освоения человеком металлургии методом «случайного экспериментирования», технологии и методы выплавки металлов должны были довольно сильно отличаться друг от друга в разных центрах древней металлургии, находясь в зависимости от десятка различных факторов — различия минеральных видов руд, топлива, местных географических и климатических условий.

Исследования последних десятилетий серьезно пошатнули традиционный взгляд на историю освоения металлов человеком. Особенно много противоречий между эмпирическими фактами и устоявшейся теорией обнаруживается для самых ранних стадий древней металлургии, считает Андрей Скляров.

Скляров Андрей Юрьевич
Директор Фонда развития науки «III тысячелетие». писатель, режиссер, путешественник, исследователь, организатор ряда съемочно-исследовательских экспедиций в разные страны мира. Автор ряда книг и статей. Обладатель премии «Золотое перо Руси».

РЗ: Что можно сказать по поводу состава древних сплавов?
Установлено, что многие древнейшие бронзовые предметы изготовлены не из чистой меди, а из медно-мышьяковых сплавов. При этом производство мышьяковистых бронз даже на самом раннем этапе явно не было «случайным результатом», а имеет все признаки целенаправленного легирования меди мышьяком — причем не добавками к готовому металлу, а посредством смешивания медных и мышьяковистых руд на стадии плавки. Абсолютно нигде не обнаруживается никаких следов неудачных экспериментов с «неправильными» рудами.
Древние металлурги каким-то образом сразу использовали верный рецепт. Нигде нет следов и экспериментирования с топливом. В частности, при наличии больших залежей каменного угля в Турции ни на одном этапе своей деятельности древние металлурги его так и не пытались использовать. Для плавок всегда использовался только древесный уголь.

Фото: Владислав Стрекопытов

В целом получается, что в Анатолийско-Иранском очаге древний человек каким-то образом освоил сразу и вдруг довольно сложную, но при этом весьма эффективную технологию получения медных сплавов из руды.
Чаще всего в древних находках мы видим присутствие сплава обычной оловянистой бронзы с метеоритным железом. Также везде, где материалом предположительно служили металлы, относящиеся к древней цивилизации, в больших количествах присутствует никель. Еще в 20-е годы прошлого века при Британском королевском обществе была создана специальная комиссия, которая пыталась выяснить источники никеля в самых древних из известных металлических изделиях. Откуда взялся никель в самой древней бронзе, непонятно. В Турции есть находки бронзовых изделий, в которых 20–40% никеля. Это невозможно объяснить наличием в руде первичных примесей, так как 1,5% — это уже богатое металлом месторождение. Большинство залежей содержит еще меньше никеля. А месторождения никеля в Восточной Турции или Северном Иране неизвестны. Неужели руду возили за тысячи километров? Зато и в Восточной Турции, точно так же, как в Южной Америке, присутствуют древние сооружения с полигональной мегалитической кладкой. Но в этих регионах обнаруживаются не только абсолютно схожие сооружения, но и тот же состав бронзы.

РЗ: То есть можно говорить о древних технологиях, унифицированных в глобальном масштабе?
Да. В Перу тоже использовался в процессе плавки только древесный уголь, хотя на севере Перу масса антрацита. Вся бронза там тоже мышьяковистая, хотя проявления мышьяковых руд есть только высоко в горах. А производство датируется III тысячелетием до н. э.
Интереснейшие древние изделия — металлические стяжки, скреплявшие каменные блоки древних сооружений. В частности, знаменитый район Тиауанако в Боливии — там тоже нет ни одной находки с оловянистой бронзой. Здесь в составе всех изделий из бронзы помимо меди и мышьяка еще и никель, хотя нигде в округе никелевых руд нет. Ближайшие месторождения есть в Бразилии и в Колумбии. И туда и туда — 2000 км. Причем до определенного периода бронзовые изделия и посуда содержали в своем составе никель, а потом бронза стала просто мышьяковистой. Вывод — бронза с никелем была получена путем переплавки стяжек, скрепляющих плиты и блоки древних мегалитических сооружений. Данный вывод подкреплен результатами анализов содержания изотопов свинца в сплавах. А эти стяжки были выплавлены неизвестно кем и неизвестно когда.

Состав медных сплавов изделий Циркумпонтийской металлургической провинции

РЗ: Как же получали такие сплавы, причем массово?
Когда мы говорим о сплаве металлов, бронзе, латуни и так далее, все привыкли воспринимать стереотипно — сначала надо получить металлы в чистом виде, а потом сплавить. Да, так работает современная промышленность. Для примитивных технологий гораздо эффективнее выплавлять сразу из руды комплексный продукт.
Если это так, то отсюда получается очень интересный вывод — раннего периода, так называемого «медного века», в истории человечества, скорее всего, не было. А это значит, что древний человек, осваивая металлы, сразу перешел к плавке и сразу начал изготавливать сложные сплавы. Ранее нас учили, что для организации металлургического процесса нужно наличие высокоорганизованного общества. А на самом деле мы видим, что люди перешли к выплавке бронзы, когда еще не было никаких государственных образований. Это был период племенного уклада, когда люди жили небольшими общинами.

РЗ: Где были обнаружены древнейшие металлические изделия?
Самым древним свидетельством использования человеком металла считаются находки в неолитическом поселении на холме Чайоню-Тепеси в Юго-Восточной Анатолии (в верховьях реки Тигр). Металлические изделия были найдены в напластованиях холма, возраст которых по радиоуглероду составляет 9200 ±200 и 8750 ±250 лет до нашей эры.

РЗ: Можно ли в связи с этим сказать, что впервые люди научились обрабатывать металлы именно в Междуречье?
Еще не так давно шумерская цивилизация, располагавшаяся в Междуречье — обширном низменном районе между реками Тигр и Евфрат, считалась историками чуть ли не самой древнейшей цивилизацией на планете, с достижениями которой (равно как и с достижениями Древнего Египта) сравнивались новые археологические находки в других регионах. Порой датировки этих находок подгонялись под известные шумерские артефакты так, чтобы не нарушить почтенного звания Шумера как «древнейшей цивилизации».
Однако во второй половине ХХ века ситуация начала серьезно меняться. Резко возросло число находок, которые были куда совершеннее шумерских, но при этом оказывались более древними по возрасту. Датировки соседних с Древним Шумером культур уверенно поползли назад во времени, и ныне разрыв между ними достигает порой уже многие тысячи лет. Жители Древнего Шумера во многих сферах своей деятельности оказались вовсе не гениальными изобретателями, а всего лишь наследниками и продолжателями более древних народов. Именно такая ситуация имела место, например, с Бактрийско-Маргианским археологическим комплексом. Найденные здесь выполненные на высочайшем уровне изделия из бронзы датируются XXIII–XVIII тысячелетиями до н. э., а это гораздо древнее.
Дело в том, что металлургия невозможна без соответствующей сырьевой базы, а на территории Междуречья нет и не было сколь-нибудь серьезных рудных залежей. Так что шумерские мастера могли работать только с привозным сырьем (рудами) или уже со слитками металла, выплавленного в других регионах. То, что так и было, подтверждается переводами шумерских текстов, где указывается на весьма развитую систему торговли и обмена металлами не только с соседями, но и с весьма удаленными странами. В этих условиях трудно себе представить, чтобы искусство металлургии могло возникнуть в самом Древнем Шумере. Оно явно должно было иметь внешний источник.

1–2. Абсолютное сходство технологий полигональной кладки на сооружениях из Аладжа-хююка, Турция (1) и Куско, Перу (2).
3. Бронзовая маска культуры Саньсиндуй (Китай, III – начало I тысячелетия до н. э.). 4. Бронзовая маска (Перу). 5. Бронзовый «солнечный диск» из Аладжа-хююка (Турция)
Фото: Фонд развития науки "III тысячелетие"

РЗ: То есть «древнейшая» шумерская цивилизация от кого-то унаследовала технологию обработки металла?
Ни один народ, ни одна древняя культура не ставит себе в заслугу изобретение металлургии. Абсолютно все древние легенды и предания единодушно утверждают — умение получать и обрабатывать металлы народам дали некие могущественные боги. Боги, которые жили и правили на Земле много тысяч лет назад. Любопытно, что, согласно легендам и преданиям, те же самые боги обучили людей гончарному ремеслу. А ведь гончарное производство является жизненно необходимым для древней металлургии — без керамических тиглей тут никак не обойтись. Вдобавок для качественного обжига керамики требуются температуры, аналогичные температурам при металлургической плавке, а следовательно, нужны и схожие конструкции печей, обеспечивающие необходимый температурный режим. Более того. Те же боги дали людям и земледелие. И в этом случае получает вполне логичное объяснение та странная связь, которая существует между очагами древней металлургии и центрами древнейшего земледелия. Связь, которую историки подметили, но никак не объясняют.
Когда речь идет о древних богах, упоминаемых в легендах и преданиях, необходимо учитывать очень важный момент, что в этот термин наши предки вкладывали совсем иной смысл, нежели мы сейчас вкладываем в слово «Бог». Наш современный Бог — это сверхъестественное всесильное существо, обитающее вне материального мира и распоряжающееся всем и вся. Древние же боги в легендах и преданиях вовсе не столь могущественные — их способности хоть и превышают многократно способности людей, но вовсе не бесконечны. При этом довольно часто эти боги, для того чтобы что-то сделать, нуждаются в специальных дополнительных предметах, конструкциях или установках — пусть даже «божественных».

РЗ: Насколько уникальны находки древних металлических изделий, и ограничиваются ли они только регионом Междуречья?
Подобные находки есть и в древних поселениях на территории Анатолии. Таких поселений уже найдено немало, и еще больше подобных находок следует ожидать в ближайшем будущем, поскольку ныне археологические исследования в центральных и восточных районах Турции только набирают обороты. Есть подобные находки и в северо-западном Иране.
Характер находок во всех регионах Ближнего Востока, относящихся к раннему бронзовому веку, сходный, что свидетельствует о вхождении Северной Месопотамии, Восточной Анатолии, Западного Ирана и Северного Кавказа в единую культурную Сиро-Палестинскую зону, о которой писали и другие авторы. Наши исследования подтверждают эту точку зрения и позволяют говорить о том, что основой формирования этой зоны во многом стала общая традиция металлопроизводства.
Еще один регион распространения бронзы — Индия. Совершенно самостоятельный регион, где примерно в III тысячелетии до н. э. появляются бронзовые статуэтки, обладающие характерной стилистикой и очень высоким уровнем детализации. В III тысячелетии до н. э. изделия из бронзы появляются и в Китае. На территории Индокитая есть находки бронзовых изделий, относящихся к V тысячелетию до н. э.

Полигональная мегалитическая кладка (Ольянтайтамбо, Перу). Фото: Владислав Стрекопытов

Доисторический «Вторцветмет»
Разнообразие форм выемок под стяжки и их расположение привели участников экспедиции Фонда «III тысячелетие», которая посетила Тиауанако (Мексика) в 2007 году, к двум версиям того, как можно было изготавливать эти стяжки. Либо использовалось что-то типа модифицированной технологии порошковой металлургии, когда сначала в выемки засыпался порошок металла, а затем через него пропускался мощный импульс тока, в результате чего происходил быстрый и сильный нагрев частиц металла и они сплавлялись в единое целое. Либо создатели комплекса заливали в выемки расплавленный металл, для чего использовали мобильные портативные металлургические печи для плавки металла непосредственно на месте строительства. Более вероятным представляется второй вариант, тем более что и другие исследователи выдвигали именно это предположение.
К счастью, некоторые стяжки сохранились до наших дней и были найдены археологами. И, если ориентироваться на имеющиеся материалы, речь все-таки нужно вести об отливке стяжек. Химический анализ состава найденных археологами стяжек дал сенсационный результат. Этот анализ показал, что они содержат 95,15% меди, 2,05% мышьяка, 1,70% никеля, 0,84% кремния и 0,26% железа. Если наличие кремния и железа можно списать на остаточные примеси, которые имелись в исходной руде и флюсах, то присутствие в сплаве подобного количества мышьяка и никеля однозначно указывает на преднамеренное легирование этими элементами.

Одна из немногих сохранившихся стяжек (Аксум, Эфиопия). Фото: Владислав Стрекопытов

Первоначально историки не увидели в подобном составе металлических стяжек ничего обескураживающего, поскольку найденные в комплексе Тиауанако и близ него бронзовые изделия, которые относятся к одноименной культуре, имеют схожий состав. И даже наоборот, это сходство состава использовалось историками в качестве «доказательства» того, что сооружения древнего комплекса якобы создавались как раз индейцами культуры тиауанако три с половиной тысячи лет назад. Оставалась только одна проблема — отсутствие поблизости необходимых месторождений никелевых руд. Ясно, что вряд ли индейцы культуры тиауанако перемещались на тысячи километров в поисках необходимого металла. Кроме того, получение чистого никеля — процесс очень непростой и весьма капризный. И ныне основная часть никеля производится в качестве побочного продукта в ходе получения других металлов. Так что индейцам пришлось бы доставлять за две тысячи километров непосредственно руду. При этом никелевые руды не поддаются механическому обогащению, а содержание металла в рудах обычно очень невелико. Ясно, что это выходит за любые разумные рамки.
Однако проблема с источником никеля достаточно легко снимается, если не ограничиваться той картиной, которую историки нарисовали для древнего Тиауанако. Для этого нужно лишь учесть некоторые особенности в распространенности изделий из различных видов бронзы в данном регионе. На раннем этапе 80% всех изделий были изготовлены из трехкомпонентной бронзы (медь, мышьяк, никель), однако затем состав изделий сменяется оловосодержащей бронзой. При этом механические свойства оловянной бронзы мало отличаются от свойств трехкомпонентной бронзы.
Производство из трехкомпонентной бронзы просто закончилось в одночасье. Но источников олова (в отличие от источников никеля) в высокогорьях Перу и Боливии предостаточно. Тогда почему производство изделий из трехкомпонентной бронзы продолжалось весьма длительное время, а затем внезапно закончилось? Наиболее простое объяснение буквально лежит на поверхности. Производство изделий из трехкомпонентной бронзы закончилось, потому что иссяк источник. Медные и мышьяковистые руды никуда не делись — их и сейчас там очень много. Иссяк источник никеля, местоположения которого исследователи до сих пор не могут найти. И вряд ли найдут до тех пор, пока будут искать его среди местных руд.
Все встает на свои места, если предположить, что источником не только никеля, но и всех других составляющих трехкомпонентной бронзы для индейцев служили… стяжки, которые строители мегалитических сооружений в Тиауанако использовали для скрепления блоков. Индейцы не выплавляли трехкомпонентную бронзу из руд, а просто переплавляли эти стяжки и использовали уже готовый сплав для отливки из него своих собственных изделий. Это объясняет и сходство состава изделий из трехкомпонентной бронзы на обширной территории, и внезапное прекращение производства индейцами изделий из такой бронзы — в некий момент стяжки просто закончились.

Читайте также: