Металлы побочных подгрупп презентация 11 класс

Обновлено: 07.01.2025

Металлы, положение в периодической системе, строение, свойства и применение.

ВложениеРазмер
metally.pptx 2.13 МБ
Подтяните оценки и знания с репетитором Учи.ру

За лето ребенок растерял знания и нахватал плохих оценок? Не беда! Опытные педагоги помогут вспомнить забытое и лучше понять школьную программу. Переходите на сайт и записывайтесь на бесплатный вводный урок с репетитором.

Вводный урок бесплатно, онлайн, 30 минут

Предварительный просмотр:

Подписи к слайдам:

МЕТАЛЛЫ. СТРОЕНИЕ, СВОЙСТВА, ПРИМЕНЕНИЕ «Металл суть светлое тело, которое ковать можно». Ломоносов М.В.

Содержание Характеристика элемента-металла по положению в ПСХЭ Изменение металлических свойств в ПСХЭ Металлы – простые вещества Химическая связь в металлах 5-6.Физические свойства Металлы – рекордсмены О применении металлов Металлы древности на службе у человека 10-11. Из истории сплавов 12-18. Чугун-материал для создания шедевров мирового искусства О роли металлов Используемая литература 21. Авторская страница

Изменение металлических свойств в ПСХЭ В группах: металлические свойства усиливаются причина: 1.увеличивается заряд ядра, 2.число электронов на внешнем э.у . не изменяется 3.радиус атома увеличивается В периодах: металлические свойства уменьшаются причина: 1. увеличивается заряд ядра 2. число электронов на внешнем э.у . увеличивается 3. радиус атома уменьшается

Металлы –простые вещества Типы кристаллических решёток металлов Кубическая Объёмно-центрированная кубическая Гранецентрированная Гексагональная кубическая плотноупакованная

Химическая связь в металлах В узлах кристаллической решётки атом-ионы , между которыми свободно перемещаются свободные электроны («электронный газ») Металлическая связь – связь между атом-ионами и относительно свободными электронами за счёт сил электростатического притяжения

Физические свойства металлов теплопроводность твёрдость плотность Ме металлический пластичность блеск и ковкость электропроводность

Физические свойства металлов (продолжение) Физические свойства металлов: пластичность, металлический блеск, теплопроводность и электропро - водность обусловлены наличием в кристаллической решётке металлов свободных электронов - «электронный газ».

Металлы - «рекордсмены» W - самый тугоплавкий Ag - самый электропроводный Li - самый лёгкий AI - самый распространённый Cs - самый легкоплавкий Au - лучший катализатор Cr - самый твёрдый Os - самый тяжёлый

О применении металлов Медь была первым металлом, которым овладел человек. Она открыла эру металлургии и дала миру первый сплав. Многие тысячелетия медь была основой материальной культуры и искусств Трудно переоценить уникальную роль меди в истории человеческой цивилизации.

Металлы древности на службе у человека Семь металлов создал свет по числу семи планет … Алхимики Золото (Au) – солнце Серебро (Ag) – луна Ртуть (Hg) – меркурий Медь (Cu) – меркурий Железо (Fe) – марс Олово ( Sn ) – юпитер Свинец ( Pb ) – сатурн

Из истории сплавов Бронза была первым сплавом, полученным человеком. Распространение бронзы началось с конца 4 тыс. до н.э. Древнейшие бронзовые изделия найдены на территории Ирана, Месопотамии, Турции. В конце 3 тыс. до н.э. бронза появилась в Индии, во 2 тыс. до н.э. – в Китае и Европе. В Америке бронзовый век охва - тывает период с VI по Х века н.э.

Из истории сплавов (продолжение) В железный век первыми пришли народы Африки. Они перешагнули из каменного века в железный минуя медный и бронзовый. Это связано с тем, что в Африке железные руды выходят на поверхность земли. Африканцы изобрели плавку железа в 600-400 годах до новой эры.

Чугун –материал для создания шедевров мирового искусства Санкт-Петербург –своеобразный музей, в котором собрано бесчисленное множество произведений изобразительного искусства, выполненных из чугуна. Рассмотрит лишь некоторые из них – чугунные ограды дворцов и набережных рек Санкт – Петербурга.

Чугун – материал для создания шедевров мирового искусства (продолжение) Воронихинская решётка у Казанского собора. Отлита в 1811 году. (Архитектор Воронихин А.Н.)

Чугун –материал для создания шедевров мирового искусства (продолжение) Решётка Летнего сада. 36 гранитных колонн, увенчанных вазами и урнами, и тончайшие ажурные звенья, украшенные позолоченными розетками, стали сокровищем мирового искусства. (Архитекторы Фельтен Ю.М. и Егоров П.Е.)

Чугун – материал для создания шедевров мирового искусства (продолжение) Ограда Русского музея (Михайловского дворца), 1819-1825 г (Архитектор Росси К.И.) До 1917 года назывался музеем Александра III .

Чугун – материал для создания шедевров мирового искусства (продолжение) Ограда набережной реки Фонтанки. Сооружена в 1780-1789 г по проекту архитектора Квасова А.В.

О роли металлов Металлы сыграли важную роль в истории человечества и несмотря на то, что в последнее время у них появился конкурент – полимерные материалы, металлы и сейчас продолжают занимать ведущее место в развитии цивилизации.

Используемая литература 1. Малышкина В. «Занимательная химия»- Санкт-Петербург, « Тригон », 1998г 2. Габриелян О.С. Настольная книга учителя. Химия. 9 класс/ Габриелян О.С., Остроумов И.Г.-М.: Дрофа, 2002г 3. Карцова А.А. «Химия без формул»-3-е изд., переработанное,- Санкт-Петербург: Авалон , Азбука – классика, 2005г 4. «Химия в картинках»- М.: 1998г

Авторы проекта: Завалюева Анастасия, ученица 10 класса Яблокова Елизавета, ученица 10 класса Руководитель проекта: Касимова Светлана Пакидевна , к.х.н., учитель химии, школа № 520 Колпинского района, г. Санкт- Петербург

По теме: методические разработки, презентации и конспекты

презентация к уроку Строение Земли 6 класс

Презентация прекрасно подойдёт как наглядное пособие на уроке географии в 6 классе при изучении строения Земли, литосферы.


"Амины: состав, строение.свойства", 11 класс

"Амины", 11 класс, учебник Гузей Л.С.

Презентация к уроку химии в 10 классе "Строение и химические свойства глюкозы".

Презентация к уроку химии в 10 классе: " Строение и химические свойства глюкозы".


Презентация по теме "Строение клетки" 10 класс

Презентация по теме "Строение клетки" 10 класс.

Презентация по химии на тему: "Целлюлоза, ее строения и химические свойства" (10 класс)

Презентация по химии на тему: "Целлюлоза, ее строения и химические свойства" (10 класс).


Презентация по физике "Строение вещества" 7 класс

Презентация создана учителем физики, работающем в ГБОУ № 609 с обучающимися с ОВЗ. Наглядный материал позволяет освоить успешно освоить изучаемый материал по физике в 7 классе.


Презентация «Бензол и его свойства» 10 класс УМК Габриелян О.С.

Презентация урока по теме «Бензол и его свойства» 10 класс УМК Габриелян О.С. Цели презентации:1.Дать понятие об аренах, как об одном из гомологических рядовуглеводородов.

Металлы побочных подгрупп
презентация к уроку на тему

Подгруппа меди (медь, серебро, золото) Подгруппа цинка (цинк, кадмий, ртуть) Переходные металлы (хром, марганец, молибден, вольфрам и др.) Подгруппа железа (железо, кобальт, никель) Платиновая группа (рутений, родий, палладий, осмий, иридий, платина) Металлы побочных подгрупп

Особенностью является наличие заполненного предвнешнего d- подуровня, достигаемое за счёт перескока электрона с внешнего s-подуровня. Причина такого явления заключается в высокой устойчивости полностью заполненного d-подуровня. Подгруппа меди. Cu, Ag Серебро Ag [ Kr ] 4d 10 5s 1 0, +1, +3 Медь Cu [Ar] 3d 10 4s 1 0, +1, +2

при 400–500°С : 2Cu + O 2 = 2CuO; при 1000°С : 4Cu + O 2 = 2Cu 2 O при 400°С : Cu + S = CuS ; при выше 400°С : 2Cu + S = Cu 2 S при нагревании с фтором, хлором, бромом образуются галогениды меди (II) Cu + Br 2 = CuBr 2 с йодом – образуеся йодид меди (I): 2Cu + I 2 = 2CuI Медь не реагирует с водородом, азотом, углеродом и кремнием В присутствии углекислого газа и паров воды её поверхность покрывается зелёным налётом, представляющим собой основной карбонат меди(II) ( CuOH )2CO3 Химические свойства меди

Растворяется в разбавленной азотной кислоте: 3Cu + 8HNO 3 = 3Cu(NO 3 ) 2 + 2NO + 4H 2 O Реагирует с концентрированными кислотами-окислителями: Cu + 2H 2 SO 4 = CuSO 4 + SO 2 + 2H 2 O; Cu + 4HNO 3 = Cu (NO 3 ) 2 + 2NO 2 + 2H 2 O Медь растворяется в водном растворе аммиака в присутствии кислорода воздуха с образованием гидроксида тетраамминмеди (II): 2Cu + 8NH 3 + 2H 2 O + O 2 = 2[ Cu (NH 3 ) 4 ](OH) 2 . Медь окисляется оксидом азота ( IV) 2Cu + NO 2 = Cu 2 O + NO и хлоридом железа( III) Cu + 2FeCl 3 = CuCl 2 + 2FeCl 2 Химические свойства меди

Соли Cu2+ обычно окрашены в голубой или зеленоватый цвет. Образование нерастворимого гидроксида меди ( II ) голубого цвета: CuSO4+ 2NH4OH = Cu(OH)2 + (NH4)2SO4 Образование красно-бурого осадка гексациано феррата ( II ) меди Качественная реакция на Cu 2+ 2Cu 2+ + [Fe(CN) 6 ] 4− → Cu 2 [Fe(CN) 6 ]↓

При обычных условиях реагирует с серой, образуя сульфид серебра (I): 2Ag + S = Ag 2 S, при нагревании с галогенами образуются галогениды серебра (I): 2Ag + Br 2 = 2AgBr. Серебро не реагирует с кислородом, водородом, азотом, углеродом и кремнием. Растворяется в разбавленной азотной кислоте 3Ag + 4HNO 3 = 3AgNO 3 + NO + 2H 2 O Реагирует с концентрированными кислотами-окислителями: 2Ag + 2H 2 SO 4 = Ag 2 SO 4 + SO 2 + 2H 2 O; Ag +2HNO 3 = AgNO 3 + NO 2 + H 2 O. Химические свойства серебра

Образование белого творожистого осадка Ag+ + Cl - = AgCl ↓ , растворимого в гидрате аммиака AgCl + 2NH4OH = [Ag(NH3)2] Cl Образование красного осадка Ag+ + CrO4 - = AgCrO4↓ Образование желтого осадка Ag+ +PO4 3- = Ag3PO4 ↓ Образование белого-чернеющего осадка Ag+ + S2O3 2- = Ag2S2O3 ( разлагается) Качественная реакция на Ag +

Цинк [ Ar ] 3d 10 4s 2 хрупкий переходный металл голубовато-белого цвета (тускнеет на воздухе, покрываясь тонким слоем оксида цинка). Ртуть [ Xe ] 4f 14 5d 10 6s 2 один из двух химических элементов (и единственный металл), простые вещества которых при нормальных условиях находятся в жидком агрегатном состоянии Подгруппа цинка. Zn , Hg

На воздухе покрывается оксидной пленкой, при сильном нагреве горит голубоватым пламенем 2Zn + O 2 = 2ZnO При н.у. Zn + Cl 2 = ZnCl 2 С парами воды при температуре красного каления Zn + H 2 O = ZnO + H 2 Вытесняет водород из разбавленых кислот Zn + 2HCl = ZnCl 2 + H 2 С разбавленной HNO3 4Zn + 10HNO 3 = 4Zn(NO 3 ) 2 + NH 4 NO 3 + 3H 2 O С концентрированными кислотами-окислителями Zn + 2H 2 SO 4 = ZnSO 4 + SO 2 + 2H 2 O; Zn + 4HNO 3 = Zn(NO 3 ) 2 + 2NO 2 + 2H 2 O Химические свойства цинка

Типичный переходный элемент. Zn + 2H 2 SO 4 = ZnSO 4 + SO 2 + 2H 2 O; Zn + 4HNO 3 = Zn(NO 3 ) 2 + 2NO 2 + 2H 2 O Оксид цинка: ZnCO 3 = ZnO + CO 2 ZnO + 2HCl = ZnCl 2 + H 2 O; ZnO + 2NaOH + H 2 O = Na 2 [Zn(OH) 4 ]. Гидроксид цинка: ZnCl 2 + 2NaOH = Zn(OH) 2 + 2NaCl Zn(OH) 2 + H 2 SO 4 = ZnSO 4 + 2H 2 O; Zn(OH) 2 + 2NaOH = Na 2 [Zn(OH) 4 ] Zn(OH) 2 + 4NH 3 = [Zn(NH 3 ) 4 ](OH) 2 Химические свойства цинка

Образование нерастворимого основания Zn 2+ + 2OH - = Zn(OH)2↓ + 2OH- = [Zn(OH)4] 2- осадок белого цвета, растворимый в избытке щелочи Качественная реакция на Zn 2+

Эл. Конфигурация [ Ar ] 3d 5 4s 1 В свободном виде — голубовато-белый металл с кубической решеткой, один из самых твердых чистых металлов (уступает только бериллию, вольфраму и урану). Очень чистый хром достаточно хорошо поддаётся механической обработке. Хром

Оксид хрома (2) - СrО – твердое ярко – красное вещество, типичный основной оксид (ему соответствует гидроксид хрома (2) - Сr (ОН) 2 ), не растворяется в воде, но растворяется в кислотах: СrО + 2НСl = СrСl 2 + Н 2 О окисляется на воздухе: 4СrО+ О 2 = 2Сr 2 О 3 Гидроксид хрома (2) - Сr (ОН) 2 – вещество желтого цвета, плохо растворимо в воде, с ярко выраженным основным характером, поэтому взаимодействует с кислотами: Сr (ОН) 2 + Н 2 SО 4 = СrSO 4 + 2Н 2 О Соединения хрома Cr 2+

Наиболее устойчивая с.о. хрома. Оксид хрома (3) - Сr 2 О 3 нерастворим в воде, тугоплавкий, по твёрдости близок к корунду, имеет амфотерный характер, однако в кислотах и щелочах растворяется плохо. С концентрированными растворами кислот и щелочей взаимодействует с трудом: Сr 2 О 3 + 6 КОН + 3Н 2 О = 2К 3 [ Сr (ОН) 6 ] Сr 2 О 3 + 6НСl = 2СrСl 3 + 3Н 2 О Гидроксид хрома (3) Сr (ОН) 3 получают: СrСl 3 +3КОН = Сr (ОН) 3 ↓ + 3КСl Легко взаимодействует с кислотами и щелочами, т.е. проявляет амфотерные свойства: Сr (ОН) 3 + 3НNО 3 = Сr (NО 3 ) 3 + 3Н 2 О Сr (ОН) 3 + 3КОН = К 3 [ Сr (ОН) 6 ] Соединения хрома Cr 3+

Оксид хрома (6) - СrО 3 – темно – красное кристаллическое вещество, хорошо растворимо в воде, типичный кислотный оксид. Этому оксиду соответствует две кислоты: СrО 3 + Н 2 О = Н 2 СrО 4 (хромовая кислота – образуется при избытке воды) СrО 3 + Н 2 О =Н 2 Сr 2 О 7 ( дихромовая кислота – образуется при большой концентрации оксида хрома (3)). Оксид хрома (6) – очень сильный окислитель Соединения хрома Cr 6 +

В кислой среде раствора хроматы переходят в дихроматы: 2К 2 СrО 4 + Н 2 SО 4 = К 2 Сr 2 О 7 + К 2 SО 4 + Н 2 О В щелочной среде дихроматы переходят в хроматы: К 2 Сr 2 О 7 + 2КОН = 2К 2 СrО 4 + Н 2 О Хромат и дихромат Хроматы и их растворы имеют желтую окраску, дихроматы – оранжевую. Хромат - ионы СrО42- и дихромат – ионы Сr2О72- легко переходят друг в друга при изменении среды растворов

Окислительные свойства Cr 6+ Дихроматы – сильные окислители . Под действием восстановителей в кислой среде переходят в соли хрома (III) K 2 Cr 2 O 7 + 3Na 2 SO 3 + 4H 2 SO 4 = Cr 2 (SO 4 ) 3 + 3Na 2 SO 4 + K 2 SO 4 + 4H 2 O Качественные реакции на хромат-ион BaCrO 4 PbCrO 4 Ag 2 CrO 4

Степени окисления и соединения Алюминотермическим методом, восстанавливая оксид Mn2O3, образующийся при прокаливании пиролюзита: Получение марганца

Соли Mn 2+ MnCl2 MnSO4

Соединения Mn 4+

Соединения М n 7+

Кислая среда Нейтральная среда Щелочная среда Окислительные свойства перманганата, в зависимости от среды реакции

Урок по теме: «Металлы побочных подгрупп. Железо»
план-конспект урока по химии (11 класс) на тему

· Показать строение железа, его физические свойства, разнообразие химических свойств железа на примере задания С-2; рассмотреть качественные реакции на ионы Fe 2+ и Fe 3+ .

· Расширить и углубить знания, связанные с ролью железа в организме человека(проектная деятельность учащихся).

· Привить навыки самостоятельной работы, научить выражать свои мысли четко и грамотно; использовать знания, полученные при изучении других предметов: биологии, экологии, физики ( межпредметные связи).

ВложениеРазмер
otkrytyy_urok.docx 44.11 КБ

Предварительный просмотр:

«Металлы побочных подгрупп. Железо»

(11 класс, профильный уровень)

Учитель химии Гумецова Л.Ш.

  • Показать строение железа, его физические свойства, разнообразие химических свойств железа на примере задания С-2; рассмотреть качественные реакции на ионы Fe 2+ и Fe 3+ .
  • Расширить и углубить знания, связанные с ролью железа в организме человека(проектная деятельность учащихся).
  • Привить навыки самостоятельной работы, научить выражать свои мысли четко и грамотно; использовать знания, полученные при изучении других предметов: биологии, экологии, физики ( межпредметные связи).
  • Штативы с пробирками, спиртовки, спички, держатели.
  • Реактивы: растворы FeCl 3 , KCNS, K 4 [Fe(CN) 6 ], HCl, CuSO 4 , HNO 3 , NaOH, яблочный сок.

Раздаточный материал: таблицы.

УРОК НАЧИНАЕТСЯ С РЕФЛЕКСИИ ЭМОЦИОНАЛЬНОГО СОСТОЯНИЯ И НАСТРОЕНИЯ.

Учитель: С каким настроением вы пришли на урок?

Ученики поднимают соответствующие смайлики. В конце урока учитель смотрит как изменилось эмоциональное состояние учащихся.

Учитель: Отсутствие какого металла описал академик А. Е. Ферсман?

«На улицах стоял бы ужас разрушения: ни рельсов, ни вагонов, ни паровозов, ни автомобилей не оказалось бы, даже камни мостовой превратились бы в глинистую труху, а растения начали бы чахнуть и гибнуть без этого металла. Разрушение ураганом прошло бы по всей Земле, и гибель человечества сделалась бы неминуемой. Впрочем, человек не дожил бы до этого момента, ибо лишившись трех граммов этого металла в своем теле и в крови, он бы прекратил свое существование раньше, чем развернулись бы нарисованные события».

Учитель: Про какой металл писал А.Е. Ферсман?

Учитель: Итак тема урока: « Металлы побочных подгрупп. Железо.

Рассмотрим строение атома железа.

Ученики: Железо находится в четвертом периоде, 8 группе, побочной подгруппе . Fe +26) 2 ) 8 ) 14 ) 2

Учитель: Определите степень железа в следующих соединениях: FeO, Fe 2 O 3 , FeSO 4 , Fe 2 (SO 4 ) 3 , K 2 FeO 4 .

Рассмотрим задание А-4(cлайд)

Одинаковую степень окисления железо проявляет в соединениях:

2.Fe 2 O 3 и Fe(NO 3 ) 2

3.Fe(OH) 3 и FeCl 2

Учитель: Какие физические свойства характерны для железа?

Железо — типичный металл , в свободном состоянии — серебристо-белого цвета с сероватым оттенком. Чистый металл пластичен , различные примеси (в частности — углерод ) повышают его твёрдость и хрупкость . Обладает ярко выраженными магнитными свойствами. Часто выделяют так называемую « триаду железа » — группу трёх металлов (железо Fe, кобальт Co, никель Ni), обладающих схожими физическими свойствами , атомными радиусами и значениями электроотрицательности .

Для железа характерен полиморфизм , оно имеет четыре кристаллические модификации:

Химические свойства железа

В химическом отношении железо относится к металлам средней активности. В электрохимическом ряду напряжений металлов железо расположено левее водорода.

При нагревании на воздухе выше 200 °С железо взаимодействует с кислородом, образуя оксиды нестехиометрического состава Fe x O, мелкодисперсное железо сгорает с образованием смешанного оксида железа (II, III):

3Fe + 2O 2 = Fe 3 O 4 .

С галогенами железо реагирует, образуя галогениды :

2Fe + 3Cl 2 = 2FeCl 3 ,

При взаимодействии с азотом при невысокой температуре железо, кобальт и никель образуют нитриды различного состава, например:

4Fe + N 2 = 2Fe 2 N

Взаимодействие с серой экзотермично и начинается при слабом нагревании, в результате образуются нестехиометрические соединения, которые имеют состав, близкий к ЭS:

С водородом металлы триады железа не образуют стехиометрических соединений, но они поглощают водород в значительных количествах.

С углеродом, бором, кремнием, фосфором также при нагревании образуют соединения нестехиометрического состава, например

В воде в присутствии кислорода железо медленно окисляется кислородом воздуха (корродирует):

4Fe + 3O 2 + 6H 2 O = 4Fe(OH) 3 .

При температуре 700–900 °С раскаленное железо реагирует с водяным паром:

3Fe + 4H 2 O = Fe 3 O 4 + 4H 2 .

Кобальт и никель с водой не взаимодействуют.

Железо реагирует с разбавленными растворами соляной и серной кислот, образуя соли железа (II):

Fe + 2HCl = FeCl 2 + H 2 ,

Fe + H 2 SO 4 = FeSO 4 + H 2 ;

с разбавленной азотной кислотой образует нитрат железа (III) и продукт восстановления азотной кислоты, состав которого зависит от концентрации кислоты, например:

Fe + 4HNO 3 = Fe(NO 3 ) 3 + NO + 2H 2 O.

При обычных условиях концентрированные (до 70 мас. %) серная и азотная кислоты пассивируют железо. При нагревании возможно взаимодействие с образованием солей железа (III):

2Fe + 6H 2 SO 4 = Fe 2 (SO 4 ) 3 + 3SO 2 + 6H 2 O,

Fe + 6HNO 3 = Fe(NO 3 ) 3 + 3NO 2 + 3H 2 O.

Разбавленные растворы щелочей на металлы триады железа не действуют. Возможно только взаимодействие железа с щелочными расплавами сильных окислителей:

Fe + KClO 3 + 2KOH = K 2 FeO 4 + KCl + H 2

Железо, кобальт и никель вытесняют металлы, которые расположены правее в электрохимическом ряду напряжений их растворов солей:

Fe + SnCl 2 = FeCl 2 + S

На грани химии, биологии и медицины возникла новая научная область бионеорганическая химия. Бионеорганическая химия рассматривает роль металлов в возникновении и развитии различных процессов в здоровом и больном организме, создаёт новые эффективные препараты на основе металлоорганических соединений, активно участвует в борьбе за сохранение здоровья людей и продление человеческой жизни. Особенно чутко организм реагирует на изменение концентрации микроэлементов, т.е. элементов, присутствующих в организме в количестве меньше одного грамма на 70кг массы человеческого тела. К таким элементам относятся медь, цинк, марганец, кобальт, железо, никель, молибден.

Открывается слайд 3: «Содержание некоторых металлов в организме человека в %».

Литий – 0,0001
Натрий – 0,03
Калий – 0,025
Кальций – 0,4
Магний – 0,05
Железо – 0,001
Марганец – 0,000001
Алюминий – 0,001
Цинк – 0,001

ФИЗИОЛОГИЧЕСКАЯ РОЛЬ ЖЕЛЕЗА

В организм человека железо поступает с пищей. Пищевые продукты животного происхождения содержат железо в наиболее легко усваиваемой форме. Некоторые растительные продукты также богаты железом, однако его усвоение организмом происходит тяжелее. Считается, что организм усваивает до 35% «животного» железа. В то же время другие источники сообщают, что этот показатель составляет менее 3% . Большое количество железа содержится в говядине, в говяжьей печени, рыбе (тунец), тыкве, устрицах, овсяной крупе, какао, горохе, листовой зелени, пивных дрожжах, инжире и изюме. При заметном дефиците железа в организме он может ликвидироваться приемом пищевых добавок, содержащих железо в хелатной (легкоусваиваемой) форме: глюконат железа, фумарат железа, цитрат железа и другие.

Усвоение железа снижается при чрезмерном потреблении чая и кофе, а также яиц. Чрезмерные дозы железа могут быть опасными для детей, больных наследственной анемией, поэтому железосодержащие добавки к пище могут быть использованы для детей только по назначению врача.

В организме взрослого человека содержится около 3-5 г железа; почти две трети этого количества входит в состав гемоглобина. Считается, что оптимальная интенсивность поступления железа составляет 10-20 мг/сутки. Дефицит железа может развиться, если поступление этого элемента в организм будет менее 1 мг/сутки. Порог токсичности железа для человека составляет 200 мг/сутки. Потребность в железе у женщин на 30-60 % больше, чем у мужчин вследствие его физиологических потерь. В течение месяца женщины теряют в 2 раза больше железа, чем мужчины. При беременности у женщин потребность в железе превышает обычную физиологическую. Потребность в железе особенно увеличена у будущей матери в последние три месяца беременности. Учитывая, что железо впрок не накапливается в организме, при недостаточном его поступлении с пищей (железо главным образом содержится в мясе) может возникнуть гипохромная микроцитарная анемия.

Всасывание железа в кишечнике зависит от потребности всего организме в этом элементе. У больных анемией всасывание железа происходит более эффективно, чем у здоровых людей. Это обусловлено тем, что переход железа из содержимого кишечника в плазму регулируется ферритином (комплексное образование соединений железа с белком апоферритином).

Недостаточность железа может развиться из-за его дефицита в пище (у грудных детей, содержащихся на искусственном вскармливании, при несвоевременном прикорме на фоне естественного вскармливания, так как с грудным молоком железо не поступает). Недостаточность железа возникает при наличии в диете больших количеств неорганического фосфора, с которым оно образует плохо растворимые соединения, либо при воспалительных процессах в кишечнике, которые сочетаются с нарушением ферритинового механизма.

Избыточное поступление в организм трехвалентного железа приводит в депонированию железа в плазме крови и тканях (гемосидерозу).

– На примере ионов железа попробуем определить, действительно ли оно содержится в организме?
– Какие качественные реакции на катионы железа 2+ и 3+ вы знаете?

(Учащиеся называют: на катион железа 3+ реактивы роданид калия и желтая кровяная соль, на катион железа 2+ реактив красная кровяная соль.)

– У вас на столах имеется оборудование для выполнения лабораторной работы.

Проведем качественную реакцию на ионы железа 3+, добавив к раствору соли железа роданид калия (КCNS).

(Образуется раствор кроваво-красного цвета ).

– На что похож полученный раствор?

Ученики: На кровь, венозную. Значит, ионы железа 3+ содержатся в организме.

Качественная реакция на ион железа (III) например вот такая

FeCl3 + 3 NaOH = Fe(OH)3 ↓+ 3 NaCl – реакция со щелочью

Качественная реакция на ион железа (III) – реакция с желтой кровяной солью.

3 К4[Fe(CN)6 ] +4 FeCl3 = KFe[Fe(CN)6])↓ + 12 KCl

Качественная реакция на ион железа (III) – реакция с роданидом калия.

FeCl3 + 3 КCNS = Fe(CNS)3 + 3 KCl

Качественная реакция на ион железа (II) – реакция с красной кровяной солью.

турнбуллева синь - KFe[Fe(CN)6]).

2 К3[Fe(CN)6 ] +3 FeSO4 = KFe[Fe(CN)6])↓ + 3K2SO4

Качественная реакция на ион железа (II) – реакция со щелочью.

FeSO4 +2 NaOH = Fe(OH)2 ↓ + Na2SO4

Учитель: Проверим, есть ли ионы железа 3+ в продуктах питания?

В пробирку с яблочным соком учащиеся приливают раствор желтой кровяной соли K 3 [Fe(CN) 6 ].

(Образуется осадок синего цвета .)

Учитель: Проанализируем Таблицу 1 «Металлы в организме человека» (см. Приложение 1 ).

– Скажите, где содержится в основном железо в организме?

Учащиеся: В мышечной ткани, большая часть в крови.

Учитель: Что нужно делать при недостатке железа в организме? Какие продукты употреблять?

По Таблице 2 «Содержание железа в продуктах питания» (см. Приложение 2 ) определите, в каких продуктах больше всего содержится железа?

Рассмотрим задание С-2.

Железо сожгли в хлоре. Продукт реакции растворили в воде и в раствор внесли железные опилки. Через некоторое время раствор профильтровали и в фильтрат добавили сульфид натрия. Выделившийся осадок отделили и обработали 20% ной серной кислотой, получив бесцветный раствор. Напишите уравнения описанных реакций.

Рассмотрим задание С-4.

5,6 г чистого железа растворили в 100 мл 10%- ного раствора соляной кислоты (р=1,05г/мл). Вычислите массовую долю хлороводорода в полученном растворе.

Презентация по химии на тему "Металлы побочной подгруппы" 11 класс


Титан — химический элемент с атомным номером 22. Принадлежит к 4-й группе периодической таблицы химических элементов. Атомная масса элемента 47,867
Титан — лёгкий прочный металл серебристо-белого цвета. Обладает высокой коррозионной стойкостью.

ПолучениеПолучают титан из синтетического рутила или титанового шлака получае.

Получение
Получают титан из синтетического рутила или титанового шлака получаемые при переработке ильменитовых концентратов. Для получения титанового шлака из ильменитовых концентратов его восстанавливают в дуговой печи. Богатый шлак перерабатывают хлоридным или сернокислотным способом.
Концентрат титановых руд подвергают сернокислотной или пирометаллургической переработке. Продукт сернокислотной обработки — порошок диоксида титана TiO2. Пирометаллургическим методом руду спекают с коксом и обрабатывают хлором, получая пары тетрахлорида титана TiCl4.

Физические свойстваТитан — лёгкий серебристо-белый металл. При нормальном дав.

Физические свойства
Титан — лёгкий серебристо-белый металл. При нормальном давлении существует в двух кристаллических модификациях.
Пластичен, сваривается в инертной атмосфере. Прочностные характеристики мало зависят от температуры, однако сильно зависят от чистоты и предварительной обработки.
Имеет высокую вязкость, при механической обработке склонен к налипанию на режущий инструмент, и поэтому требуется нанесение специальных покрытий на инструмент, различных смазок.

Химические свойстваУстойчив к коррозии благодаря оксидной плёнке, но при изме.

Химические свойства
Устойчив к коррозии благодаря оксидной плёнке, но при измельчении в порошок, а также в тонкой стружке или проволоке титан пирофорен. Титановая пыль имеет свойство взрываться. Температура вспышки — 400 °C. Титановая стружка пожароопасная.
Титан устойчив к разбавленным растворам многих кислот и щелочей (кроме HF, H3PO4 и концентрированной H2SO4). Титан устойчив к влажному хлору и водным растворам хлора. При нагревании на воздухе до 1200 °C Ti загорается ярким белым пламенем с образованием оксидных фаз переменного состава TiOx.

ПриминениеТитан в виде сплавов является важнейшим конструкционным материалом.

Приминение
Титан в виде сплавов является важнейшим конструкционным материалом в авиа- и ракетостроении, в кораблестроении.
Металл применяется в химической промышленности (реакторы, трубопроводы, насосы, трубопроводная арматура), военной промышленности (бронежилеты, броня и противопожарные перегородки в авиации, корпуса подводных лодок), промышленных процессах (опреснительных установках, процессах целлюлозы и бумаги), автомобильной промышленности, сельскохозяйственной промышленности, пищевой промышленности, спортивных товарах, ювелирных изделиях, мобильных телефонах, лёгких сплавах и т. д.

Презентация по химии " Металлы побочных подгрупп" ( аудитория 9,11 классы)

Металлы побочных подгрупп11класс

Объясни ответ!
1) Какой элемент с точки зрения строения атома наиболее существенно отличается от трех остальных:
а) алюминий б) железо
в) кальций г) калий?






Важной особенностью атомов d-металлов является наличие свободных орбиталей.

Важной особенностью атомов d-металлов является наличие свободных орбиталей (на (n - 1)d -, ns - образованию и nр-подуровнях), что позволяет им образовывать донорно-акцепторные (координационные) связи с различными донорами неподеленных электронных пар (молекулы NH3, Н2O, ионы ОН-, CN- и др.).

Вследствие этого d-металлы образуют многочисленные и разнообразные комплексные соединения; например:

В свободном состоянии d -металлы (как и вообще все металлы) являются восстановителями. Восстановительная активность различных d - металлов изменяется в широких пределах: среди них есть металлы средней активности, находящиеся в ряду напряжений до водорода (Fe, Cr , Zn , Mn и др.); малоактивные металлы (Сu, Нg и др.) и благородные металлы (Au , Pt и др.), располагающиеся в ряду напряжений после водорода.

Это интересно.


Железный век продолжается … 90% всего количества металлов и металлических.

Железный век продолжается …

90% всего
количества
металлов и
металлических
сплавов
приходится на
железные
сплавы.


21.04.202215 FeO - основной оксид Fe2O3 - при высокой температуре амфотер.

21.04.2022
15
FeO - основной оксид
Fe2O3 - при высокой температуре амфотерный
FeCl3 + 3KOH →Fe(OH)3↓ +3KCl

FeCl2 + 2KOH →Fe(OH)2↓ +2KCl

4 Fe(OH)2↓ + О2 +2Н2О →4 Fe(OH)3↓
на воздухе окисление идет
бурого цвета
Зеленого цвета


Исследование.Опыт 1: Свойства соединений хрома. В пробирку с раствором соли.

Исследование.
Опыт 1: Свойства соединений хрома.
В пробирку с раствором соли хрома Сr(NО3)3 прибавить по каплям раствор NaОН до образования осадка. Полученный осадок разлить в две пробирки. В одну из них прилить раствор серной кислоты или соляной, а в другую NaОН. Что наблюдается?
Напишите уравнения следующих реакций:
1.Сr(NO3)3 c NaOH
2.Cr(OH)3 с серной кислотой
3.Сr(ОН)3 с избытком NaОН
Опыт 2: Окислительные свойства дихроматов.
К раствору К2Сr2O7 прибавить раствор серной кислоты, а затем раствор сернисто-кислого натрия (Na2SО3). Наблюдать изменение окраски. Написать уравнение окислительно – восстановительной реакции.
Опыт 3: Перевод хроматов в дихроматы.
К раствору К2СrO4 прибавить раствор серной кислоты. Наблюдать изменение окраски. К полученному раствору прибавить гидроксид натрия или калия. Наблюдать изменения окраски. Записать наблюдения и уравнения реакций.
Опыт 4.исследование К2Cr2О7 К насыщенному раствору добавьте конц. Серной кислоты. Реакция охлаждается снегом. Обратите внимание на выпадения кристаллов CrO3. Запишите уравнения и признаки реакции.

Задания: 1.Объясните, почему в одном случае соль, содержащая хром, изменяет о.

Задания:
1.Объясните, почему в одном случае соль, содержащая хром, изменяет окраску, лакмуса в красный цвет, а в другом в синий.
2. Почему ион Cr+2 является восстановителем, а ион Cr+6 - окислителем.
Задача: Какой объём 5,6% р-ра едкого кали ( пл. 1,05 г/мл) необходим для полного растворения 1,5 моль осадка гидроксида хрома (III) с образованием кислой соли.

Самостоятельная работа на 6 мин.!)В химии для обнаружения иона Fe+2 в раствор.

Самостоятельная работа на 6 мин.
!)В химии для обнаружения иона Fe+2 в растворе используют реагент, формула которого:
а) NaOH; б) K2SO4; в) окраска цвета пламени.
2) Вычислите объем газа (н.у.), который образуется при растворении железа в 8,1 г раствора бромоводородной кислоты содержащей 20% бромоводорода.

Рабочие листы и материалы для учителей и воспитателей

Более 3 000 дидактических материалов для школьного и домашнего обучения

Читайте также: