Металлы обладающие ферромагнитными свойствами
Свойства ферромагнитных материалов и их применение в технике
Вокруг проводника с электрическим током, даже в вакууме, существует магнитное поле. И если в это поле внести вещество, то магнитное поле изменится, поскольку любое вещество в магнитном поле намагничивается, то есть приобретает больший или меньший магнитный момент, определяемый как сумма элементарных магнитных моментов, связанных с частями, из которых состоит данное вещество.
Суть явления заключается в том, что молекулы многих веществ обладают собственными магнитными моментами, ведь внутри молекул движутся заряды, которые образуют элементарные круговые токи, и значит сопровождаются магнитными полями. Если внешнего магнитного поля к веществу не приложено, магнитные моменты его молекул ориентированы в пространстве хаотично, и суммарное магнитное поле (как и общий магнитный момент молекул) такого образца будет равно нулю.
Ежели образец внести во внешнее магнитное поле, то ориентация элементарных магнитных моментов его молекул приобретет под действием внешнего поля преимущественное направление. В результате суммарный магнитный момент вещества уже не будет нулевым, ведь магнитные поля отдельных молекул в новых условиях не компенсируют друг друга. Так у вещества возникает магнитное поле B.
Если же молекулы вещества изначально не имеют магнитных моментов (есть и такие вещества), то при внесении подобного образца в магнитное поле, в нем индуцируются круговые токи, то есть молекулы приобретают магнитные моменты, что опять же в результате приводит к возникновению у образца суммарного магнитного поля B.
Большинство известных веществ слабо намагничиваются в магнитном поле, но встречаются и такие вещества, которые отличаются сильными магнитными свойствами, их то и называют ферромагнетиками. Примеры ферромагнетиков: железо, кобальт, никель, а также их сплавы.
К ферромагнетикам относятся твердые вещества, которые при невысоких температурах обладают самопроизвольной (спонтанной) намагниченностью, сильно изменяющейся под действием внешнего магнитного поля, механической деформации или изменяющейся температуры. Именно так ведут себя сталь и железо, никель и кобальт, а также из сплавы. Их магнитная проницаемость в тысячи раз выше чем у вакуума.
Именно по этой причине в электротехнике для проведения магнитного потока и для преобразования энергии традиционно используют магнитопроводы из ферромагнитных материалов.
У подобных веществ магнитные свойства зависят от магнитных свойств элементарных носителей магнетизма — электронов, движущихся внутри атомов. Конечно, электроны, двигаясь по орбитам в атомах вокруг своих ядер, образуют круговые токи (магнитные диполи). Но при этом электроны вращаются еще и вокруг своих осей, создавая спиновые магнитные моменты, которые как раз и играют главную роль в намагничивании ферромагнетиков.
Ферромагнитные свойства проявляются лишь тогда, когда вещество пребывает в кристаллическом состоянии. Кроме того данные свойства сильно зависят от температуры, ведь тепловое движение препятствует устойчивой ориентации элементарных магнитных моментов. Так, для каждого ферромагнетика определяется конкретная температура (точка Кюри), при которой структура намагничивания разрушается и вещество превращается в парамагнетик. Например для железа это 900 °C.
Даже в слабых магнитных полях ферромагнетики способны намагнититься до состояния насыщения. Кроме того их магнитная проницаемость зависит от величины приложенного внешнего магнитного поля.
Вначале процесса намагничивания магнитная индукция B в ферромагнетике растет сильнее, а значит магнитная проницаемость его велика. Но когда наступает насыщение, дальнейшее увеличение магнитной индукции внешнего поля не приводит больше к нарастанию магнитного поля ферромагнетика, и значит магнитная проницаемость образца уменьшилась, теперь она стремится к 1.
Важное свойство ферромагнетиков — остаточная намагниченность. Допустим, в катушку поместили ферромагнитный стержень, и, повышая ток в катушке, довели его до насыщения. После этого отключили ток в катушке, то есть убрали магнитное поле катушки.
Можно будет заметить, что стержень размагнитился не до того состояния, в котором он пребывал вначале, его магнитное поле окажется больше, то есть будет иметь место остаточная индукция. Стержень превратился таким образом в постоянный магнит.
Чтобы обратно размагнитить такой стержень, необходимо будет приложить к нему внешнее магнитное поле противоположного направления, и с индукцией равной остаточной индукции. Значение модуля магнитной индукции поля, которое необходимо приложить к намагниченному ферромагнетику (постоянному магниту) чтобы размагнитить его, называется коэрцитивной силой.
Явление, когда при намагничивании ферромагнетика индукция в нем отстает от индукции приложенного магнитного поля, называется магнитным гистерезисом (смотрите - Что такое гистерезис).
Кривые намагничивания (петли гистерезиса) у разных ферромагнитных материалов отличаются друг от друга.
У некоторых материалов петли гистерезиса широкие — это материалы с высокой остаточной намагниченностью, их относят к магнитно-твердым материалам. Магнитно-твердые материалы применяют в изготовлении постоянных магнитов.
Магнитно-мягкие материалы наоборот - имеют узкую петлю гистерезиса, малую остаточную намагниченность, они легко перемагничиваются в слабых полях. Именно магнитно-мягкие материалы применяют в качестве магнитопроводов трансформаторов, статоров двигателей и т. п.
Сегодня ферромагнетики играют очень важную роль в технике. Магнитно-мягкие материалы (ферриты, электротехнические стали) используются в электромоторах и генераторах, в трансформаторах и дросселях, а также в радиотехнике. Из ферритов изготавливают сердечники катушек индуктивности.
Магнитно-твердые материалы (ферриты бария, кобальта, стронция, неодим-железо-бор) применяют для изготовления постоянных магнитов. Постоянные магниты находят широкое применение в электроизмерительных и акустических приборах, в двигателях и генераторах, в магнитных компасах и т. д.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Определение ферромагнетиков: описание, свойства, разновидности
Ферромагнетиками называют вещества, для которых характерна самопроизвольная намагниченность, значительно изменяемая в процессе воздействия внешних факторов таких, как магнитное поле, деформация и температура.
Магнитная восприимчивость ферромагнетиков обладает положительными значениями и равна 10 в 4 или 5 степени. Если напряжённость магнитного поля растет нелинейно, наблюдается увеличение намагниченности и магнитной индукции ферромагнетических веществ.
Отличительное свойство
Ферромагнетики отличаются от диамагнетиков и парамагнетиков наличием самопроизвольной или спонтанной намагниченности, когда внешнее магнитное поле отсутствует. Данный факт говорит об упорядоченной ориентации электронных спинов и магнитных моментов. Ещё одной особенностью ферромагнетиков в отличие от других типов магнетических веществ является значительное превышение внутреннего магнитного поля по сравнению с аналогичными характеристиками внешнего поля.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Примеры материалов
Можно найти немного примеров природных ферромагнетиков. Широко распространены ферриты, которые представляют собой химические соединения оксидов железа с оксидами других веществ. Первым открытым ферромагнитным материалом является магнитный Железняк, который относятся к категории ферритов. Ферромагнетическими свойствами обладают следующие материалы:
- техническое железо;
- оксидные ферромагнетики;
- низкоуглеродистая сталь;
- электротехническая листовая сталь;
- пермаллои, включая железно-никелевый сплав, характеризующийся высокой проницаемостью.
Основные характеристики
Ферромагнетические материалы обладают уникальными физико-химическими свойствами. Основными характеристиками ферромагнетиков являются:
- Ферромагнетизм материалов возможен лишь тогда, когда вещество находится в кристаллическом состоянии.
- Ориентация магнитных полей доменов затруднена из-за теплового движения, что подтверждает прямую зависимость свойств ферромагнетиков от температуры. Температура разрушения доменной структуры ферромагнетического вещества может отличаться. Данный показатель называется точкой Кюри. При его достижении ферромагнетик трансформируется в парамагнетик. К примеру, в чистом железе такой процесс происходит, когда температура Кюри достигает 900 градусов.
- Намагничивание ферромагнетиков происходит до насыщения в слабых магнитных полях.
- Параметры магнитного поля определяют магнитную проницаемость ферромагнетических веществ.
- Ферромагнетики обладают остаточной намагниченностью. Можно наблюдать опытным путем на примере ферромагнитного стержня, помещенного под током соленоида, как при намагничивании до насыщения, а затем уменьшении тока, индукция поля в стержне во время его размагничивания сохраняется на более высоком уровне, чем при намагничивании.
Электронные оболочки у ферромагнетиков
Ферромагнетиками могут являться материалы, находящиеся в твердом состоянии. При этом магнитный момент их атомов, в частности с недостроенными внутренними электронными оболочками, является постоянно спиновым или орбитальным. Распространенным примером ферромагнетиков являются переходные металлы. В ферромагнетических материалах резко усиливаются внешние магнитные поля. К ним относятся:
- железо;
- кобальт;
- никель;
- гадолиний;
- тербий;
- диспрозий;
- гольмий;
- эрбий;
- тулий;
- соединения ферромагнетиков с веществами, не являющиеся ферромагнетиками.
Значительная доля веществ не обладает ферромагнетическими свойствами. Это объясняется особым расположением электронов, когда электронные оболочки атомов заполняются. Их магнитные поля ориентированы в противоположных направлениях и компенсируют друг друга, что снижает степень потенциальной энергии взаимодействия электронов.
Наблюдая атомы с нечетным числом электронов на оболочках, которые соединяются в молекулы или кристаллы, можно заметить взаимную компенсацию магнитных полей неспаренных электронов. Атомы железа, никеля, кобальта в кристаллических структурах обладают собственными магнитными полями неспаренных электронов, которые ориентированы параллельно друг другу. Это приводит к образованию микроскопических намагниченных областей или доменов. Суммарное магнитное поле таких образований нулевое. Если материал поместить во внешнее магнитное поле, то поля доменов будут ориентироваться соответственно, что сопровождается намагничиванием ферромагнетиков.
Типы ферромагнетиков, свойства
Ферромагнитные вещества отличаются по характеру магнитного взаимодействия. Выделяют две основные группы ферромагнетиков:
- Магнитно-мягкие материалы.
- Магнитно-жесткие материалы.
К первой категории относят ферромагнетики, способные практически полностью устранять собственное магнитное поле при исчезновении внешнего. В процессе материал размагничивается. Такие вещества активно используются в производстве сердечников трансформаторов и электромагнитов. Магнито-жесткие материалы применяют для создания таких изделий, как постоянные магниты, магнитные ленты и диски, на которые записывается информация.
Потеря свойств ферромагнетизма
Ферромагнетические вещества называют «магнитозамороженными» парамагнетиками. Атомы парамагнетических материалов обладают магнитными моментами, которые пребывают в хаотичном вращательном движении. В случае ферромагнетиков моменты направлены определенно. При возрастании температуры число случайных температурных флуктуаций магнитных моментов атомов увеличивается. В случае, если температура ферромагнетика становится приближенной к температуре Кюри, то есть сравнимой с температурой магнитного «плавления», происходит полное разрушение ферромагнитного порядка температурными флуктуациями, и наблюдается переход вещества в парамагнитное состояние:
- магнитный «газ» кристалла;
- магнитная «жидкость» кристалла.
Изменение температуры в первую очередь влияет на намагниченность ферромагнетиков. По мере ее возрастания свойство намагниченности снижается и становится равно нулю в точке Кюри. В данном температурном режиме происходит изменение всех других свойств, которые определяют разницу между ферромагнетиками и парамагнетиками, а также характеристик вещества, не связанных с отличительными особенностями этих типов магнетиков. К примеру, изменение электрических и акустических свойств ферромагнитного материала, в связи с тем, что твердое тело обладает упругой, электрической, магнитной и другими подсистемами, при изменении одной из которых меняются и другие.
Температура Кюри
Каждый ферромагнетик обладает рядом характеристик. Важным параметром вещества является температура, при которой оно утрачивает свои магнитные свойства. Этот показатель называется точкой Кюри. При температуре, превышающей точку Кюри, упорядоченное состояние в магнитной подсистеме кристалла разрушается.
На примере металла
Потерю свойств ферромагнетика в зависимости от температуры окружающей среды можно рассмотреть опытным путем. К примеру, никель обладает температурой Кюри в 360 градусов. Подвешенный образец металла подвергают воздействию внешнего магнитного поля. В систему помещают горелку. При обычной температуре никель примет горизонтальное положение, так как будет сильно притягиваться магнитом. Если образец нагреть до температуры Кюри, его свойство намагниченности ослабевает, он перестанет притягиваться и начнет падать. После остывания до температуры, которая ниже точки Кюри, никель вновь приобретает ферромагнитные свойства и притягивается к магниту.
Применение ферромагнетиков, примеры
Ферромагнитные вещества благодаря особым физико-химическим свойствам нашли широкое применение в разных сферах электротехники. С помощью магнито-мягких типов ферромагнетиков производят такое оборудование и агрегаты, как:
- трансформаторы;
- электродвигатели;
- генераторы;
- слаботочную технику связи;
- радиотехнику.
Ферромагнетики в условиях отсутствия внешнего магнитного поля остаются намагниченными, создавая магнитное поле во внешней среде. Элементарные токи в веществе сохраняют упорядоченную ориентацию. Свойство активно используется в современной промышленности для создания постоянных магнитов, которые используют для изготовления следующих видов оборудования:
- электроизмерительные приборы;
- громкоговорители;
- телефоны;
- звукозаписывающая аппаратура;
- магнитные компасы.
Материалы, относящиеся к ферритам, обладающие одновременно ферромагнитными и полупроводниковыми свойствами, широко распространены в производстве радиотехники. Вещества активно применяются при изготовлении сердечников катушек индуктивности, магнитных лент, пленок и дисков.
X Международная студенческая научная конференция Студенческий научный форум - 2018
Если в магнитное поле, образованное токами в проводах ввести то или иное вещество, поле изменится. Это объясняется тем, что всякое вещество является магнетиком, то есть способно под воздействием магнитного поля намагничиваться – приобретать магнитный момент М. Этот магнитный момент складывается из элементарных магнитных моментов m0, связанных с отдельными частицами тела М = m0. В настоящее время установлено, что молекулы многих веществ обладают собственным магнитным моментом, обусловленным внутренним движением зарядов. Каждому магнитному моменту соответствует элементарный круговой ток, создающий в окружающем пространстве магнитное поле. При отсутствии внешнего магнитного поля магнитные моменты молекул ориентированы беспорядочно, поэтому обусловленное ими результирующее магнитное поле равно нулю. Равен нулю и суммарный магнитный момент вещества. Последнее относится и к тем веществам, молекулы которых при отсутствии внешнего поля не имеют магнитных моментов. Если же вещество поместить во внешнее магнитное поле, то под действием этого поля магнитные моменты молекул приобретают преимущественную ориентацию в одном направлении, и вещество намагничивается – его суммарный магнитный момент становится отличным от нуля. При этом магнитные поля отдельных молекул уже не компенсируют друг друга, в результате возникает поле B. Иначе происходит намагничивание веществ, молекулы которых при отсутствии внешнего поля не имеют магнитного момента. Внесение таких веществ во внешнее поле индуцирует элементарные круговые токи в молекулах, и молекулы, а вместе с ними и все вещество приобретают магнитный момент, что также приводит к возникновению поля В1. Большинство веществ при внесении в магнитное поле намагничиваются слабо. Сильными магнитными свойствами обладают только ферромагнитные вещества: железо, никель, кобальт, многие их сплавы.
ФЕРРОМАГНЕТИКИ ЕГО СВОЙСТВА
Ферромагнетики – твердые вещества, обладающие при не слишком высоких температурах самопроизвольной намагниченностью, которая сильно изменяется под влиянием внешних воздействий – магнитного поля, деформации, изменения температуры. К ним относятся: сталь, железо, никель, кобальт, их сплавы. Они имеют магнитную проницаемость, превышающую проницаемость вакуума в несколько тысяч раз. Поэтому все электротехнические устройства, использующие магнитные поля для преобразования энергии, обязательно имеют конструктивные элементы, изготовленные из ферромагнитного материала и предназначенные для проведения магнитного потока. Такие элементы называются магнитопроводы.
Магнитные свойства веществ зависят от магнитных свойств элементарных носителей магнетизма движущихся внутри атомов электронов, а также от совместного действия их групп. Электроны в атомах, двигаясь по орбитам вокруг ядра атома, образуют элементарные токи или магнитные диполи, которые характеризуются магнитным моментом m. Величина его равна произведению элементарного тока i и элементарной площадки s, ограниченной элементарным контуром m = is. Вектор m направлен перпендикулярно к площадке s по правилу буравчика. Магнитный момент тела представляет собой геометрическую сумму магнитных моментов всех диполей. Кроме орбитальных моментов, электроны, вращаясь вокруг своих осей, создают еще спиновые моменты, которые играют важнейшую роль в намагничивании ферромагнетиков.
Ферромагниты имеют следующие свойства.
1) ферромагнитные свойства вещества проявляются только тогда, когда соответствующее вещество находится в кристаллическом состоянии;
2) магнитные свойства ферромагнетиков сильно зависят от температуры, так как ориентации магнитных полей доменов препятствует тепловое движение. Для каждого ферромагнетика существует определенная температура, при котором доменная структура полностью разрушается, и ферромагнетик превращается в парамагнетик. Это значение температуры называется точкой Кюри. Так для чистого железа значение температуры Кюри приблизительно равно 900 °C;
3) ферромагнетики намагничиваются до насыщения в слабых магнитных полях. На рис. 1 показано, как изменяется модуль индукции магнитного поля B в стали с изменением внешнего поля B0;
4) магнитная проницаемость ферромагнетика зависит от внешнего магнитного поля (рис. 2).
Это объясняется тем, что вначале с увеличением B0 магнитная индукция B растет сильнее, а, следовательно, μ будет увеличиваться. Затем при значении магнитной индукции B0 наступает насыщение (μ в этот момент максимальна) и при дальнейшем увеличении B0 магнитная индукция B1 в веществе перестает изменяться, а магнитная проницаемость уменьшается (стремится к 1):
5) у ферромагнетиков наблюдается остаточная намагниченность. Если, например, ферромагнитный стержень поместить в соленоид, по которому проходит ток, и намагнитить до насыщения (точка А) (рис. 3), а затем уменьшать ток в соленоиде, а вместе с ним и B0, то можно заметить, что индукция поля в стержне в процессе его размагничивания остается все время большей, чем в процессе намагничивания. Когда B0 = 0 (ток в соленоиде выключен), индукция будет равна Br (остаточная индукция). Стержень можно вынуть из соленоида и использовать как постоянный магнит. Чтобы окончательно размагнитить стержень, нужно пропустить по соленоиду ток противоположного направления, то есть приложить внешнее магнитное поле с противоположным направлением вектора индукции. Увеличивая теперь по модулю индукцию этого поля до Boc, размагничивают стержень (B = 0).
Модуль Boc индукции магнитного поля, размагничивающего намагниченный ферромагнетик, называют коэрцитивной силой.
При дальнейшем увеличении B0 можно намагнитить стержень до насыщения (точка А).Уменьшая теперь B0 до нуля, получают опять постоянный магнит, но с индукцией –Br (противоположного направления). Чтобы вновь размагнитить стержень, нужно снова включить в соленоид ток первоначального направления, и стержень размагнитится, когда индукция B0 станет равной Boc. Продолжая увеличивать B0, снова намагничивают стержень до насыщения (точка А).
Таким образом, при намагничивании и размагничивании ферромагнетика индукция B отстает от B0. Это отставание называется явлением гистерезиса. Изображенная на рисунке 3кривая называется петлей гистерезиса.
Гистерезис – свойство систем, которые не сразу следуют за приложенными силам. Гистерезис был открыт в 1880 г. Варбургом (1846–1931). Вид кривой намагничивания (петли гистерезиса) существенно различается для различных ферромагнитных материалов, которые нашли очень широкое применение в научных и технических приложениях. Некоторые магнитные материалы имеют широкую петлю с высокими значениями остаточной намагниченности силы, они называются магнитно-жесткими и используются для изготовления постоянных магнитов. Для других ферромагнитных сплавов характерны малые значения силы, такие материалы легко намагничиваются и перемагничиваются даже в слабых полях. Такие материалы называются магнитно-мягкими и используются в различных электротехнических приборах – трансформаторах, магнитопроводах.
ОСНОВЫ ТЕОРИИ ФЕРРОМАГНЕТИЗМА
В отличие от диамагнетизма и парамагнетизма, которые являются свойствами отдельных атомов или молекул вещества, ферромагнитные свойства вещества объясняются особенностями его кристаллической структуры. Атомы железа, если взять их, например, в парообразном состоянии, сами по себе диамагнитны или лишь слабо парамагнитны. Ферромагнетизм есть свойство железа в твердом состоянии, то есть свойство кристаллов железа. Прежде всего на это указывает зависимость магнитных свойств железа и других ферромагнитных материалов от обработки, изменяющей их кристаллическое строение. Далее оказывается, что из парамагнитных и диамагнитных металлов можно изготовить сплавы, обладающие высокими ферромагнитными свойствами. Таков, например, сплав Гойслера, почти не уступающий по своим магнитным свойствам железу, хотя он состоит из таких слабомагнитных металлов, как медь (60 %), марганец (25 %) и алюминий (15 %). С другой стороны, некоторые сплавы из ферромагнитных материалов, например сплав из 75 % железа и 25 % никеля почти не магнитны. Наконец, самым веским подтверждением является то, что при достижении определенной температуры (точка Кюри) все ферромагнитные вещества теряют свои ферромагнитные свойства.
Ферромагнитные вещества отличаются от парамагнитных не только весьма большим значением магнитной проницаемости и ее зависимостью от напряженности поля, но и весьма своеобразной связью между намагничиванием и напряженностью намагничивающего поля. Эта особенность находит свое выражение в явлении гистерезиса со всеми его следствиями: наличием остаточного намагничивания и коэрцитивной силы.
Взаимодействие магнитных моментов отдельных атомов ферромагнетика приводит к созданию чрезвычайно сильных внутренних магнитных полей, действующих в пределах каждой такой области и выстраивающих, в пределах этой области, все атомные магнитики параллельно друг другу, как показано на рис. 4. Таким образом, даже при отсутствии внешнего поля ферромагнитное вещество состоит из ряда отдельных областей, каждая из которых самопроизвольно намагничена до насыщения. Но направление намагничивания для разных областей различно, так что вследствие хаотичности распределения этих областей тело в целом оказывается в отсутствии внешнего поля не намагниченным.
рис.4 – Схема, иллюстрирующая ориентацию молекулярных магнитов в «областях самопроизвольного намагничивания» А и В.
а) Внешнее магнитное поле отсутствует;
б) под действием внешнего магнитного поля Н области А и В перестраиваются.
Под влиянием внешнего поля происходит перестройка и перегруппировка таких «областей самопроизвольного намагничивания», в результате которой получают преимущество те области, намагничивание которых параллельно внешнему полю, и вещество в целом оказывается намагниченным.
Один из примеров такой перестройки областей самопроизвольного намагничивания показан на рис.4. Здесь схематически изображены две смежные области, направления намагничивания которых перпендикулярны друг к другу.
При наложении поля Н часть атомов области В, в которой намагничивание перпендикулярно к полю, на границе её с областью А, в которой намагничивание параллельно полю, поворачивается, так что направление их магнитного момента становится параллельным полю. В результате область А, намагниченная параллельно внешнему полю, расширяется за счет тех областей, в которых направление намагничивания образует большие углы с направлением поля, и возникает преимущественное намагничивание тела по направлению внешнего поля. В очень сильных внешних полях возможны и повороты направления ориентации всех атомов в пределах целой области.
При снятии (уменьшении) внешнего поля происходит обратный процесс распада и дезориентации этих областей, то есть размагничивание тела. Ввиду больших по сравнению с атомами размеров «областей самопроизвольного намагничивания» как процесс ориентации их, так и обратный процесс дезориентации происходит с гораздо большими затруднениями, чем установление ориентации или дезориентации отдельных молекул или атомов, имеющее место в парамагнитных и диамагнитных телах. Этим и объясняется отставание намагничивания и размагничивания от изменения внешнего поля, то есть гистерезис ферромагнитных тел.
Ферромагнитные материалы играют огромную роль в самых различных областях современной техники. Магнито-мягкие материалы используются в электротехнике при изготовлении трансформаторов, электромоторов, генераторов, в слаботочной технике связи и радиотехнике; магнито-жёсткие материалы применяют при изготовлении постоянных магнитов.
При выключении внешнего магнитного поля ферромагнетик остается намагниченным, то есть создает магнитное поле в окружающем пространстве.
Упорядоченная ориентация элементарных токов не исчезает привыключении внешнего магнитного поля. Благодаря этому существуют постоянные магниты. Постоянные магниты находят широкое применение в электроизмерительных приборах, громкоговорителях и телефонах, звукозаписывающих аппаратах, магнитных компасах.
Широкое распространение в радиотехнике, особенно в высокочастотной радиотехнике, получили ферриты, сочетающие ферромагнитные и полупроводниковые свойства. Из ферритов изготавливают сердечники катушек индуктивности, магнитные ленты, пленки и диски.
Ферромагнетики – твердые вещества, обладающие при не слишком высоких температурах самопроизвольной (спонтанной) намагниченностью, которая сильно изменяется под влиянием внешних воздействий – магнитного поля, деформации, изменения температуры.
Кроме высокой магнитной проницаемости ферромагнетики обладают сильно выраженной нелинейной зависимостью индукции B от напряженности магнитного поля H, а при перемагничивании связь между B и H становится неоднозначной. При перемагничивании ферромагнетика в нем происходят необратимые преобразования энергии в тепло.
При высокой температуре ферромагнитные свойства всех ферромагнитных веществ исчезают.
В отличие от диамагнетизма и парамагнетизма, которые являются свойствами отдельных атомов или молекул вещества, ферромагнитные свойства вещества объясняются особенностями его кристаллической структуры. Атомы железа, если взять их, например, в парообразном состоянии, сами по себе диамагнитны или лишь слабо парамагнитны. Ферромагнетизм есть свойство железа в твердом состоянии, т. е. свойство кристаллов железа.
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
1. Иродов И.Е. Электромагнетизм. Основные законы. – 3-е изд. М, Спб.: Лаборатория базовых знаний, 2000. – 352 с.
2. Ландсберг Г.С. Элементарный учебник физики: Учебное пособие. В 3-х томах. / Под редакцией Г.С. Ландсберга: Т.П. Электричество и магнетизм. – 11-е изд. – М.: Наука, Физматлит, 1995. – 480с.
5. Трофимова Т.И. Курс физики: Пособие для вузов. – 7-е изд. – М.: Высш. шк., 2002. – 542 с.
6. Яворский Б.М., Детлаф А.А. Справочник по физике. – 3-е изд., испр. – М.: Наука. Гл. ред. физ.-мат. лит., 1990. – 624 с.
Классификация и основные характеристики магнитных материалов
Все вещества в природе являются магнетиками в том понимании, что они обладают определенными магнитными свойствами и определенным образом взаимодействуют с внешним магнитным полем.
Магнитными называют материалы, применяемые в технике с учетом их магнитных свойств. Магнитные свойства вещества зависят от магнитных свойств микрочастиц, структуры атомов и молекул.
Классификация магнитных материалов
Магнитные материалы делят на слабомагнитные и сильномагнитные.
К слабомагнитным относят диамагнетики и парамагнетики.
К сильномагнитным – ферромагнетики, которые, в свою очередь, могут быть магнитомягкими и магнитотвердыми. Формально отличие магнитных свойств материалов можно охарактеризовать относительной магнитной проницаемостью.
Парамагнетиками называют материалы, атомы (ионы) которых обладают результирующим магнитным моментом, не зависящим от внешнего магнитного поля. Внешне парамагнетики проявляют себя тем, что втягиваются в неоднородное магнитное поле. К ним относят алюминий, платину, никель и другие материалы.
Ферромагнетиками называют материалы, в которых собственное (внутреннее) магнитное поле может в сотни и тысячи раз превышать вызвавшее его внешнее магнитное поле.
Любое ферромагнитное тело разбито на домены – малые области самопроизвольной (спонтанной) намагниченности. В отсутствие внешнего магнитного поля, направления векторов намагниченности различных доменов не совпадают, и результирующая намагниченность всего тела может быть равна нулю.
Существует три типа процессов намагничивания ферромагнетиков:
2. Процесс необратимого смещения магнитных доменов. В данном случае смещение границ между магнитными доменами не снимается при снижении магнитного поля. Исходные положения доменов могут быть достигнуты в процессе перемагничивания.
Необратимое смещение границ доменов приводит к появлению магнитного гистерезиса – отставанию магнитной индукции от напряженности поля.
3. Процессы вращения доменов. В данном случае завершение процессов смещения границ доменов приводит к техническому насыщению материала. В области насыщения все домены поворачиваются по направлению поля. Петля гистерезиса, достигающая области насыщения называется предельной.
Предельная петля гистерезиса имеет следующие характеристики: Bmax – индукция насыщения; Br – остаточная индукция; Hc - задерживающая (коэрцитивная) сила.
Материалы с малыми значениями Hc (узкой петлей гистерезиса) и большой магнитной проницаемостью называются магнитомягкими.
Материалы с большими значениями Hc (широкой петлей гистерезиса) и низкой магнитной проницаемостью называются магнитотвердыми.
При перемагничивании ферромагнетика в переменных магнитных полях всегда наблюдаются тепловые потери энергии, то есть материал нагревается. Эти потери обусловлены потерями на гистерезис и потерями на вихревые токи. Потери на гистерезис пропорциональны площади петли гистерезиса. Потери на вихревые токи зависят от электрического сопротивления ферромагнетика. Чем выше сопротивление – тем меньше потери на вихревые токи.
Магнитомягкие и магнитотвердые материалы
К магнитомягким материалам относят:
1. Технически чистое железо (электротехническая низкоуглеродистая сталь).
3. Железоникелевые и железокобальтовые сплавы.
4. Магнитомягкие ферриты.
Магнитные свойства низкоуглеродистой стали (технически чистого железа) зависят от содержания примесей, искажения кристаллической решетки из-за деформации, величины зерна и термической обработки. По причине низкого удельного сопротивления технически чистое железо в электротехнике используется довольно редко, в основном для магнитопроводов постоянного магнитного потока.
Листовая электротехническая сталь, поставляемая в отдельных листах или рулонах, и ленточная сталь, поставляемая только в рулонах - являются полуфабрикатами, предназначенными для изготовления магнитопроводов (сердечников).
Магнитопроводы формируют либо из отдельных пластин, получаемых штамповкой или резкой, либо навивкой из лент.
Железоникелевые сплавы называют пермаллоями . Они обладают большой начальной магнитной проницаемостью в области слабых магнитных полей. Пермаллои применяют для сердечников малогабаритных силовых трансформаторов, дросселей и реле.
Ферриты представляют собой магнитную керамику с большим удельным сопротивлением, в 1010 раз превышающим сопротивление железа. Ферриты применяют в высокочастотных цепях, так как их магнитная проницаемость практически не снижается с увеличением частоты.
Недостатком ферритов является их низкая индукция насыщения и низкая механическая прочность. Поэтому ферриты применяют, как правило, в низковольтной электронике.
К магнитотвердым материалам относят:
1. Литые магнитотвердые материалы на основе сплавов Fe-Ni-Al.
2. Порошковые магнитотвердые материалы, получаемые путем прессования порошков с последующей термообработкой.
3. Магнитотвердые ферриты. Магнитотвердые материалы – это материалы для постоянных магнитов, использующихся в электродвигателях и других электротехнических устройствах, в которых требуется постоянное магнитное поле.
Магнетизм и его практическое применение
Огромный круг явлений природы определяется магнитными силами. Современная наука достаточно глубоко проникла в сущность магнитных явлений и вскрыла их основные закономерности.
Научные и технические применения магнетизма в наши дни столь обширны и многообразны, что делают физику магнитных явлений одним из важных разделов естествознания.
Магнитные свойства обнаруживаются во всем окружающем мире, от мельчайших элементарных частиц до безграничных космических просторов, заполненных магнитными полями.
Что такое магнетизм
Магнетизм — особая форма материальных взаимодействий, возникающих между движущимися заряженными частицами. Если источником электрического поля являются электрические заряды, то источником магнитного поля является электрический ток.
Магнитные свойства присущи всем веществам, т. е. все они являются магнетиками. Все вещества реагируют на воздействие внешнего магнитного поля: одни создают диамагнитный эффект, другие — парамагнитный эффект.
В природе встречаются различные поля: гравитационное, магнитное, электрическое и др., обладающие характерными особенностями. Поля недоступны нашему восприятию, однако вид полей, получаемых с помощью спектров поля, исследование сил, действующих в поле, дают возможность представления поля в виде потока.
Магнитный поток в отличие от потоков других полей является всегда замкнутым. В качестве физической величины, характеризующей интенсивность магнитного потока, служит вектор магнитной индукции.
Единица магнитного потока в СИ — вебер (Вб). За единицу магнитной индукции принимают индукцию, при которой через площадь в 1 м 2 , расположенную перпендикулярно направлению магнитного потока, проходит поток в 1 Вб. Эта единица называется тесла (Тл).
Графически магнитный поток является скалярной интегральной величиной и изображается линиями, расположенными таким образом, чтобы во всех точках касательные к ним совпадали по направлению с векторами магнитной индукции.
Магнитные материалы
Название магнит произошло от того места, где впервые были найдены железные руды, обладающие магнитными свойствами.
Магниты, являющиеся кусками руды магнитного железняка, называются естественными. Они способны притягивать к себе другие стальные предметы. При этом притянутые предметы приобретают способность сами намагничиваться. Такие магниты называются искусственными.
Отличительной особенностью магнита является то, что он притягивает к себе другие предметы неравномерно по всей поверхности. Наиболее сильно проявляется сила притяжения на концах магнита. Эти места называются полюсами магнита. Основным магнитным материалом является железо.
Наилучшими магнитными свойствами обладает железо без примесей. Хорошими магнитными свойствами обладает также электротехническая (легированная) сталь. Поэтому из нее изготавливаются магнитопроводы трансформаторов и других электрических аппаратов и машин.
По способу изготовления электротехническая сталь подразделяется на холоднокатаную и горячекатаную.
В качестве магнитных материалов применяются также специальные магнитные сплавы.
Магнитное поле электрического тока
При прохождении тока по проводнику в пространстве вокруг него возникает магнитное поле, обладающее энергией, которая воздействует на вещества. Для характеристики свойств магнитного поля его действия выражаются через так называемые магнитные линии. Направление их соответствует направлению вращения буравчика при его продвижении вдоль тока.
В отличие от электрических силовых линий, которые начинаются на одном электрическом заряде и заканчиваются на другом, магнитные линии являются замкнутым и. Фактически они распределены вдоль всего проводника. С увеличением тока происходит усиление магнитного поля. Чем ближе к проводнику, тем действие магнитного поля проявляется более сильно.
Если применить проводник в виде спирали виде спирали (соленоид, катушка), то при прохождении по нему тока магнитное поле будет значительно сильнее, чем в прямолинейном проводнике. При этом чем больше витков у этой катушки и чем больше ток, тем сильнее магнитное поле.
В катушке магнитные поля отдельных витков складываются, образуя общее магнитное поле. Для усиления его в катушку вводят железный сердечник, который, в результате воздействия магнитного поля катушки, сам намагничивается и значительно усиливает магнитный поток.
Катушка из изолированной проволоки, в которую вставлен сердечник, изготовленный из материала, хорошо проводящего магнитные линии, называется электромагнитом.
Большинство электромагнитов изготавливается с сердечниками, которые способны быстро намагнититься относительно небольшим током, но после прекращения протекания тока почти полностью размагничиваются. Электромагнит проявляет действие только при протекании по нему тока.
Электромагниты находят самое широкое практическое применение. Они используются для возбуждения магнитного потока в электрических машинах, в электромагнитных реле и т. д.
Подробно о том, как работают магниты и электромагниты смотрите здесь:
Виды магнетизма
В зависимости от значения и знака восприимчивости все вещества условно делят на диамагнетики, парамагнетики и ферромагнетики.
Диамагнетики имеют отрицательную магнитную восприимчивость, в большинстве случаев не зависящую от напряженности поля. Во внешнем магнитном поле диамагнетики намагничиваются в направлении, противоположном внешнему полю.
Диамагнетизм существует во всех веществах независимо от структуры их атомов и видов связи, т. е. в жидком, твердом и газообразном состояниях. Он проявляется в тех веществах, где имеет место полная компенсация как орбитальных, так и спиновых магнитных моментов.
Существует ряд диамагнетиков с аномальным поведением; их восприимчивость значительно больше указанной и зависит от температуры. К таким веществам относятся сурьма, висмут, галлий и таллий. В технике диамагнитный эффект ввиду его малости используется сравнительно редко.
Парамагнетики имеют положительную магнитную восприимчивость. К ним относятся большая часть газов, щелочные металлы, многие соли на основе железа, ферромагнетики при температуре выше точки Кюри.
Парамагнитный эффект возникает в веществах с наличием нескомпенсированных магнитных моментов. Результирующий магнитный момент парамагнетика равен нулю.
Под действием внешнего магнитного поля возникает результирующий магнитный момент, совпадающий с направлением поля. Для большинства парамагнетиков намагниченнсоть зависит от температуры, уменьшаясь с ее ростом (закон Кюри).
Разновидностью парамагнетизма является суперпарамагнетизм, обычно наблюдающийся в тонкодисперсных выделениях ферромагнитных частиц в какой-либо матрице, например в выделениях супермагнитных частиц в сплаве медь—железо (Cu+1%Fe). Кривые намагничивания суперпарамагнетиков существенно зависят от температуры.
Одним из признаков ферромагнетиков является высокое значение магнитной восприимчивости и ее сильная зависимость от напряженности магнитного поля.
Зависимость намагниченности от напряженности магнитного поля неоднозначна, и при всех температурах ниже точки Кюри наблюдается гистерезис.
Даже в отсутствие внешнего магнитного поля отдельные частицы ферромагнетика (домены) находятся в состоянии самопроизвольного намагничивания и имеют результирующий магнитный момент. При воздействии внешнего поля магнитные моменты доменов ориентируются в направлении этого поля и ферромагнитное вещество намагничивается.
Из чистых химических элементов ферромагнитными свойствами обладают элементы группы 3d — металлы (железо, кобальт, никель) и группы 4f — металлы (гадолиний, диспрозий, тербий, гольмий, эрбий, тулий). Практически необозримо число ферромагнитных материалов, причем это в основном металлы и их сплавы.
Существует группа материалов, называемая антиферромагнетиками. Антиферромагнитный эффект заключается в том, что в отсутствие внешнего магнитного поля магнитные моменты одинаковых соседних атомов направлены встречно, так что результирующий магнитный момент домена равен нулю.
Магнитное упорядочение сохраняется до температуры, называемой точкой Нееля. Выше этой температуры вещество переходит в парамагнитное состояние. При воздействии внешнего поля магнитные моменты атомов приобретают ориентировку в направлении этого поля и антиферромагнитное вещество намагничивается.
К антиферромагнетикам относятся чистые металлы: хром и марганец, редкоземельные металлы (церий, празеодим, самарий, неодим, европий).
Материалы с некомпенсированным антиферромагнетизмом называют ферримагнетиками. При температурах выше точки Кюри у ферромагнетиков и точки Нееля у антиферромагнетиков атомное магнитное упорядочение нарушается и вещество переходит в парамагнитное coстояние.
Ферримагнетики получили свое название от ферритов первой группы — некомпенсированных антиферромагнетиков. Сюда относятся соединения окиси железа Fe2O3 с окислами других металлов, например соединения с формулой МеОхFe2О3, где Me — металл (железо, никель, марганец, цинк, кобальт, медь, магний и др.).
Ферримагнетикам свойственна такая же, как и ферромагнетикам зависимость намагниченности от напряженности магнитного поля.
Подробно про диамагнетики:
Подробно про ферромагнетики:
Применение магнетизма
Универсальность магнетизма открыла широкие широкие возможности для его применения в науке и технике. Во-первых, это использование магнитных материалов для различных отраслей техники (энергетики, электроники, автоматики и т. д.). Во-вторых, используя информационный аспект магнетизма и измеряя магнитные характеристики, можно получить детальные сведения о физических свойствах веществ и их химическом составе.
Использование методов и средств магнитных измерений положено в основу широко применяемых в технике методов структурного анализа, магнитной дефектоскопии и дефектометрии — важнейших неразрушающих методов контроля качества промышленной продукции.
Непрерывно растет производство конструкционных и электротехнических сталей, низкокоэрцитивных сплавов со специальными свойствами (безгистерезисных, с прямоугольной петлей гестерезиса и др.), выоококоэрцитивных магнитных материалов.
Увеличивается применение миниатюрных магнитных сердечников и систем, энергоемких постоянных магнитов и магнитных пленок. Сейчас трудно найти отрасль техники, в которой не использовались бы магнитные системы, в том числе системы с постоянными магнитами.
В связи с этим контроль качества магнитных материалов и изделий из них, измерение параметров магнитных полей и исследование ферромагнитных материалов и магнитных систем в лабораторных условиях и производстве становятся важной задачей.
В последние годы достигнуты значительные результаты в создании автоматической магнитоизмерительной аппаратуры. Применение унифицированных блоков, узлов и микропроцессоров, серийно выпускаемых промышленностью, значительно ускоряет процесс создания магнито-измерительных систем и комплексов, обеспечивающих автоматическое управление процессом перемагничивания, измерение и обработку результатов с высокой точностью и производительностью.
Неразрушающие методы контроля изделий из ферромагнитных материалов
Контроль качества изделий из ферромагнитных материалов неразрушающими методами в настоящее время охватывает многие отрасли промышленности. Широко применяется контроль рельсов на железных дорогах, контролируются сварные швы различных изделий, осуществляется проверка деталей машин и механизмов при их изготовлении.
При неразрушающем контроле изделий из ферромагнитных материалов используются магнитный и вихретоко-вый методы для оценки структурного состояния деталей при термообработке, для обнаружения дефектов в процессе эксплуатации и для определения характера развития трещин, возникающих в деталях под влиянием больших нагрузок.
При применении неразрушающего контроля обеспечивается необходимый запас прочности машин и механизмов и снижается их материалоемкость. Подробнее смотрите здесь: Магнитная дефетоскопия
Применение ферромагнитных материалов в электротехнических устройствах
Самым распространенным компонентом ферромагнитных материалов является железо. Поэтому естественно стремление его возможно шире использовать, но получить свободное от примесей железо практически невозможно.
Наибольшее распространение получило технически чистое железо (низкоуглеродистая электротехническая сталь). Его используют для изготовления сердечников электромагнитов постоянного и переменного тока, полюсных башмаков, магнитопроводов, реле и ряда других устройств, работающих в постоянных и низкочастотных магнитных полях.
Применение низкоуглеродистой стали для работы в переменных полях высокой частоты ограничено из-за низкого удельного сопротивления, обусловливающего большие потери на вихревые токи.
При изготовлении магнитопроводов асинхронных двигателей мощностью до 100 кВт основным требованием, предъявляемым к магнитным материалам, являются высокая проницаемость, малое значение коэрцитивной силы, возможно большее значение индукции насыщения.
Низкоуглеродистая сталь для этих целей выпускается горячекатаной и холоднокатаной. Механические напряжения, возникающие в результате обработки материала, в значительной степени ухудшают магнитные свойства. Внутренние напряжения, возникающие после обработки, снимают отжигом при 725—1000 °С.
При необходимости получения особо высоких магнитных свойств термообработку проводят в вакууме при высокой температуре. Для получения материалов с большим удельным электрическим сопротивлением и большой магнитной проницаемостью при индукции 1,2—1,7 Тл используют легирование железа кремнием (от 0,5 до 4%).
Такая электротехническая сталь нашла широкое применение при изготовлении магнитопроводов электрических машин, силовых трансформаторов и коммутирующей аппаратуры силовых электрических цепей.
В настоящее время холоднокатаные стали вытесняют стали, изготовленные горячей прокаткой. Это происходит из-за более высоких магнитных свойств первых.
Кроме того, более гладкая поверхность холоднокатаных сталей позволяет увеличить коэффициент заполнения объема изделий на 20—30% по сравнению с горячекатаными, а более высокая стоимость их компенсируется значительным уменьшением потерь и в конечном счете массы готовых изделий.
Иные требования предъявляются к материалам магнитных систем электротехнических устройств, работающих на повышенных частотах (до единиц мегагерц). Эти материалы должны обладать большим электрическим сопротивлением. Наибольшее распространение здесь нашли никель-цинковые, марганец-цинковые, ферриты и магнитодиэлектрики.
Обычно параметрами, определяющими выбор типа ферритов и магнитодиэлектриков для этих целей, являются начальная магнитная проницаемость, тангенс угла потерь, удельное электрическое сопротивление.
В настоящее время магнитодиэлектрики вытесняются ферритами, характеризующимися лучшими магнитными свойствами, но имеющими худшие показатели по стабильности и чувствительности к внешним воздействиям.
Повышение стабильности ферритов и снижение их чувствительности к внешним воздействиям (температура, время, подмагничивание) ведет к еще более широкому их применению.
Применение ферромагнитных материалов:
Ферромагнитные материалы специального назначения
В измерительной технике, электронике, технике связи часто требуются материалы с постоянной магнитной проницаемостью в заданных пределах изменения напряженности намагничивающегося поля (сердечники катушек постоянной индуктивности, дроссели фильтров, измерительные трансформаторы и т. д.). Здесь широко применяются перминвары, изопермы.
Для построения магнитных систем магнитоэлектрических приборов, микрофонов и т. п. широко используются пермендюр, имеющий индукцию насыщения 2,5 Тл. Этот материал используется также для магнитопроводов электромагнитов, силовых трансформаторов, сердечников роторов и статоров электрических машин.
Широкое использование получили магнитные материалы для экранирования устройств от внешних магнитных полей. Различают два вида экранирования: магнитостатическое и электромагнитное.
В первом случае экранируемый объект окружают кожухом из материала с высокой магнитной проницаемостью, через который проходят линии потока внешнего постоянного или медленно изменяющегося магнитного поля.
Электромагнитное экранирование основано на эффекте вытеснения линий потока внешнего переменного поля магнитным полем вихревых токов, индуцируемых в кожухе с высокой проводимостью. С увеличением частоты внешних возмущающих полей эффект магнитостатического экранирования уменьшается, а электромагнитного — возрастает.
Для электромагнитного экранирования применяют магнитные материалы с высокой проницаемостью, малой коэрцитивной силой и низким удельным электрическим сопротивлением, например пермаллой 79НМ. Иногда используют сплав 50Н или низкоуглеродистую сталь.
Подробно про электромагнитное экранирование смотрите здесь:
В области техники звуковых и ультразвуковых частот широко используются магнитострикционные материалы. К таким материалам предъявляются требования максимального коэффициента магнитострикции при возможно меньшей напряженности магнитного поля.
Наилучшими свойствами в этом смысле обладают сплавы на основе платины и кобальта, но их техническое применение ограничено высокой стоимостью. В настоящее время в основном в этой области применяются металлические материалы и реже ферриты.
Современные магнитные материалы:
Читайте также: