Металлы побочных подгрупп презентация 11 класс
Металлы, положение в периодической системе, строение, свойства и применение.
Вложение | Размер |
---|---|
metally.pptx | 2.13 МБ |
Подтяните оценки и знания с репетитором Учи.ру
За лето ребенок растерял знания и нахватал плохих оценок? Не беда! Опытные педагоги помогут вспомнить забытое и лучше понять школьную программу. Переходите на сайт и записывайтесь на бесплатный вводный урок с репетитором.
Вводный урок бесплатно, онлайн, 30 минут
Предварительный просмотр:
Подписи к слайдам:
МЕТАЛЛЫ. СТРОЕНИЕ, СВОЙСТВА, ПРИМЕНЕНИЕ «Металл суть светлое тело, которое ковать можно». Ломоносов М.В.
Содержание Характеристика элемента-металла по положению в ПСХЭ Изменение металлических свойств в ПСХЭ Металлы – простые вещества Химическая связь в металлах 5-6.Физические свойства Металлы – рекордсмены О применении металлов Металлы древности на службе у человека 10-11. Из истории сплавов 12-18. Чугун-материал для создания шедевров мирового искусства О роли металлов Используемая литература 21. Авторская страница
Изменение металлических свойств в ПСХЭ В группах: металлические свойства усиливаются причина: 1.увеличивается заряд ядра, 2.число электронов на внешнем э.у . не изменяется 3.радиус атома увеличивается В периодах: металлические свойства уменьшаются причина: 1. увеличивается заряд ядра 2. число электронов на внешнем э.у . увеличивается 3. радиус атома уменьшается
Металлы –простые вещества Типы кристаллических решёток металлов Кубическая Объёмно-центрированная кубическая Гранецентрированная Гексагональная кубическая плотноупакованная
Химическая связь в металлах В узлах кристаллической решётки атом-ионы , между которыми свободно перемещаются свободные электроны («электронный газ») Металлическая связь – связь между атом-ионами и относительно свободными электронами за счёт сил электростатического притяжения
Физические свойства металлов теплопроводность твёрдость плотность Ме металлический пластичность блеск и ковкость электропроводность
Физические свойства металлов (продолжение) Физические свойства металлов: пластичность, металлический блеск, теплопроводность и электропро - водность обусловлены наличием в кристаллической решётке металлов свободных электронов - «электронный газ».
Металлы - «рекордсмены» W - самый тугоплавкий Ag - самый электропроводный Li - самый лёгкий AI - самый распространённый Cs - самый легкоплавкий Au - лучший катализатор Cr - самый твёрдый Os - самый тяжёлый
О применении металлов Медь была первым металлом, которым овладел человек. Она открыла эру металлургии и дала миру первый сплав. Многие тысячелетия медь была основой материальной культуры и искусств Трудно переоценить уникальную роль меди в истории человеческой цивилизации.
Металлы древности на службе у человека Семь металлов создал свет по числу семи планет … Алхимики Золото (Au) – солнце Серебро (Ag) – луна Ртуть (Hg) – меркурий Медь (Cu) – меркурий Железо (Fe) – марс Олово ( Sn ) – юпитер Свинец ( Pb ) – сатурн
Из истории сплавов Бронза была первым сплавом, полученным человеком. Распространение бронзы началось с конца 4 тыс. до н.э. Древнейшие бронзовые изделия найдены на территории Ирана, Месопотамии, Турции. В конце 3 тыс. до н.э. бронза появилась в Индии, во 2 тыс. до н.э. – в Китае и Европе. В Америке бронзовый век охва - тывает период с VI по Х века н.э.
Из истории сплавов (продолжение) В железный век первыми пришли народы Африки. Они перешагнули из каменного века в железный минуя медный и бронзовый. Это связано с тем, что в Африке железные руды выходят на поверхность земли. Африканцы изобрели плавку железа в 600-400 годах до новой эры.
Чугун –материал для создания шедевров мирового искусства Санкт-Петербург –своеобразный музей, в котором собрано бесчисленное множество произведений изобразительного искусства, выполненных из чугуна. Рассмотрит лишь некоторые из них – чугунные ограды дворцов и набережных рек Санкт – Петербурга.
Чугун – материал для создания шедевров мирового искусства (продолжение) Воронихинская решётка у Казанского собора. Отлита в 1811 году. (Архитектор Воронихин А.Н.)
Чугун –материал для создания шедевров мирового искусства (продолжение) Решётка Летнего сада. 36 гранитных колонн, увенчанных вазами и урнами, и тончайшие ажурные звенья, украшенные позолоченными розетками, стали сокровищем мирового искусства. (Архитекторы Фельтен Ю.М. и Егоров П.Е.)
Чугун – материал для создания шедевров мирового искусства (продолжение) Ограда Русского музея (Михайловского дворца), 1819-1825 г (Архитектор Росси К.И.) До 1917 года назывался музеем Александра III .
Чугун – материал для создания шедевров мирового искусства (продолжение) Ограда набережной реки Фонтанки. Сооружена в 1780-1789 г по проекту архитектора Квасова А.В.
О роли металлов Металлы сыграли важную роль в истории человечества и несмотря на то, что в последнее время у них появился конкурент – полимерные материалы, металлы и сейчас продолжают занимать ведущее место в развитии цивилизации.
Используемая литература 1. Малышкина В. «Занимательная химия»- Санкт-Петербург, « Тригон », 1998г 2. Габриелян О.С. Настольная книга учителя. Химия. 9 класс/ Габриелян О.С., Остроумов И.Г.-М.: Дрофа, 2002г 3. Карцова А.А. «Химия без формул»-3-е изд., переработанное,- Санкт-Петербург: Авалон , Азбука – классика, 2005г 4. «Химия в картинках»- М.: 1998г
Авторы проекта: Завалюева Анастасия, ученица 10 класса Яблокова Елизавета, ученица 10 класса Руководитель проекта: Касимова Светлана Пакидевна , к.х.н., учитель химии, школа № 520 Колпинского района, г. Санкт- Петербург
По теме: методические разработки, презентации и конспекты
презентация к уроку Строение Земли 6 класс
Презентация прекрасно подойдёт как наглядное пособие на уроке географии в 6 классе при изучении строения Земли, литосферы.
"Амины: состав, строение.свойства", 11 класс
"Амины", 11 класс, учебник Гузей Л.С.
Презентация к уроку химии в 10 классе "Строение и химические свойства глюкозы".
Презентация к уроку химии в 10 классе: " Строение и химические свойства глюкозы".
Презентация по теме "Строение клетки" 10 класс
Презентация по теме "Строение клетки" 10 класс.
Презентация по химии на тему: "Целлюлоза, ее строения и химические свойства" (10 класс)
Презентация по химии на тему: "Целлюлоза, ее строения и химические свойства" (10 класс).
Презентация по физике "Строение вещества" 7 класс
Презентация создана учителем физики, работающем в ГБОУ № 609 с обучающимися с ОВЗ. Наглядный материал позволяет освоить успешно освоить изучаемый материал по физике в 7 классе.
Презентация «Бензол и его свойства» 10 класс УМК Габриелян О.С.
Презентация урока по теме «Бензол и его свойства» 10 класс УМК Габриелян О.С. Цели презентации:1.Дать понятие об аренах, как об одном из гомологических рядовуглеводородов.
Металлы побочных подгрупп
презентация к уроку на тему
Подгруппа меди (медь, серебро, золото) Подгруппа цинка (цинк, кадмий, ртуть) Переходные металлы (хром, марганец, молибден, вольфрам и др.) Подгруппа железа (железо, кобальт, никель) Платиновая группа (рутений, родий, палладий, осмий, иридий, платина) Металлы побочных подгрупп
Особенностью является наличие заполненного предвнешнего d- подуровня, достигаемое за счёт перескока электрона с внешнего s-подуровня. Причина такого явления заключается в высокой устойчивости полностью заполненного d-подуровня. Подгруппа меди. Cu, Ag Серебро Ag [ Kr ] 4d 10 5s 1 0, +1, +3 Медь Cu [Ar] 3d 10 4s 1 0, +1, +2
при 400–500°С : 2Cu + O 2 = 2CuO; при 1000°С : 4Cu + O 2 = 2Cu 2 O при 400°С : Cu + S = CuS ; при выше 400°С : 2Cu + S = Cu 2 S при нагревании с фтором, хлором, бромом образуются галогениды меди (II) Cu + Br 2 = CuBr 2 с йодом – образуеся йодид меди (I): 2Cu + I 2 = 2CuI Медь не реагирует с водородом, азотом, углеродом и кремнием В присутствии углекислого газа и паров воды её поверхность покрывается зелёным налётом, представляющим собой основной карбонат меди(II) ( CuOH )2CO3 Химические свойства меди
Растворяется в разбавленной азотной кислоте: 3Cu + 8HNO 3 = 3Cu(NO 3 ) 2 + 2NO + 4H 2 O Реагирует с концентрированными кислотами-окислителями: Cu + 2H 2 SO 4 = CuSO 4 + SO 2 + 2H 2 O; Cu + 4HNO 3 = Cu (NO 3 ) 2 + 2NO 2 + 2H 2 O Медь растворяется в водном растворе аммиака в присутствии кислорода воздуха с образованием гидроксида тетраамминмеди (II): 2Cu + 8NH 3 + 2H 2 O + O 2 = 2[ Cu (NH 3 ) 4 ](OH) 2 . Медь окисляется оксидом азота ( IV) 2Cu + NO 2 = Cu 2 O + NO и хлоридом железа( III) Cu + 2FeCl 3 = CuCl 2 + 2FeCl 2 Химические свойства меди
Соли Cu2+ обычно окрашены в голубой или зеленоватый цвет. Образование нерастворимого гидроксида меди ( II ) голубого цвета: CuSO4+ 2NH4OH = Cu(OH)2 + (NH4)2SO4 Образование красно-бурого осадка гексациано феррата ( II ) меди Качественная реакция на Cu 2+ 2Cu 2+ + [Fe(CN) 6 ] 4− → Cu 2 [Fe(CN) 6 ]↓
При обычных условиях реагирует с серой, образуя сульфид серебра (I): 2Ag + S = Ag 2 S, при нагревании с галогенами образуются галогениды серебра (I): 2Ag + Br 2 = 2AgBr. Серебро не реагирует с кислородом, водородом, азотом, углеродом и кремнием. Растворяется в разбавленной азотной кислоте 3Ag + 4HNO 3 = 3AgNO 3 + NO + 2H 2 O Реагирует с концентрированными кислотами-окислителями: 2Ag + 2H 2 SO 4 = Ag 2 SO 4 + SO 2 + 2H 2 O; Ag +2HNO 3 = AgNO 3 + NO 2 + H 2 O. Химические свойства серебра
Образование белого творожистого осадка Ag+ + Cl - = AgCl ↓ , растворимого в гидрате аммиака AgCl + 2NH4OH = [Ag(NH3)2] Cl Образование красного осадка Ag+ + CrO4 - = AgCrO4↓ Образование желтого осадка Ag+ +PO4 3- = Ag3PO4 ↓ Образование белого-чернеющего осадка Ag+ + S2O3 2- = Ag2S2O3 ( разлагается) Качественная реакция на Ag +
Цинк [ Ar ] 3d 10 4s 2 хрупкий переходный металл голубовато-белого цвета (тускнеет на воздухе, покрываясь тонким слоем оксида цинка). Ртуть [ Xe ] 4f 14 5d 10 6s 2 один из двух химических элементов (и единственный металл), простые вещества которых при нормальных условиях находятся в жидком агрегатном состоянии Подгруппа цинка. Zn , Hg
На воздухе покрывается оксидной пленкой, при сильном нагреве горит голубоватым пламенем 2Zn + O 2 = 2ZnO При н.у. Zn + Cl 2 = ZnCl 2 С парами воды при температуре красного каления Zn + H 2 O = ZnO + H 2 Вытесняет водород из разбавленых кислот Zn + 2HCl = ZnCl 2 + H 2 С разбавленной HNO3 4Zn + 10HNO 3 = 4Zn(NO 3 ) 2 + NH 4 NO 3 + 3H 2 O С концентрированными кислотами-окислителями Zn + 2H 2 SO 4 = ZnSO 4 + SO 2 + 2H 2 O; Zn + 4HNO 3 = Zn(NO 3 ) 2 + 2NO 2 + 2H 2 O Химические свойства цинка
Типичный переходный элемент. Zn + 2H 2 SO 4 = ZnSO 4 + SO 2 + 2H 2 O; Zn + 4HNO 3 = Zn(NO 3 ) 2 + 2NO 2 + 2H 2 O Оксид цинка: ZnCO 3 = ZnO + CO 2 ZnO + 2HCl = ZnCl 2 + H 2 O; ZnO + 2NaOH + H 2 O = Na 2 [Zn(OH) 4 ]. Гидроксид цинка: ZnCl 2 + 2NaOH = Zn(OH) 2 + 2NaCl Zn(OH) 2 + H 2 SO 4 = ZnSO 4 + 2H 2 O; Zn(OH) 2 + 2NaOH = Na 2 [Zn(OH) 4 ] Zn(OH) 2 + 4NH 3 = [Zn(NH 3 ) 4 ](OH) 2 Химические свойства цинка
Образование нерастворимого основания Zn 2+ + 2OH - = Zn(OH)2↓ + 2OH- = [Zn(OH)4] 2- осадок белого цвета, растворимый в избытке щелочи Качественная реакция на Zn 2+
Эл. Конфигурация [ Ar ] 3d 5 4s 1 В свободном виде — голубовато-белый металл с кубической решеткой, один из самых твердых чистых металлов (уступает только бериллию, вольфраму и урану). Очень чистый хром достаточно хорошо поддаётся механической обработке. Хром
Оксид хрома (2) - СrО – твердое ярко – красное вещество, типичный основной оксид (ему соответствует гидроксид хрома (2) - Сr (ОН) 2 ), не растворяется в воде, но растворяется в кислотах: СrО + 2НСl = СrСl 2 + Н 2 О окисляется на воздухе: 4СrО+ О 2 = 2Сr 2 О 3 Гидроксид хрома (2) - Сr (ОН) 2 – вещество желтого цвета, плохо растворимо в воде, с ярко выраженным основным характером, поэтому взаимодействует с кислотами: Сr (ОН) 2 + Н 2 SО 4 = СrSO 4 + 2Н 2 О Соединения хрома Cr 2+
Наиболее устойчивая с.о. хрома. Оксид хрома (3) - Сr 2 О 3 нерастворим в воде, тугоплавкий, по твёрдости близок к корунду, имеет амфотерный характер, однако в кислотах и щелочах растворяется плохо. С концентрированными растворами кислот и щелочей взаимодействует с трудом: Сr 2 О 3 + 6 КОН + 3Н 2 О = 2К 3 [ Сr (ОН) 6 ] Сr 2 О 3 + 6НСl = 2СrСl 3 + 3Н 2 О Гидроксид хрома (3) Сr (ОН) 3 получают: СrСl 3 +3КОН = Сr (ОН) 3 ↓ + 3КСl Легко взаимодействует с кислотами и щелочами, т.е. проявляет амфотерные свойства: Сr (ОН) 3 + 3НNО 3 = Сr (NО 3 ) 3 + 3Н 2 О Сr (ОН) 3 + 3КОН = К 3 [ Сr (ОН) 6 ] Соединения хрома Cr 3+
Оксид хрома (6) - СrО 3 – темно – красное кристаллическое вещество, хорошо растворимо в воде, типичный кислотный оксид. Этому оксиду соответствует две кислоты: СrО 3 + Н 2 О = Н 2 СrО 4 (хромовая кислота – образуется при избытке воды) СrО 3 + Н 2 О =Н 2 Сr 2 О 7 ( дихромовая кислота – образуется при большой концентрации оксида хрома (3)). Оксид хрома (6) – очень сильный окислитель Соединения хрома Cr 6 +
В кислой среде раствора хроматы переходят в дихроматы: 2К 2 СrО 4 + Н 2 SО 4 = К 2 Сr 2 О 7 + К 2 SО 4 + Н 2 О В щелочной среде дихроматы переходят в хроматы: К 2 Сr 2 О 7 + 2КОН = 2К 2 СrО 4 + Н 2 О Хромат и дихромат Хроматы и их растворы имеют желтую окраску, дихроматы – оранжевую. Хромат - ионы СrО42- и дихромат – ионы Сr2О72- легко переходят друг в друга при изменении среды растворов
Окислительные свойства Cr 6+ Дихроматы – сильные окислители . Под действием восстановителей в кислой среде переходят в соли хрома (III) K 2 Cr 2 O 7 + 3Na 2 SO 3 + 4H 2 SO 4 = Cr 2 (SO 4 ) 3 + 3Na 2 SO 4 + K 2 SO 4 + 4H 2 O Качественные реакции на хромат-ион BaCrO 4 PbCrO 4 Ag 2 CrO 4
Степени окисления и соединения Алюминотермическим методом, восстанавливая оксид Mn2O3, образующийся при прокаливании пиролюзита: Получение марганца
Соли Mn 2+ MnCl2 MnSO4
Соединения Mn 4+
Соединения М n 7+
Кислая среда Нейтральная среда Щелочная среда Окислительные свойства перманганата, в зависимости от среды реакции
Урок по теме: «Металлы побочных подгрупп. Железо»
план-конспект урока по химии (11 класс) на тему
· Показать строение железа, его физические свойства, разнообразие химических свойств железа на примере задания С-2; рассмотреть качественные реакции на ионы Fe 2+ и Fe 3+ .
· Расширить и углубить знания, связанные с ролью железа в организме человека(проектная деятельность учащихся).
· Привить навыки самостоятельной работы, научить выражать свои мысли четко и грамотно; использовать знания, полученные при изучении других предметов: биологии, экологии, физики ( межпредметные связи).
Вложение | Размер |
---|---|
otkrytyy_urok.docx | 44.11 КБ |
Предварительный просмотр:
«Металлы побочных подгрупп. Железо»
(11 класс, профильный уровень)
Учитель химии Гумецова Л.Ш.
- Показать строение железа, его физические свойства, разнообразие химических свойств железа на примере задания С-2; рассмотреть качественные реакции на ионы Fe 2+ и Fe 3+ .
- Расширить и углубить знания, связанные с ролью железа в организме человека(проектная деятельность учащихся).
- Привить навыки самостоятельной работы, научить выражать свои мысли четко и грамотно; использовать знания, полученные при изучении других предметов: биологии, экологии, физики ( межпредметные связи).
- Штативы с пробирками, спиртовки, спички, держатели.
- Реактивы: растворы FeCl 3 , KCNS, K 4 [Fe(CN) 6 ], HCl, CuSO 4 , HNO 3 , NaOH, яблочный сок.
Раздаточный материал: таблицы.
УРОК НАЧИНАЕТСЯ С РЕФЛЕКСИИ ЭМОЦИОНАЛЬНОГО СОСТОЯНИЯ И НАСТРОЕНИЯ.
Учитель: С каким настроением вы пришли на урок?
Ученики поднимают соответствующие смайлики. В конце урока учитель смотрит как изменилось эмоциональное состояние учащихся.
Учитель: Отсутствие какого металла описал академик А. Е. Ферсман?
«На улицах стоял бы ужас разрушения: ни рельсов, ни вагонов, ни паровозов, ни автомобилей не оказалось бы, даже камни мостовой превратились бы в глинистую труху, а растения начали бы чахнуть и гибнуть без этого металла. Разрушение ураганом прошло бы по всей Земле, и гибель человечества сделалась бы неминуемой. Впрочем, человек не дожил бы до этого момента, ибо лишившись трех граммов этого металла в своем теле и в крови, он бы прекратил свое существование раньше, чем развернулись бы нарисованные события».
Учитель: Про какой металл писал А.Е. Ферсман?
Учитель: Итак тема урока: « Металлы побочных подгрупп. Железо.
Рассмотрим строение атома железа.
Ученики: Железо находится в четвертом периоде, 8 группе, побочной подгруппе . Fe +26) 2 ) 8 ) 14 ) 2
Учитель: Определите степень железа в следующих соединениях: FeO, Fe 2 O 3 , FeSO 4 , Fe 2 (SO 4 ) 3 , K 2 FeO 4 .
Рассмотрим задание А-4(cлайд)
Одинаковую степень окисления железо проявляет в соединениях:
2.Fe 2 O 3 и Fe(NO 3 ) 2
3.Fe(OH) 3 и FeCl 2
Учитель: Какие физические свойства характерны для железа?
Железо — типичный металл , в свободном состоянии — серебристо-белого цвета с сероватым оттенком. Чистый металл пластичен , различные примеси (в частности — углерод ) повышают его твёрдость и хрупкость . Обладает ярко выраженными магнитными свойствами. Часто выделяют так называемую « триаду железа » — группу трёх металлов (железо Fe, кобальт Co, никель Ni), обладающих схожими физическими свойствами , атомными радиусами и значениями электроотрицательности .
Для железа характерен полиморфизм , оно имеет четыре кристаллические модификации:
Химические свойства железа
В химическом отношении железо относится к металлам средней активности. В электрохимическом ряду напряжений металлов железо расположено левее водорода.
При нагревании на воздухе выше 200 °С железо взаимодействует с кислородом, образуя оксиды нестехиометрического состава Fe x O, мелкодисперсное железо сгорает с образованием смешанного оксида железа (II, III):
3Fe + 2O 2 = Fe 3 O 4 .
С галогенами железо реагирует, образуя галогениды :
2Fe + 3Cl 2 = 2FeCl 3 ,
При взаимодействии с азотом при невысокой температуре железо, кобальт и никель образуют нитриды различного состава, например:
4Fe + N 2 = 2Fe 2 N
Взаимодействие с серой экзотермично и начинается при слабом нагревании, в результате образуются нестехиометрические соединения, которые имеют состав, близкий к ЭS:
С водородом металлы триады железа не образуют стехиометрических соединений, но они поглощают водород в значительных количествах.
С углеродом, бором, кремнием, фосфором также при нагревании образуют соединения нестехиометрического состава, например
В воде в присутствии кислорода железо медленно окисляется кислородом воздуха (корродирует):
4Fe + 3O 2 + 6H 2 O = 4Fe(OH) 3 .
При температуре 700–900 °С раскаленное железо реагирует с водяным паром:
3Fe + 4H 2 O = Fe 3 O 4 + 4H 2 .
Кобальт и никель с водой не взаимодействуют.
Железо реагирует с разбавленными растворами соляной и серной кислот, образуя соли железа (II):
Fe + 2HCl = FeCl 2 + H 2 ,
Fe + H 2 SO 4 = FeSO 4 + H 2 ;
с разбавленной азотной кислотой образует нитрат железа (III) и продукт восстановления азотной кислоты, состав которого зависит от концентрации кислоты, например:
Fe + 4HNO 3 = Fe(NO 3 ) 3 + NO + 2H 2 O.
При обычных условиях концентрированные (до 70 мас. %) серная и азотная кислоты пассивируют железо. При нагревании возможно взаимодействие с образованием солей железа (III):
2Fe + 6H 2 SO 4 = Fe 2 (SO 4 ) 3 + 3SO 2 + 6H 2 O,
Fe + 6HNO 3 = Fe(NO 3 ) 3 + 3NO 2 + 3H 2 O.
Разбавленные растворы щелочей на металлы триады железа не действуют. Возможно только взаимодействие железа с щелочными расплавами сильных окислителей:
Fe + KClO 3 + 2KOH = K 2 FeO 4 + KCl + H 2
Железо, кобальт и никель вытесняют металлы, которые расположены правее в электрохимическом ряду напряжений их растворов солей:
Fe + SnCl 2 = FeCl 2 + S
На грани химии, биологии и медицины возникла новая научная область бионеорганическая химия. Бионеорганическая химия рассматривает роль металлов в возникновении и развитии различных процессов в здоровом и больном организме, создаёт новые эффективные препараты на основе металлоорганических соединений, активно участвует в борьбе за сохранение здоровья людей и продление человеческой жизни. Особенно чутко организм реагирует на изменение концентрации микроэлементов, т.е. элементов, присутствующих в организме в количестве меньше одного грамма на 70кг массы человеческого тела. К таким элементам относятся медь, цинк, марганец, кобальт, железо, никель, молибден.
Открывается слайд 3: «Содержание некоторых металлов в организме человека в %».
Литий – 0,0001
Натрий – 0,03
Калий – 0,025
Кальций – 0,4
Магний – 0,05
Железо – 0,001
Марганец – 0,000001
Алюминий – 0,001
Цинк – 0,001
ФИЗИОЛОГИЧЕСКАЯ РОЛЬ ЖЕЛЕЗА
В организм человека железо поступает с пищей. Пищевые продукты животного происхождения содержат железо в наиболее легко усваиваемой форме. Некоторые растительные продукты также богаты железом, однако его усвоение организмом происходит тяжелее. Считается, что организм усваивает до 35% «животного» железа. В то же время другие источники сообщают, что этот показатель составляет менее 3% . Большое количество железа содержится в говядине, в говяжьей печени, рыбе (тунец), тыкве, устрицах, овсяной крупе, какао, горохе, листовой зелени, пивных дрожжах, инжире и изюме. При заметном дефиците железа в организме он может ликвидироваться приемом пищевых добавок, содержащих железо в хелатной (легкоусваиваемой) форме: глюконат железа, фумарат железа, цитрат железа и другие.
Усвоение железа снижается при чрезмерном потреблении чая и кофе, а также яиц. Чрезмерные дозы железа могут быть опасными для детей, больных наследственной анемией, поэтому железосодержащие добавки к пище могут быть использованы для детей только по назначению врача.
В организме взрослого человека содержится около 3-5 г железа; почти две трети этого количества входит в состав гемоглобина. Считается, что оптимальная интенсивность поступления железа составляет 10-20 мг/сутки. Дефицит железа может развиться, если поступление этого элемента в организм будет менее 1 мг/сутки. Порог токсичности железа для человека составляет 200 мг/сутки. Потребность в железе у женщин на 30-60 % больше, чем у мужчин вследствие его физиологических потерь. В течение месяца женщины теряют в 2 раза больше железа, чем мужчины. При беременности у женщин потребность в железе превышает обычную физиологическую. Потребность в железе особенно увеличена у будущей матери в последние три месяца беременности. Учитывая, что железо впрок не накапливается в организме, при недостаточном его поступлении с пищей (железо главным образом содержится в мясе) может возникнуть гипохромная микроцитарная анемия.
Всасывание железа в кишечнике зависит от потребности всего организме в этом элементе. У больных анемией всасывание железа происходит более эффективно, чем у здоровых людей. Это обусловлено тем, что переход железа из содержимого кишечника в плазму регулируется ферритином (комплексное образование соединений железа с белком апоферритином).
Недостаточность железа может развиться из-за его дефицита в пище (у грудных детей, содержащихся на искусственном вскармливании, при несвоевременном прикорме на фоне естественного вскармливания, так как с грудным молоком железо не поступает). Недостаточность железа возникает при наличии в диете больших количеств неорганического фосфора, с которым оно образует плохо растворимые соединения, либо при воспалительных процессах в кишечнике, которые сочетаются с нарушением ферритинового механизма.
Избыточное поступление в организм трехвалентного железа приводит в депонированию железа в плазме крови и тканях (гемосидерозу).
– На примере ионов железа попробуем определить, действительно ли оно содержится в организме?
– Какие качественные реакции на катионы железа 2+ и 3+ вы знаете?
(Учащиеся называют: на катион железа 3+ реактивы роданид калия и желтая кровяная соль, на катион железа 2+ реактив красная кровяная соль.)
– У вас на столах имеется оборудование для выполнения лабораторной работы.
Проведем качественную реакцию на ионы железа 3+, добавив к раствору соли железа роданид калия (КCNS).
(Образуется раствор кроваво-красного цвета ).
– На что похож полученный раствор?
Ученики: На кровь, венозную. Значит, ионы железа 3+ содержатся в организме.
Качественная реакция на ион железа (III) например вот такая
FeCl3 + 3 NaOH = Fe(OH)3 ↓+ 3 NaCl – реакция со щелочью
Качественная реакция на ион железа (III) – реакция с желтой кровяной солью.
3 К4[Fe(CN)6 ] +4 FeCl3 = KFe[Fe(CN)6])↓ + 12 KCl
Качественная реакция на ион железа (III) – реакция с роданидом калия.
FeCl3 + 3 КCNS = Fe(CNS)3 + 3 KCl
Качественная реакция на ион железа (II) – реакция с красной кровяной солью.
турнбуллева синь - KFe[Fe(CN)6]).
2 К3[Fe(CN)6 ] +3 FeSO4 = KFe[Fe(CN)6])↓ + 3K2SO4
Качественная реакция на ион железа (II) – реакция со щелочью.
FeSO4 +2 NaOH = Fe(OH)2 ↓ + Na2SO4
Учитель: Проверим, есть ли ионы железа 3+ в продуктах питания?
В пробирку с яблочным соком учащиеся приливают раствор желтой кровяной соли K 3 [Fe(CN) 6 ].
(Образуется осадок синего цвета .)
Учитель: Проанализируем Таблицу 1 «Металлы в организме человека» (см. Приложение 1 ).
– Скажите, где содержится в основном железо в организме?
Учащиеся: В мышечной ткани, большая часть в крови.
Учитель: Что нужно делать при недостатке железа в организме? Какие продукты употреблять?
По Таблице 2 «Содержание железа в продуктах питания» (см. Приложение 2 ) определите, в каких продуктах больше всего содержится железа?
Рассмотрим задание С-2.
Железо сожгли в хлоре. Продукт реакции растворили в воде и в раствор внесли железные опилки. Через некоторое время раствор профильтровали и в фильтрат добавили сульфид натрия. Выделившийся осадок отделили и обработали 20% ной серной кислотой, получив бесцветный раствор. Напишите уравнения описанных реакций.
Рассмотрим задание С-4.
5,6 г чистого железа растворили в 100 мл 10%- ного раствора соляной кислоты (р=1,05г/мл). Вычислите массовую долю хлороводорода в полученном растворе.
Презентация по химии на тему "Металлы побочной подгруппы" 11 класс
Титан — химический элемент с атомным номером 22. Принадлежит к 4-й группе периодической таблицы химических элементов. Атомная масса элемента 47,867
Титан — лёгкий прочный металл серебристо-белого цвета. Обладает высокой коррозионной стойкостью.
Получение
Получают титан из синтетического рутила или титанового шлака получаемые при переработке ильменитовых концентратов. Для получения титанового шлака из ильменитовых концентратов его восстанавливают в дуговой печи. Богатый шлак перерабатывают хлоридным или сернокислотным способом.
Концентрат титановых руд подвергают сернокислотной или пирометаллургической переработке. Продукт сернокислотной обработки — порошок диоксида титана TiO2. Пирометаллургическим методом руду спекают с коксом и обрабатывают хлором, получая пары тетрахлорида титана TiCl4.
Физические свойства
Титан — лёгкий серебристо-белый металл. При нормальном давлении существует в двух кристаллических модификациях.
Пластичен, сваривается в инертной атмосфере. Прочностные характеристики мало зависят от температуры, однако сильно зависят от чистоты и предварительной обработки.
Имеет высокую вязкость, при механической обработке склонен к налипанию на режущий инструмент, и поэтому требуется нанесение специальных покрытий на инструмент, различных смазок.
Химические свойства
Устойчив к коррозии благодаря оксидной плёнке, но при измельчении в порошок, а также в тонкой стружке или проволоке титан пирофорен. Титановая пыль имеет свойство взрываться. Температура вспышки — 400 °C. Титановая стружка пожароопасная.
Титан устойчив к разбавленным растворам многих кислот и щелочей (кроме HF, H3PO4 и концентрированной H2SO4). Титан устойчив к влажному хлору и водным растворам хлора. При нагревании на воздухе до 1200 °C Ti загорается ярким белым пламенем с образованием оксидных фаз переменного состава TiOx.
Приминение
Титан в виде сплавов является важнейшим конструкционным материалом в авиа- и ракетостроении, в кораблестроении.
Металл применяется в химической промышленности (реакторы, трубопроводы, насосы, трубопроводная арматура), военной промышленности (бронежилеты, броня и противопожарные перегородки в авиации, корпуса подводных лодок), промышленных процессах (опреснительных установках, процессах целлюлозы и бумаги), автомобильной промышленности, сельскохозяйственной промышленности, пищевой промышленности, спортивных товарах, ювелирных изделиях, мобильных телефонах, лёгких сплавах и т. д.
Презентация по химии " Металлы побочных подгрупп" ( аудитория 9,11 классы)
Объясни ответ!
1) Какой элемент с точки зрения строения атома наиболее существенно отличается от трех остальных:
а) алюминий б) железо
в) кальций г) калий?
Важной особенностью атомов d-металлов является наличие свободных орбиталей (на (n - 1)d -, ns - образованию и nр-подуровнях), что позволяет им образовывать донорно-акцепторные (координационные) связи с различными донорами неподеленных электронных пар (молекулы NH3, Н2O, ионы ОН-, CN- и др.).
Вследствие этого d-металлы образуют многочисленные и разнообразные комплексные соединения; например:
В свободном состоянии d -металлы (как и вообще все металлы) являются восстановителями. Восстановительная активность различных d - металлов изменяется в широких пределах: среди них есть металлы средней активности, находящиеся в ряду напряжений до водорода (Fe, Cr , Zn , Mn и др.); малоактивные металлы (Сu, Нg и др.) и благородные металлы (Au , Pt и др.), располагающиеся в ряду напряжений после водорода.
Железный век продолжается …
90% всего
количества
металлов и
металлических
сплавов
приходится на
железные
сплавы.
21.04.2022
15
FeO - основной оксид
Fe2O3 - при высокой температуре амфотерный
FeCl3 + 3KOH →Fe(OH)3↓ +3KCl
FeCl2 + 2KOH →Fe(OH)2↓ +2KCl
4 Fe(OH)2↓ + О2 +2Н2О →4 Fe(OH)3↓
на воздухе окисление идет
бурого цвета
Зеленого цвета
Исследование.
Опыт 1: Свойства соединений хрома.
В пробирку с раствором соли хрома Сr(NО3)3 прибавить по каплям раствор NaОН до образования осадка. Полученный осадок разлить в две пробирки. В одну из них прилить раствор серной кислоты или соляной, а в другую NaОН. Что наблюдается?
Напишите уравнения следующих реакций:
1.Сr(NO3)3 c NaOH
2.Cr(OH)3 с серной кислотой
3.Сr(ОН)3 с избытком NaОН
Опыт 2: Окислительные свойства дихроматов.
К раствору К2Сr2O7 прибавить раствор серной кислоты, а затем раствор сернисто-кислого натрия (Na2SО3). Наблюдать изменение окраски. Написать уравнение окислительно – восстановительной реакции.
Опыт 3: Перевод хроматов в дихроматы.
К раствору К2СrO4 прибавить раствор серной кислоты. Наблюдать изменение окраски. К полученному раствору прибавить гидроксид натрия или калия. Наблюдать изменения окраски. Записать наблюдения и уравнения реакций.
Опыт 4.исследование К2Cr2О7 К насыщенному раствору добавьте конц. Серной кислоты. Реакция охлаждается снегом. Обратите внимание на выпадения кристаллов CrO3. Запишите уравнения и признаки реакции.
Задания:
1.Объясните, почему в одном случае соль, содержащая хром, изменяет окраску, лакмуса в красный цвет, а в другом в синий.
2. Почему ион Cr+2 является восстановителем, а ион Cr+6 - окислителем.
Задача: Какой объём 5,6% р-ра едкого кали ( пл. 1,05 г/мл) необходим для полного растворения 1,5 моль осадка гидроксида хрома (III) с образованием кислой соли.
Самостоятельная работа на 6 мин.
!)В химии для обнаружения иона Fe+2 в растворе используют реагент, формула которого:
а) NaOH; б) K2SO4; в) окраска цвета пламени.
2) Вычислите объем газа (н.у.), который образуется при растворении железа в 8,1 г раствора бромоводородной кислоты содержащей 20% бромоводорода.
Рабочие листы и материалы для учителей и воспитателей
Более 3 000 дидактических материалов для школьного и домашнего обучения
Читайте также: