Металлы активные и пассивные
Пассивность - состояние повышенной стойкости металла к коррозионным разрушениям, которое возникает из-за торможения анодного процесса электрохимической коррозии.
Высокая коррозионная стойкость металлов может быть достигнута различными способами, но под пассивностью металла подразумевают лишь стойкость к коррозии, обусловленную торможением именно анодного процесса.
Ярким примером пассивности металлов является резкое торможение скорости разрушения железа в растворе азотной кислоты с достаточным повышением ее концентрации.
Пассивироваться могут очень многие металлы, в зависимости от условий. К ним относится: алюминий, хром, титан, кобальт, молибден, никель, железо, магний и др.
Характеристика пассивного состояния
Переход в пассивное состояние металла можно распознать по довольно большому смещению потенциала металла в более положительную сторону и резкому уменьшению скорости коррозии. Это указывает на то, что металл перешел в пассивное состояние, и произошло торможение анодного процесса электрохимической коррозии.
Пассивное состояние поверхности металла определяют также при помощи количественных характеристик:
- коэффициента пассивности π:
- Са – степень анодного контроля
Пассиваторы и активаторы (депассиваторы)
Некоторые вещества могут способствовать переходу металла в пассивное состояние либо наоборот, переводить из пассивного в активное.
Пассивированию поверхности способствуют:
Некоторые металлы могут оставаться в пассивном состоянии еще некоторое время после окончания воздействия пассивирующих веществ.
Пассивная поверхность металла при изменении условий окружающей среды может перейти с пассивного состояния в активное. Также такой переход может быть вызван воздействием активирующих веществ.
Активации поверхности способствуют:
- некоторые ионы (активные ионы, такие, как ионы хлора, йода, водорода, брома, SO4 2- и др.);
- механическое повреждение (если металл не находится в среде, которая его пассивирует).
Теория пассивности
Пассивное и активное состояние поверхности металла изучались многими учеными. Переход поверхности с активного состояния в пассивное, и наоборот – совокупность многих довольно сложных процессов. Для их объяснения существует множество теорий. Наиболее распространенные пять из них:
- адсорбционная теория пассивности;
- пленочная теория пассивности;
- кинетическая теория пассивности;
- теория электронных конфигураций;
- теория пассивационного барьера.
Адсорбционная теория пассивности
Адсорбционная теория пассивности основана на защитном действии кислорода, окислителей и других веществ, которые попадая на поверхность металла, образуют мономолекулярный адсорбционный слой. Кислород способствует снижению активности поверхностных атомов металла, насыщая их валентности. Это явление также может быть связано с торможением анодного растворения основного металла.
Адсорбционную теорию пассивности изучали такие ученые, как А.Н. Фрумкин, Б.Н. Кабанов, Б.В. Эйшлер, Я.М. Колотыркин и др.
Пленочная теория пассивности
Пленочная теория пассивности основана на образовании на поверхности металла тончайшей пленки продуктов коррозии (результат взаимодействия окружающей среды и металла). Продукты коррозии чаще всего представляют собой оксиды металла. Качество оксидной пленки определяет ее защитные свойства.
В основе пленочной теории пассивности металлов лежит предположение Фарадея (1876 год), которое гласит о том, что пассивное состояние поверхность металла приобретает в результате наличия на ней химически связанного кислорода.
Кроме Фарадея данную теорию изучали Эванс, В.А. Кистяковский, П.Д. Данков, Г.В. Акимов и многие другие.
Кинетическая теория пассивности
Кинетическая теория пассивности подразумевает трудности в протекании анодного процесса ионизации металла. Торможение анодного процесса, по данной теории, происходит из-за образования твердого раствора металла с окислителем. Оксидные слои влияния на пассивность металла не оказывают.
Кинетическую теорию пассивности изучали Закур, Ферстер, Ле-Блан и др.
Теория электронных конфигураций
Теория электронных конфигураций подразумевает легкий переход в пассивное состояние переходных металлов в периодической системе Менделеева из-за того, что они в металлическом состоянии имеют незаполненные d-уровни (т.е. внутренние оболочки их не полностью укомплектованы). Окислитель, попадая на поверхность металла, забирает электроны у металла с внешних уровней, тем самым переводя его в пассивное состояние.
Основоположниками теории электронных конфигураций были Улиг и Рассел.
Теория пассивационного барьера
Теория пассивационного барьера предусматривает влияние анодной поляризации на скорость растворения металла.
АНОДНОЕ РАСТВОРЕНИЕ И ПАССИВНОСТЬ МЕТАЛЛОВ
Электрохимическое растворение металлов включает в себя две группы процессов : растворение за счет внешнего тока (анодное растворение) и в результате взаимодействия с компонентами среды (коррозия).
Анодное растворение металла с переходом его в раствор в виде простых гидратированных (или в виде комплексных) ионов во многом представляет собой обращение процесса катодного выделения металлов. Анодный процесс начинается с разрушения кристаллической решётки и заканчивается образованием ионов металла в растворе; вместо стадий формирования кристаллической решётки появляются стадии её разрушения, вместо разряда ионов - ионизация атомов металла и т. д. Общую реакцию анодного растворения металла, если образуются простые гидратированные ионы, можно записать в виде уравнения :
[М] + х Н2О = М n + × х Н2О + ne -
Металлы растворяются анодно обычно при потенциалах более положительных, чем соответствующие равновесные потенциалы, т. е. их растворение сопровождается анодной поляризацией. Её значение можно определить из уравнения :
Появление анодной поляризации можно связать с замедленностью одной из стадий : транспортировки, разрушения твёрдой фазы или ионизации. При катодном выделении металлов замедленность транспортировки, т. е. недостаточная начальная скорость доставки разряжающихся ионов к электроду, смещает его потенциал в отрицательную сторону. При анодном растворении металла замедленность стадии отвода приводит к накоплению перешедших в раствор ионов вблизи электрода и, соответственно, смещает его потенциал в положительную сторону. Аналогичная картина должна наблюдаться и при замедленном протекании других стадий. В связи с этим при не слишком больших удалениях от состояния равновесия обнаруживается некоторая симметрия в протекании процессов катодного выделения металлов и их анодного растворения.
Поведение металлов в процессе анодного растворения исследовано не так полно, как при их катодном осаждении. Всё же полученные опытные данные подтверждают применимость основных положений теории электрохимического перенапряжения к металлам группы железа. Так, кинетика анодного растворения железа и никеля описывается формулой Тафеля :
Помимо стадий переноса электрона суммарная реакция анодного растворения металлов группы железа включает чисто химические стадии, протекающие с участием анионов, прежде всего ионов гидроксила, каталитически ускоряющих анодный процесс. Растворение железа в концентрированных растворах серной кислоты можно описать, например, следующей схемой :
Fe + OH - = FeOHадс + e -
FeOH + адс + n H2O = Fe 2+ × n H2O + OH -
где вторая стадия определяет скорость всего процесса. В настоящее время имеется много данных, указывающих на участие ионов OH - в процессе анодного растворения и других металлов. Кинетика анодного растворения металлов зависит не только от концентрации гидроксильных ионов, но и вообще от анионного состава раствора.
Металл, растворяющийся под действием анодной поляризации, может при изменении условий потерять эту способность и превратиться в нерастворимый анод. Такое превращение растворимого анода в нерастворимый представляет собой частный случай пассивности металлов. Явление пассивности металлов было открыто М.В.Ломоносовым (1738).
Перевод металла в пассивное состояние достигается не только при действии соответствующих окислителей (например, пассивация железа концентрированной азотной кислотой), но и др. способами, в частности, анодной поляризацией. Наиболее отчетливо это явление обнаруживается на потенциостатических кривых потенциал анода - плотность тока (типичная потенциостатическая кривая - см. рис.).
В области потенциалов, не очень удалённых от равновесного или стационарного потенциала металла в данных условиях, при смещении его в положительную сторону наблюдается увеличение скорости растворения металла в виде обычных для него ионов. Эта область потенциалов отвечает активному состоянию металла, когда он ведёт себя как растворимый анод. При достижении некоторого значения потенциала (более положительного, чем исходная величина) плотность тока резко падает, что указывает на внезапное замедление процесса растворения. В довольно широких пределах потенциалов плотность тока , а следовательно, и скорость растворения почти не изменяются, оставаясь очень малыми. Эта область потенциалов отвечает пассивному состоянию. Участок потенциостатической поляризационной кривой, соединяющей область активного состояния с областью пассивности, называется переходной областью. Дальнейшее смещение потенциала в положительную сторону может привести к новому подъёму плотности тока и к увеличению скорости растворения. Эта зона потенциалов называется областью перепассивации или транспассивности. Для неё характерно растворение металла в виде ионов более высокой валентности, чем при его растворении в активном состоянии. Таким образом, при изменении потенциала в сторону более положительных значений металл последовательно проходит через активное, переходное (или предпассивное), пассивное и транспассивное состояния. Смещая потенциал от положительных значений к отрицательным, можно заставить металл пройти через те же состояния, но в обратном порядке. Для характеристики потенциостатической кривой наиболее важны точки перехода из одного состояния в другое. Потенциал jп,при котором начинается переход металла из активного состояния в пассивное, называется потенциалом начала пассивации или потенциалом пассивации. При потенциале jакт металл уже пассивен. Однако даже его незначительное отклонение в отрицательную сторону нарушает пассивное состояние, и металл начинает активироваться. Потенциал jактназывают обычно потенциалом активации или Фладе-потенциалом (по имени немецкого учёного, обнаружившего его существование), причём последний термин часто употребляют и для потенциала пассивации jп . Следующим характеристическим потенциалом является потенциал депассивации jдп, при котором металл из области пассивного состояния вступает в область транспассивности. Для каждой из областей потенциостатической кривой, разграниченных критическими точками, характерен свой закон измененияскорости растворения (изменения анодной плотности тока) с потенциалом. Область активного состояния отличается тем, что смещение потенциала в положительную сторону вызывает увеличение скорости растворения, т. е. наклон прямой di/dj > 0. В переходном состоянии скорость растворения уменьшается с ростом потенциала и di/dj < 0. В пассивном состоянии скорость растворения практически не зависит от потенциала и di/dj » 0. В транспассивном состоянии, так же как и в активном, di/dj > 0, но наклон оказывается обычно иным.
Область перепассивации (переход металла в новое активное состояние) наблюдается не всегда. Тем не менее и в этих случаях после достижения некоторого значения потенциала обнаруживается подъем плотности тока, однако здесь он отвечает не возобновлению растворения металла, а началу выделения кислорода. Известны также случаи, когда после перепассивации наступает вторая область пассивности, которая может затем смениться новым подъемом тока, связанным с растворением металла (в виде других ионов) или с выделением кислорода.
Детальное разграничение областей, отвечающих различным состояниям металла, сделалось возможным благодаря применению потенциостатического метода снятия поляризационных кривых. Пока пользовались обычным гальваностатическим методом, удавалось обнаружить только внезапные изменения потенциала, которые при прямом (от малых плотностей тока к большим) и обратном (от больших плотностей тока к малым) снятии поляризационных кривых наступали не при одних и тех же плотностях тока, что указывало на существование каких-то гистерезисных явлений.
Основные закономерности перехода металла в разные состояния были исследованы многими авторами; следует указать на работы Г.А.Акимова, В.П.Батракова, Я.М.Колотыркина, Н.Д.Томашева, Пражека, Бонгофера, Франка, Штерна, Эделану, Окамото и др. Явление перепассивации металлов было впервые количественно обосновано Батраковым (1953) и Томашевым (1954). Колотыркин (1958) впервые снял полную потенциостатическую кривую и экспериментально доказал, что все переходы металла из одного состояния в другое можно получить как его поляризацией, так и введением в раствор различных окислителей, обеспечивающих создание соответствующих потенциалов. Он сделал весьма важный для теории пассивности вывод о том, что решающим фактором в установлении того или иного состояния металла является не природа окисляющего агента, а потенциал металла.
Для объяснения явления пассивности были предложены две теории - пленочная и адсорбционная. В пленочной, или фильмовой теории пассивности (Кистяковский) предполагается, что переход металла из активного состояния в пассивное вызван образованием на его поверхности тонкого, обычно оксидного, слоя, отделяющего металл от окружающей среды и препятствующего его растворению. Образующийся оксидный слой имеет толщину в несколько молекулярных слоев, и его можно рассматривать как фазовый оксид. Чем совершеннее структура оксидного слоя, чем меньше в нем разрывов и дефектов, тем полнее пассивация и тем меньше скорость растворения металла в пассивном состоянии.
Кистяковский, Изгарышев, Акимов экспериментально доказали существование поверхностных пленок фазового характера. Эвансу (1930) удалось, подбирая специальные растворы, отделить пленку от металла и сделать ее видимой.
Перепассивация по пленочной теории объясняется изменением состава и структуры поверхностного оксида в результате образования ионов более высокой валентности, что может привести к нарушению сплошности пленки. Защитное действие пленки при этом уменьшается, и снова становится возможным растворение металла, но уже при более положительных потенциалах и в виде ионов с большей валентностью.
Согласно адсорбционной теории наступление пассивного состояния не обязательно связано с образованием полимолекулярной оксидной пленки. Оно может быть также достигнуто за счет торможения процесса растворения, вызванного адсорбированными атомами кислорода. Адсорбированные атомы кислорода пассивируют металл, или создавая на его поверхности сплошной мономолекулярный слой, или блокируя наиболее активные участки поверхности, или изменяя величину скачка потенциала на границе металл - раствор.
Независимо от того, какую из этих теорий считать более справедливой, пассивное состояние должно быть связано с уменьшением скорости анодной реакции. Поэтому предложено определять пассивность как состояние повышенной устойчивости металла (сплава), обусловленное торможением анодного процесса (Н.Д.Томашев).
Следует упомянуть о питтинге и о потенциале питтингообразования jпит. При потенциале jпит наблюдается резкий подъем тока, обусловленный крайне локализованным процессом растворения, при котором практически вся поверхность металла остается пассивной, а переход его ионов в раствор происходит при очень высоких плотностях тока в отдельных точках - питтингах (от англ. pit - булавочный укол). Обычно появление питтинга происходит в растворах, содержащих ионы хлора.
Химические свойства металлов
Свойства металлов начинают изучать на уроках химии в 8–9 классе. В этом материале мы подробно разберем химические свойства этой группы элементов, а в конце статьи вы найдете удобную таблицу-шпаргалку для запоминания.
20 декабря 2021
· Обновлено 20 декабря 2021
Ждём вас 8 октября в 13:00. Вместе с педагогами, психологами и другими экспертами в образовании и воспитании ответим на главные вопросы мам и пап.
Металлы — это химические элементы, атомы которых способны отдавать электроны с внешнего энергетического уровня, превращаясь в положительные ионы (катионы) и проявляя восстановительные свойства.
В окислительно-восстановительных реакциях металлы способны только отдавать электроны, являясь сильными восстановителями. В роли окислителей выступают простые вещества — неметаллы (кислород, фосфор) и сложные вещества (кислоты, соли и т. д.).
Металлы в природе встречаются в виде простых веществ и соединений. Активность металла в химических реакциях определяют, используя электрохимический ряд, который предложил русский ученый Н. Н. Бекетов. По химической активности выделяют три группы металлов.
Ряд активности металлов
Металлы средней активности
Общие химические свойства металлов
Взаимодействие с неметаллами
Щелочные металлы сравнительно легко реагируют с кислородом, но каждый металл проявляет свою индивидуальность:
оксид образует только литий
натрий образует пероксид
калий, рубидий и цезий — надпероксид
Остальные металлы с кислородом образуют оксиды:
2Zn + O2 = 2ZnO (при нагревании)
Металлы, которые в ряду активности расположены левее водорода, при контакте с кислородом воздуха образуют ржавчину. Например, так делает железо:
С галогенами металлы образуют галогениды:
Медный порошок реагирует с хлором и бромом (в эфире):
При взаимодействии с водородом образуются гидриды:
Взаимодействие с серой приводит к образованию сульфидов (реакции протекают при нагревании):
Реакции с фосфором протекают до образования фосфидов (при нагревании):
Основной продукт взаимодействия металла с углеродом — карбид (реакции протекают при нагревании).
Из щелочноземельных металлов с углеродом карбиды образуют литий и натрий:
Калий, рубидий и цезий карбиды не образуют, могут образовывать соединения включения с графитом:
С азотом из металлов IA группы легко реагирует только литий. Реакция протекает при комнатной температуре с образованием нитрида лития:
Взаимодействие с водой
Все металлы I A и IIA группы реагируют с водой, в результате образуются растворимые основания и выделяется H2. Литий реагирует спокойно, держась на поверхности воды, натрий часто воспламеняется, а калий, рубидий и цезий реагируют со взрывом:
Металлы средней активности реагируют с водой только при условии, что металл нагрет до высоких температур. Результат данной реакции — образование оксида.
Неактивные металлы с водой не взаимодействуют.
Взаимодействие с кислотами
Если металл расположен в ряду активности левее водорода, то происходит вытеснение водорода из разбавленных кислот. Данное правило работает в том случае, если в реакции с кислотой образуется растворимая соль.
2Na + 2HCl = 2NaCl + H2
При взаимодействии с кислотами-окислителями, например, азотной, образуется продукт восстановления кислоты, хотя протекание реакции также неоднозначно.
Металлы IА группы:
Металлы IIА группы
Такие металлы, как железо, хром, никель, кобальт на холоде не взаимодействуют с серной кислотой, но при нагревании реакция возможна.
Взаимодействие с солями
Металлы способны вытеснять из растворов солей другие металлы, стоящие в ряду напряжений правее, и могут быть вытеснены металлами, расположенными левее:
Zn + CuSO4 = ZnSO4 + Cu
На металлы IА и IIА группы это правило не распространяется, так как они реагируют с водой.
Реакция между металлом и солью менее активного металла возможна в том случае, если соли — как вступающие в реакцию, так и образующиеся в результате — растворимы в воде.
Взаимодействие с аммиаком
Щелочные металлы реагируют с аммиаком с образованием амида натрия:
Взаимодействие с органическими веществами
Металлы IА группы реагируют со спиртами и фенолами, которые проявляют в данном случае кислотные свойства:
Также они могут вступать в реакции с галогеналканами, галогенпроизводными аренов и другими органическими веществами.
Взаимодействие металлов с оксидами
Для металлов при высокой температуре характерно восстановление неметаллов или менее активных металлов из их оксидов.
3Са + Cr2O3 = 3СаО + 2Cr (кальциетермия)
Вопросы для самоконтроля
С чем реагируют неактивные металлы?
С чем связаны восстановительные свойства металлов?
Верно ли утверждение, что щелочные и щелочноземельные металлы легко реагируют с водой, образуя щелочи?
Методом электронного баланса расставьте коэффициенты в уравнении реакции по схеме:
Mg + HNO3 → Mg(NO3)2 + NH4NO3 + Н2O
Как металлы реагируют с кислотами?
Подведем итоги
От активности металлов зависит их химические свойства. Простые вещества — металлы в окислительно-восстановительных реакциях являются восстановителями. По положению металла в электрохимическом ряду можно судить о том, насколько активно он способен вступать в химические реакции (т. е. насколько сильно у металла проявляются восстановительные свойства).
Напоследок поделимся таблицей, которая поможет запомнить, с чем реагируют металлы, и подготовиться к контрольной работе по химии.
Лекция 15. Общие химические свойства металлов
С химической точки зрения металл – это элемент, который во всех соединениях проявляет положительную степень окисления.Из известных в настоящее время 109 элементов 86 являются металлами. Основной отличительной особенностью металлов является наличие в конденсированном состоянии свободных, не связных с определенным атомом электронов. Эти электроны способны перемещаться по всему объему тела. Наличие свободных электронов определяет всю совокупность свойств металлов. В твердом состоянии большинство металлов имеет кристаллическую высокосимметричную структуру одного из типов: кубическую объемноцентрированную, кубическую гранецентрированную или гексагональную плотноупакованную (рис. 1).
Рис. 1. Типичная структура кристалла металлов: а – кубическая объемноцентрированная; б–кубическая гранецентрированная; в – плотная гексагональная
Существует техническая классификация металлов. Обычно выделяют следующие группы: черные металлы (Fe); тяжелые цветные металлы(Cu, Pb, Zn, Ni, Sn, Co, Sb, Bi, Hg, Cd), легкие металлы с плотностью менее 5 г/см 3 (Al, Mg, Ca и т.д.), драгоценные металлы (Au, Ag и платиновые металлы) и редкие металлы (Be, Sc, In, Ge и некоторые другие).
В химии металлы классифицируются по их месту в периодической системе элементов. Различают металлы главных и побочных подгрупп. Металлы главных подгрупп называют непереходными. Эти металлы характеризуются тем, что в их атомах происходит последовательное заполнение s– и p– электронных оболочек.
Типичными металлами являются s–элементы (щелочные Li, Na, K, Rb, Cs, Fr и щелочноземельные Be, Mg, Ca, Sr, Ba, Ra металлы). Данные металлы расположены в Iа и IIа подгруппах (т. е., в главных подгруппах I и II групп). Этим металлам отвечает конфигурация валентных электронных оболочек ns 1 или ns 2 (n – главное квантовое число). Для данных металлов характерно:
а) металлы имеют на внешнем уровне 1 – 2 электрона, поэтому проявляют постоянные степени окисления +1, +2;
б) оксиды этих элементов носят основной характер (исключение –бериллий, т.к. малый радиус иона придает ему амфотерные свойства);
в) гидриды имеют солеобразный характер и образуют ионные кристаллы;
г) возбуждение электронных подуровней возможно только у металлов IIА группы с последующей sp–гибридизацией орбиталей.
К p–металлам относятся элементы IIIа (Al, Ga, In, Tl), IVа (Ge, Sn, Pb), Vа (Sb, Bi) и VIа (Ро) групп с главными квантовыми числами 3, 4, 5, 6. Данным металлам отвечает конфигурация валентных электронных оболочек ns 2 p z (z может принимать значение от 1 до 4 и равно номеру группы минус 2). Для данных металлов характерно:
а) образование химических связей осуществляется s – и p–электронами в процессе их возбуждения и гибридизации (sp–и spd), однако сверху вниз по группам способность к гибридизации падает;
б) оксиды p– металлов амфотерные или кислотные (основные оксиды только у In и Tl);
в) гидриды p–металлов имеют полимерный характер (AlH3)n или газообразный (SnH4 ,PbH4 и т. д.), что подтверждает сходство с неметаллами, открывающими эти группы.
В атомах металлов побочных подгрупп, называемых переходными металлами, происходит застраивание d– и f– оболочек, в соответствии с чем их делят на d–группу и две f–группы лантаноиды и актиноиды.
К переходным металлам относят 37 элементов d–группы и 28 металлов f–группы. К металлам d–группы относят элементы Ib (Cu, Ag, Au), IIb (Zn, Cd, Hg), IIIb (Sc, Y, La, Ac), IVb (Ti, Zr, Hf, Db), Vb (V, Nb, Ta, Jl), VIb (Cr, Mo, W, Rf), VIIb (Mn, Tc, Re, Bh) и VIII групп (Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Rt, Hn, Mt, Db, Jl, Rf, Bh, Hn, Mt). Этим элементам отвечает конфигурация 3d z 4s 2 . Исключения составляют некоторые атомы, в том числе атомы хрома с полузаполненной 3d 5 –оболочкой (3d 5 4s 1 ) и меди – с полностью заполненной 3d 10 –оболочкой (3d 10 4s 1 ). Эти элементы обладают некоторыми общими свойствами:
1. все они образуют сплавы между собой и другими металлами;
2. наличие частично заполненных электронных оболочек обусловливает способность d–металлов образовывать парамагнитные соединения;
3. в химических реакциях они проявляют переменную валентность (за немногими исключениями), а их ионы и соединения, как правило, окрашены;
4. в химических соединениях d–элементы электроположительны. "Благородные" металлы, обладая высоким положительным значением стандартного электродного потенциала (Е>0), взаимодействуют с кислотами необычным образом;
5. ионы d–металлов имеют вакантные атомные орбитали валентного уровня (ns, np, (n–1) d), поэтому они проявляют акцепторные свойства, выступая в качестве центрального иона в координационных (комплексных) соединениях.
Химические свойства элементов определяются их положением в Периодической системе элементов Менделеева. Так, металлические свойства сверху вниз в группе возрастают, что обусловлено уменьшением силы взаимодействия между валентными электронами и ядром вследствие увеличения радиуса атома и за счет возрастания экранирования электронами, расположенными на внутренних атомных орбиталях. Это приводит к облегчению ионизации атома. В периоде металлические свойства уменьшаются слева направо, т.к. это связано с увеличением заряда ядра и тем самым с увеличением прочности связи валентных электронов с ядром.
В химическом отношении атомы всех металлов характеризуются сравнительной легкостью отдачи валентных электронов (т.е. малой величиной энергии ионизации) и низким значением сродства к электрону (т.е. малой способностью удерживать избыточные электроны). Как следствие этого низкое значение электроотрицательности, т.е., способность образовывать только положительно заряженные ионы и проявлять в своих соединениях только положительную степень окисления. В связи с этим металлы в свободном состоянии являются восстановителями.
Восстановительная способность разных металлов неодинакова. Для реакций в водных растворах она определяется значением стандартного электродного потенциала металла (т.е. положением металла в ряду напряжений) и концентрацией (активностью) его ионов в растворе.
Взаимодействие металлов с элементарными окислителями (F2, Cl2, O2, N2, S и т.д.). Например, реакция с кислородом, как правило, протекает следующим образом
где n – валентность металла.
Взаимодействие металлов с водой. Металлы, обладающие стандартным потенциалом менее –2,71 В, вытесняют водород из воды на холоде с образованием гидроксидов металлов и водорода. Металлы со стандартным потенциалом от –2,7 до –1,23 В вытесняют водород из воды при нагревании
Остальные металлы с водой не реагируют.
Взаимодействие с щелочами. С щелочами могут реагировать металлы, дающие амфотерные оксиды, и металлы, обладающие высокими степенями окисления, в присутствии сильного окислителя. В первом случае металлы образуют анионы своих кислот. Так, реакция взаимодействия алюминия с щелочью запишется уравнением
в котором, лигандом является ион гидроксида. Во втором случае образуются соли, например K2CrO4 .
Взаимодействие металлов с кислотами. С кислотами металлы реагируют различно в зависимости от численного значения стандартного электродного потенциала (Е) (т.е. от положения металла в ряду напряжения) и окислительных свойств кислоты:
· в растворах галогеноводородов и разбавленной серной кислоты окислителем является только ион Н + , и поэтому с этими кислотами взаимодействуют металлы, стандартный потенциал которых меньше стандартного потенциала водорода:
Me + 2n H + = Me n+ + n H2;
· концентрированная серная кислота растворяет почти все металлы независимо от положения их в ряду стандартных электродных потенциалов (кроме Au и Pt). Водород при этом не выделяется, т.к. функцию окислителя в кислоте выполняет cульфат–ион (SO4 2– ). В зависимости от концентрации и условий проведения опыта cульфат–ион восстанавливается до различных продуктов. Так, цинк в зависимости от концентрации серной кислоты и температуры реагирует следующим образом:
– при очень высокой температуре 4Zn + 5H2SO4(конц.) = 4ZnSO4 + H2S +4H2O;
· в разбавленной и концентрированной азотной кислоте функцию окислителя выполняет нитрат–ион (NO3 – ), поэтому продукты восстановления зависят от степени разбавления азотной кислоты и активности металлов. В зависимости от концентрации кислоты, металла (величины его стандартного электродного потенциала) и условий проведения опыта нитрат–ион восстанавливается до различных продуктов. Так, кальций в зависимости от концентрации азотной кислоты реагирует следующим образом:
Концентрированная азотная кислота не реагирует (пассивирует) с железом, алюминием, хромом, платиной и некоторвми другими металлами.
Взаимодействие металлов друг с другом. При высоких температурах металлы способны реагировать друг с другом с образованием сплавов. Сплавы могут быть твердыми растворами и химическими (интерметаллическими) соединениями (Mg2Pb, SnSb, Na3Sb8, Na2K и др.).
Свойства металлического хрома (…3d 5 4s 1 ). Простое вещество хром представляет собой блестящий на изломе серебристый металл, который хорошо проводит электрический ток, имеет высокую температуру плавления (1890°С) и кипения (2430°С), большую твердость (в присутствии примесей, очень чистый хром мягок) и плотность (7,2 г/см 3 ).
При обычной температуре хром устойчив к действию элементарных окислителей и воде благодаря плотной окисной пленке. При высоких температурах хром взаимодействует с кислородом и другими окислителями.
Cr + Cl2(газ) ® CrCl3 (малиновый цвет)
С металлами при сплавлении хром образует интерметаллиды (FeCr2, CrMn3). При 600°С хром взаимодействует с парами воды:
В электрохимическом отношении металлический хром близок к железу:. Поэтому он может растворяться в неокисляющих (по аниону) минеральных кислотах, таких как галогеноводородные:
Сr + 2HCl ® CrCl2(голубой цвет) + H2.
На воздухе идет быстро следующая стадия:
Окисляющие (по аниону) минеральные кислоты растворяют хром до трехвалентного состояния:
В случае с HNO3(конц) происходит пассивация хрома – на поверхности образуется прочная пленка оксида – и металл не реагирует с кислотой. (Пассивный хром имеет высокий окислительно-восстановительный потенциал = + 1,3 В.)
Основная область применения хрома – металлургия: создание хромистых сталей. Так, в инструментальную сталь вводят 3 – 4% хрома, шарикоподшипниковая сталь содержит 0,5 – 1,5% хрома, в нержавеющей стали (один из вариантов): 18 – 25% хрома, 6 – 10% никеля, < 0,14% углерода, ~0,8% титана, остальное – железо.
Свойства металлического железа (…3d 6 4s 2 ). Железо – белый блестящий металл. Образует несколько кристаллических модификаций, устойчивых в определенном температурном интервале.
Химические свойства металлического железа определяются его положением в ряду напряжений металлов: .
При нагревании в атмосфере сухого воздуха железо окисляется:
В зависимости от условий и от активности неметаллов железо может образовывать металлоподобные (Fe3C, Fe3Si, Fe4N), солеподобные (FeCl2, FeS) соединения и твердые растворы (с C, Si, N, B, P, H).
В воде железо интенсивно корродирует:
При недостатке кислорода образуется смешанный оксид Fe3O4:
Разбавленная соляная, серная и азотная кислоты растворяют железо до двухвалентного иона:
Более концентрированная азотная и горячая концентрированная серная кислоты окисляют железо до трехвалентного состояния (выделяются NO и SO2 соответственно):
Очень концентрированная азотная кислота (плотность 1,4 г/см3) и серная (олеум) пассивируют железо, образуя на поверхности металла оксидные пленки.
Железо используют для получения железоуглеродистых сплавов. Велико биологическое значение железа, т.к. оно – составная часть гемоглобина крови. В организме человека содержится около 3 г железа.
Химические свойства металлического цинка (…3d 10 4s 2 ). Цинк – синевато-белый, пластичный и тягучий металл, но выше 200°С становится хрупким. Во влажном воздухе он покрывается защитной пленкой основной соли ZnCO3×3Zn(OH)2 или ZnO и дальнейшего окисления не происходит. При высоких температурах взаимодействует:
Исходя из величин стандартных электродных потенциалов, цинк вытесняет кадмий, который является его электронным аналогом, из солей: Cd 2+ + Zn ® Cd + Zn 2+ .
Благодаря амфотерности гидроокиси цинка металлический цинк способен растворяться в щелочах:
В разбавленных кислотах:
В концентрированных кислотах:
Значительная часть цинка расходуется для цинкования железных и стальных изделий. Широкое промышленное использование имеют сплавы цинка с медью (нейзильбер, латунь). Цинк широко используется при изготовлении гальванических элементов.
Химические свойства металлической меди (…3d 10 4s 1 ). Металлическая медь кристаллизуется в кубической гранецентрированной кристаллической решетке. Это ковкий мягкий, вязкий металл розового цвета с температурой плавления 1083°С. Медь находится на втором месте после серебра по электро- и теплопроводности, что обусловливает значение меди для развития науки и техники.
Медь реагирует с поверхности с кислородом воздуха при комнатной температуре, цвет поверхности становится темнее, а в присутствии CO2, SO2 и паров воды покрывается зеленоватой пленкой основных солей (CuOH)2CO3, (CuOH)2SO4.
Медь непосредственно соединяется с кислородом, галогенами, серой:
В присутствии кислорода металлическая медь взаимодействует с раствором аммиака при обычной температуре:
Находясь в ряду напряжений после водорода , медь не вытесняет его из разбавленных соляной и серной кислот. Однако в присутствии кислорода воздуха медь растворяется в этих кислотах:
Окисляющие кислоты растворяют медь с переходом ее в двухвалентное состояние:
Со щелочами медь не взаимодействует.
С солями более активных металлов медь взаимодействует, и эта окислительно-восстановительная реакция лежит в основе некоторых гальванических элементов:
Cu SO4 + Zn® Zn SO4 + Cu; E о = 1,1 B
Mg + CuCl2 ® MgCl2 + Cu; E о = 1,75 B.
Медь образует с другими металлами большое число интерметаллических соединений. Наибольшую известность и ценность имеют сплавы: латунь Cu–Zn (18 – 40% Zn), бронза Cu–Sn (колокольная – 20% Sn), инструментальная бронза Cu–Zn–Sn (11% Zn, 3 – 8% Sn), мельхиор Cu–Ni–Mn–Fe (68% Cu, 30% Ni, 1% Mn, 1% Fe).
Нахождение металлов в природе и способы получения.Вследствие высокой химической активности, металлы в природе находятся в виде различных соединений, и только малоактивные (благородные) металл – платина, золото и т.п. – встречаются в самородном (свободном) состоянии.
Наиболее распространенными природными соединениями металлов являются оксиды (гематит Fe2O3, магнетит Fe3O4, куприт Cu2O, корунд Al2O3, пиролюзит MnO2 и др.), сульфиды (галенит PbS, сфалерит ZnS, халькопирит CuFeS, киноварь HgS и т.д.), а также соли кислородосодержащих кислот (карбонаты, силикаты, фосфаты и сульфаты). Щелочные и щелочноземельные металлы встречаются преимущественно в виде галогенидов (фторидов или хлоридов).
Основная масса металлов получается путем переработки полезного ископаемого – руды. Поскольку металлы, входящие в состав руд находятся в окисленном состоянии, то их получение осуществляется путем реакции восстановления. Предварительно руду очищают от пустой породы
Образовавшийся концентрат оксида металла очищают от воды, а сульфиды, для удобства последующей переработки, переводят в оксиды путем обжига, например:
Для разделения элементов полиметаллических руд пользуются методом хлорирования. При обработке руд хлором в присутствии восстановителя образуются хлориды различных металлов, которые вследствие значительной и различной летучести могут быть легко отделены друг от друга.
Восстановление металлов в промышленности осуществляется посредством различных процессов. Процесс восстановления безводных соединений металлов при высоких температурах называют пирометаллургией. В качестве восстановителей используют металлы, более активные, чем получаемый, либо углерод. В первом случае говорят о металлотермии, во втором – карботермии, например:
Особое значение углерод приобрел как восстановитель железа. Углерод для восстановления металлов применяется обычно в виде кокса.
Процесс восстановления металлов из водных растворов их солей относится к области гидрометаллургии. Получение металлов осуществляется при обычных температурах, причем в качестве восстановителей могут быть использованы сравнительно активные металлы или электроны катода при электролизе. Электролизом водных растворов солей могут быть получены только сравнительно малоактивные металлы, расположенные в ряду напряжений (стандартных электродных потенциалов) непосредственно перед водородом или после него. Активные металлы – щелочные, щелочноземельные, алюминий и некоторые другие, получают электролизом расплава солей.
Легирование
Легирование (в переводе с латинского ligare – «связывать») – это процесс введения в состав материала (металла, сплава, полупроводника) определенных примесей. Применяется легирование для изменения или улучшения физических и химических свойств металлов, сплавов. В особенности, для придания металлам и сплавам повышенной коррозионной стойкости. Металл, подвергшийся легированию, называется легированным.
Легирование может быть объемным и поверхностным. Объемное легирование предусматривает введение добавок в весь объем металла. Поверхностное же легирование – введение легирующих добавок только в верхний (поверхностный) слой. Существует много технологий легирования, как поверхностного, так и объемного. Поверхностное обогащение предусматривает проникновение легирующего элемента в слой, глубиной около одного – двух миллиметров. Для создания определенных свойств на поверхности металла (например, антифрикционных). Выбор технологии и легирующих добавок во многом зависит от отрасли, в которой металлическое изделие будет использоваться.
Подвергаются легированию различные марки сталей, чугунов, также чистые металлы, полупроводники. Добавки могут быть как металлические (алюминий, никель, хром, цинк, кобальт и др.), так и неметаллические (кремний, сера, фосфор и т.д.). Легирующих добавок может быть одна или несколько, которые придают основному металлу специальные свойства. Изменение жаростойкости, твердости, коррозионной стойкости, прочности, пластичности и других характеристик – вот основная цель легирования металлов и сплавов.
Легирование является эффективной защитой металлов от коррозии в различных средах, как при обычных температурах, так и при повышенных.
Легирование очень эффективно (в целях повышения коррозионной стойкости), если происходит соединение активного и пассивного металлов. Образовавшийся сплав отличается устойчивостью к воздействию агрессивных сред за счет способности второго металла легко пассивироваться. Например, легирование железа алюминием либо хромом способствует повышению его сопротивления к окислению. Медь и никель добавляют в основной металл, если необходимо, чтоб он не подвергался атмосферной коррозии.
Легирование стали
Легирование сталей проводится для повышения их коррозионной стойкости и придания некоторых механических свойств. С железом легирующие элементы образуют твердые растворы, а при взаимодействии с неметаллическими включениями в стали – избыточные фазы и неметаллические включения.
Каждая марка стали изготавливается по определенной технологии и химический состав должен соответствовать стандартам. В России и Украине – это ГОСТ, Германии (ФРГ) - DIN, Чехословакии (Чехии) – CSN, Франции – A.F.N.O.R, США – AISI, в Великобритании – B.S., Швеции – SIS, Венгрии – MSZ и т.д.
Отечественное обозначение сталей (маркировка) состоит из сочетания цифр и букв. Буквы показывают, какой химический элемент входит в состав данной марки стали. Цифры же – определяют его количество. Легирующим элементам принято присваивать определенную букву из русского алфавита. Вот обозначения некоторых из них:
За каждым буквенным обозначением химического элемента, который используется для легирования стали, следует цифровое значение, которое указывает концентрацию данной легирующей присадки. Число, которое стоит с самого начала, дает нам информацию о том, сколько углерода содержит данная марка стали (в сотых долях масс. %).
Такая номенклатура позволяет быстро определять состав стали только по ее названию (марке).
В зависимости от того, сколько содержится в стали легирующих элементов, ее классифицируют на: высоколегированную сталь (больше 10%), среднелегированную сталь (2,5 – 10% легирующих элементов), низколегированную (до 2,5 %).
Читайте также: