Металлический водород для чего нужен
Предварительные расчеты итало-немецкой группы физиков-теоретиков показывают, что металлический водород, находящийся под давлением около 4,5 млн атмосфер, может обладать наибольшей среди высокотемпературных сверхпроводников критической температурой перехода, равной 242 К (–31 градус Цельсия).
Температура, при которой газообразный водород становится жидкостью, составляет 20 К. Перевести жидкий водород в твердое состояние можно, понизив температуру еще на 6 К. В 1935 году Юджин Вигнер и Хиллард Хантингтон опубликовали статью, в которой они первыми предположили, что при высоких давлениях водород из газа с диэлектрическими свойствами должен превратиться в проводящий металл. Превращение, по мнению авторов, будет происходить при давлении примерно 25 ГПа (1 ГПа равен приблизительно 10 тыс. атмосфер). (Отметим, что водород проявляет металлические свойства — например, хорошо проводит электрический ток — не обязательно находясь именно в твердом агрегатном состоянии. Иными словами, водород может быть и жидкостью с металлическими свойствами — эдакий жидкий металл.)
Экзотика на этом не закончилась, и в 1971 году появилась работа советских теоретиков во главе с Юрием Каганом, которые доказывали, что металлический водород может оказаться метастабильным. Слово «метастабильный» означает, что после снятия высокого давления водород не превратится снова в газ с диэлектрическими, непроводящими свойствами, а будет оставаться металлом. Однако всё еще неизвестно, будет ли время существования такой метастабильной фазы достаточным, чтобы попытаться измерить ее свойства и успеть применить.
В экспериментальном плане первый успех, связанный с водородом, был достигнут, когда в феврале 1975 года группа ученых под руководством Леонида Верещагина из Института физики высоких давлений СССР получил водород в металлическом состоянии. При температуре 4,2 К (температура кипения гелия) в тонком слое водорода, подвергнутым с помощью алмазных наковален давлению около 300 ГПа, ученые наблюдали уменьшение электрического сопротивления водорода в несколько миллионов раз, что служило свидетельством перехода в металлическое состояние.
Алмазная наковальня, использующаяся для получения высоких давлений, представляет собой два искусственных алмаза, которые прижимаются друг к другу остриями с помощью пресса. В результате на срезе диаметром всего несколько десятых долей миллиметра достигается необходимое давление. В этом месте в ячейке микрометрового размера находится охлажденный образец. Часто эксперименты делаются с образцами в виде тонких пленок, толщиной до 1 мкм. В том же месте к образцу подводятся миниатюрные измерительные приборы: термопары, электроды и другое необходимое оборудование.
Возникает вопрос: если водород может стать металлическим, то возможен ли дальнейший переход такого состояния в сверхпроводящее? Будет ли металлический водород сверхпроводником? Первым, кто задался таким вопросом, был Нейл Эшкрофт, который в 1968 году (спустя 11 лет после объяснения явления сверхпроводимости), используя теорию БКШ, предсказал, что металлический водород будет обладать экзотическими свойствами, в частности сверхпроводимостью, при высокой температуре, превышающей 200 К.
И вот недавно вышла совместная работа итальянских и немецких физиков-теоретиков Ab Initio Description of High-Temperature Superconductivity in Dense Molecular Hydrogen, в которой утверждается, что, благодаря электрон-фононному механизму образования куперовских пар, критическая температура перехода Tc молекулярного водорода из металлического в сверхпроводящее состояние может достигать рекордного на данный момент значения 242 К. Правда, при этом должно быть огромное давление — 450 ГПа, что приблизительно в 4,5 млн раз больше земного атмосферного давления.
Как происходит электрон-фононное образование куперовских пар? Электрон при перемещении в периодической решетке кристалла притягивает ближайшие положительно заряженные ионы, слегка деформируя решетку и образуя кратковременное увеличение концентрации положительного заряда (см. рис. 1). Эта увеличенная концентрация положительного заряда притягивает другой электрон. Таким образом, эти оба электрона посредством кристаллической решетки притягиваются. Ионы при ненулевой температуре совершают колебания около своих положений равновесия. Кванты таких колебаний называются фононами.
Под электрон-фононным взаимодействием подразумевается сложный процесс взаимодействия электронов с движущейся (колеблющейся) кристаллической решеткой. Когда электрон-фононное взаимодействие превысит кулоновское отталкивание двух электронов, то эти два электрона могут образовать куперовскую пару. Если температура равна нулю, свободный электрон, перемещаясь по кристаллу и возбуждая колебания решетки, может излучить фонон, который будет поглощен другим электроном. В этом случае, как говорят физики, происходит акт электрон-фононного взаимодействия электронов, а значит, электроны могут объединиться в куперовскую пару.
Численно охарактеризовать электрон-фононное взаимодействие можно специальной константой, которую обозначают греческой буквой λ и называют константой электрон-фононного взаимодействия. В теории БКШ она, наряду с температурой Дебая, определяет Tc данного конкретного сверхпроводника. Чем больше значение λ, тем сильнее электрон-фононное взаимодействие и тем выше критическая температура. В подавляющем большинстве сверхпроводников значение λ не превышает единицу.
Однако не надо представлять себе куперовскую пару как некую «двухэлектронную молекулу» — размер этой пары в «обычных», не высокотемпературных сверхпроводниках составляет порядка 1/10 микрометра и превышает во много раз межатомные расстояния в кристалле (в ВТСП этот размер — около 1–10 нм).
Чтобы разорвать куперовскую пару на два отдельных электрона при T = 0, необходимо затратить энергию, равную 2Δ. Δ (так называемая сверхпроводящая энергетическая щель) — еще одна важная характеристика не только в теории БКШ, но и во всей теории сверхпроводимости. Δ зависит от температуры (рис. 2) и при T = Tc зануляется, что легко понять — в этот момент сверхпроводимость разрушается и для разрыва куперовской пары нет надобности затрачивать энергию.
Рис. 3. Зависимость константы электрон-фононного взаимодействия металлического водорода от приложенного к нему давления. Изображение из обсуждаемой статьи в Phys. Rev. Lett.
Еще несколько важных замечаний. Теория БКШ справедлива при выполнении следующих допущений:
1) значение константы электрон-фононного взаимодействия значительно меньше 1;
2) сверхпроводники — чистые (без примесей) и бездефектные металлы со строгой периодичностью кристаллической решетки;
3) сверхпроводник изотропен (то есть его физические свойства одинаковы по всем направлениям).
В случае, когда эти условия не выполняются, работает модель БКШ с поправками Элиашберга (концепция Элиашберга), основные положения которой и были использованы в обсуждаемой статье о сверхпроводимости металлического водорода.
Авторам работы удалось рассчитать, как зависит константа электрон-фононного взаимодействия от приложенного к металлическому водороду давления (рис. 3).
Рис. 4. Зависимость критической температуры металлического водорода от давления. Максимум в 242 К достигается при давлении 450 ГПа. Изображение из обсуждаемой статьи в Phys. Rev. Lett.
Из графика видно, что λ превышает единицу и достигает максимума при давлении 450 ГПа. Максимальное значение константы электрон-фононного взаимодействия, очевидно, соответствует максимальному значению критической температуры, равной 242 К. Последующие теоретические исследования показали, что дальнейшее увеличение давления не приводит к возрастанию критической температуры (рис. 4).
Интересно, что в этой же работе авторы предполагают при не очень больших давлениях наличие трех (!) немаленьких по своему значению энергетических щелей в сверхпроводящем водороде (в сравнении с аналогичной величиной в «обычных», низкотемпературных сверхпроводниках). Это означает присутствие трех «сортов» куперовских пар, то есть имеет место трёхщелевая сверхпроводимость. В рамках данной работы удалось также посчитать, как зависят эти три энергетических щели от температуры (рис. 5). Видно, что их поведение похоже на аналогичную зависимость Δ(T) в теории БКШ.
Более того, как показали расчеты авторов, две меньшие энергетические щели должны проявлять сильную анизотропию своих численных значений (на графике размазанная желтая и синяя область). Грубо говоря, анизотропия энергетических щелей здесь означает зависимость их численного значения от направления движения куперовских пар в сверхпроводящем водороде.
Рис. 5. Зависимость энергетических щелей сверхпроводящего металлического водорода при давлении 414 ГПа от температуры. Размазанные цветные области означают анизотропию энергетической щели, исчезающую в области Tc (см. пояснения в тексте). Изображение из обсуждаемой статьи в Phys. Rev. Lett.
В принципе, неоднощелевая сверхпроводимость уже не является чем-то экзотическим с 2001 года, когда было открыто наличие двух щелей в сверхпроводящем MgB2. Кроме того, как выяснилось позже, диборид магния обладает еще и наивысшей среди сверхпроводников с электрон-фононным механизмом образования куперовских пар критической температурой (39 К). Однако, похоже на то, что «лидерство» в экзотической сверхпроводимости перехватил металлический водород со своей трёхщелевой сверхпроводимость и с самой высокой Tc = 242 К. Остается лишь ожидать экспериментального подтверждения или опровержения результатов данной работы.
Источник: P. Cudazzo, G. Profeta, A. Sanna, A. Floris, A. Continenza, S. Massidda, E. K. U. Gross. Ab Initio Description of High-Temperature Superconductivity in Dense Molecular Hydrogen // Physical Review Letters, 100, 257001 (2008).
Ученые создали металлический водород. Они получат Нобелевскую премию?
Ученые давно предполагали, что в центре газовых гигантов (планет, не имеющих твердой поверхности и состоящих в значительной мере из водорода и других газов) законы физики материалов работают совсем не так, как это происходит на других планетах. В подобных условиях, находящийся под огромным давлением водород сжимается настолько, что в буквальном смысле становится металлом. Многие годы исследователи искали возможность создать металлический водород в лабораторных условиях ради его уникальных свойств, которые могли бы пригодиться во многих областях человеческой деятельности.
Какую пользу человеку может принести металлический водород? Например, они пригодится при производстве электроники будущего, благодаря своим особым свойствам электропроводности. А еще на его основе можно будет делать новое ракетное топливо.
Как получить металлический водород?
На сегодняшний день единственным доступным способом получения металлического водорода является использование специальных алмазных наковален, где атомы водорода сжимаются и охлаждаются до тех пор, пока не изменят свое состояние. Почти 80 лет ученые пытаются превратить газообразный водород в металл — и вот у них получилось. Для этого они применили к нему давление, которое больше, чем в ядре Земли.
Публикации о подобных результатах уже появлялись раньше, однако еще ни одна группа ученых не смогла их подтвердить. Например, в 2011 сообщалось, о том, что ученые смогли «сжать» водород до нужного состояния с помощью давления выше 220 ГПа (гигапаскалей), что более чем в 2 миллиона раз больше атмосферного, которое составляет 100 кПа (килопаскалей). В 2017 году другая группа ученых заявляла о том, что им удалось достичь давления уже 495 ГПа. Кстати, тогда основную часть экспериментов они провести не успели. Единственный полученный образец металлического водорода был утерян после того, как одна из алмазных наковален рассыпалась в пыль во время попытки измерить давление. Что стало с образцом – непонятно. Может он затерялся среди алмазных частиц, может превратился обратно в газ. Почитать подробнее об этой неудаче можно здесь можно здесь.
Французские учены учли предыдущий опыт и ошибки своих коллег, а также свои предыдущие исследования и все-таки добились нужного результата. Удалось это благодаря двум открытиям. Во-первых, они изменили конструкцию алмазной наковальни, сделав вершины алмазных наконечников не плоскими, а тороидальными, с углублением в виде бублика. Такое изменение позволило увеличить максимальный предел давления с 400 Гпа до 600 ГПа.
Наконечник улучшенной алмазной наковальни. Диаметр кольцевых трещин составляет около 150 микрон (чуть больше толщины человеческого волоса)
Во-вторых, они создали новый тип специального инфракрасного спектрометра – инструмента, позволяющего проводить измерения образца водорода.
При эксперименте ученые начали сжимать в алмазной наковальне образец водорода и одновременно охлаждать. Когда давление достигло 425 ГПа, а температура стала -193 градусов по Цельсию, водород начал поглощать инфракрасное излучение спектрометра. Это стало свидетельством перехода водорода в другое, твердое состояние.
Изображение переходных фаз водорода при эксперименте 2017 года (сверху) и смена фаз при различных значениях давления – 315, 427 и 300 ГПа – при эксперименте французских ученых. Во втором случае видно, что образец водорода стал непрозрачным
Заявление французских ученых было воспринято с недоверием, в основной потому, что предыдущие утверждения об успешном создании металлического водорода оказывались ошибочными, не соответствовали действительности или просто были недоказуемыми.
Тем не менее, уже сейчас многие говорят, что группа французских физиков может получить Нобелевскую премию за свое открытие — самую престижную премию в науке.
«Практическое использование металлического водорода следует отнести к научной фантастике»
Исследователи из Гарвардского университета сообщили о получении — под давлением около 5 млн атмосфер — водорода в металлическом состоянии. Научный руководитель Института физики высоких давлений РАН, академик Сергей Стишов рассказывает об истории и перспективах металлического водорода.
Водород обычно встречается в молекулярном виде, то есть в виде молекул, состоящих из двух протонов и двух электронов. Однако, если расщепить молекулу, то получится атомарный водород, состоящий из одного протона и одного электрона и представляющий собой полный аналог щелочных металлов. При атмосферном давлении атомарный водород неустойчив и быстро переходит в молекулярную форму. Однако в тридцатых годах прошлого века британский ученый Джон Бернал, известный борец за мир и автор оригинальных научных идей (например, о структуре жидкостей, об оливин-шпинелевом переходе в недрах Земли), предположил, что атомарный водород может оказаться стабильным при высоких давлениях. Эта идея привлекла внимание теоретиков Вигнера и Хантингтона, которые и произвели соответствующие расчеты в 1935 году. Гипотеза Бернала нашла подтверждение — согласно указанным расчетам, молекулярный водород переходит в атомарную металлическую фазу при высоких давлениях порядка 250 тыс. атмосфер со значительным увеличением плотности (в свете современных исследований приведенная оценка выглядит весьма приближенной).
Однако с тех пор долгое время проблема металлического водорода не находилась в центре внимания исследователей в области физики высоких давлений. Следует лишь упомянуть теоретические работы А. А. Абрикосова (ныне нобелевского лауреата) и В. П. Трубицына, выполненные в 1950-х годах прошлого столетия и посвященные строению водородных планет: Юпитера и Сатурна.
Взрыв интереса к проблеме произошел в 1968 году, когда американский физик Нил Ашкрофт опубликовал статью, в которой доказывал, что полученный при высоком давлении атомный металлический водород может при атмосферном давлении оставаться стабильным. Но главное, Ашкрофт показал, что металлический водород может обладать сверхпроводимостью при комнатной температуре. Вот это и явилось главной мотивацией для дальнейших исследований. Действительно, получение материала со сверхпроводимостью при комнатной температуре означало бы переворот в энергетике.
Несколько экспериментальных групп объявили о своих намерениях заняться получением металлического водорода. Одними из первых заявила о себе группа Нила Ашкрофта и Артура Руоффа из Корнелльского университета (США). В интервью, напечатанном в Physics Today в начале 1970-х, они заявили, что при наличии финансирования сделают металлический водород в течение года.
Нужно сказать, в это время уже было ясно, что для получения металлического водорода потребуется давление не менее миллиона атмосфер. И никто не знал, как получить этот миллион. Руофф в Корнелле строил громадный многопуансонный аппарат, с помощью которого, как оказалось, нельзя было получить необходимое давление. Другие группы в США и России стали готовить аппаратуру для измерения уравнения состояния и кривой плавления молекулярной фазы. В Институте физики высоких давлений (ИФВД) АН СССР стали думать, как приспособить имевшийся громадный пресс усилием 50 тыс. тонн для поисков металлического водорода. Теоретики стали еще и еще раз вычислять давление перехода водорода в металлическое состояние, температуру его сверхпроводящего перехода, анализировать свойства метастабильной фазы металлического водорода (Е. Г. Бровман и Ю. Каган). В. Л. Гинзбург (будущий нобелевский лауреат) — апологет сверхпроводимости во всех ее проявлениях и автор основополагающей работы в этой области (знаменитое уравнение Гинзбурга — Ландау) — был настолько увлечен перспективой получения комнатной сверхпроводимости, что объявил проблему металлического водорода одной из важнейших проблем физики твердого тела. Словом, работа началась.
Одновременно в ненаучной прессе появились фантастические прогнозы. Например, что из металлического водорода можно будет делать легчайшие пуленепробиваемые жакеты или детали космических ракет, которые можно будет использовать как топливо. Ученые особенно не протестовали против подобных измышлений, а порой и сами пускали их в оборот, поскольку это помогало получить финансирование.
Так или иначе, проблема металлического водорода, потенциально обладающего чудодейственными свойствами, приобрела в 1970-х годах вполне тотальный и даже государственный характер. Для подтверждения сказанному расскажу небольшую историю. В 1977 году я посетил несколько университетских и национальных лабораторий США, среди них была и Аргоннская национальная лаборатория, где я общался с одним из ее сотрудников, Джимом Иогерсоном. Спустя несколько лет Джим при встрече рассказал мне, что после моего визита в Аргонн к нему заявились представители секретных служб, стараясь выяснить, правда ли, что академик Л. Ф. Верещагин погиб в результате взрыва полученного в его институте (ИФВД) металлического водорода (Л. Ф. Верещагин скончался в 1977 году незадолго до моего визита в США, по причинам, никак не связанным с водородной тематикой). Это история показывает, что государственная машина США следила за ситуацией и принимала всерьез самые нелепые выдумки. Кроме того, государственные люди США, подогретые прессой и учеными, опасались, что металлический водород будет впервые получен в СССР. Большой пресс ИФВД не давал им покоя.
Тем не менее реального продвижения на пути к достижению миллионных давлений не было до тех пор, пока Питер Белл и Дейв Мао из Геофизической лаборатории (Вашингтон, США) не заявили в 1977 году о достижении 1,7 млн атмосфер в миниатюрном устройстве (алмазных наковальнях), давление в котором создается с помощью двух алмазов. Лед тронулся. Начались реальные исследования водорода. Однако с течением времени выяснилось, что действенных игроков всего трое. Это Артур Руофф из Корнелла, Рассел Хемли и Дейв Мао из Геофизической лаборатории и сегодняшний герой Айк Сильвера (Isaac Silvera) из Гарварда (все из США). Айк получил признание за работы по стабилизации атомарного водорода осаждением на подложку, порытую сверхтекучим гелием, проведенные во время его пребывания в Голландии.
Алмазные наковальни позволяют получать давление до 5 млн атмосфер, но в очень маленьком образце — микронных размеров
За годы исследований было получено много экспериментальных данных в условиях высоких статических и динамических давлений. Билл Неллис из Ливерморской лаборатории (США) утверждал, что жидкий дейтерий (изотоп водорода) переходит в металлическую жидкость при высоких давлениях и температурах, создаваемых сильными ударными волнами. Совершенствуя технику эксперимента, исследователи шаг за шагом приблизились к давлениям, царящим в центре Земли (около 4,5 млн атмосфер). Однако водород упорно не хотел металлизоваться. Исследователи обратились к соединениям водорода и жидкому водороду, было получено много интересных результатов, но твердый водород оставался непреклонным.
Как бы ни сложилась ситуация дальше, ясно, металлический водород получен — или будет получен. Но важно знать, что количество вещества, получаемое в алмазных наковальнях, можно уместить на острие тонкой швейной иглы. По этой причине всякие проекты, связанные с практическим использованием металлического водорода, следует отнести к научно-фантастическому жанру.
Литература:
1. Wigner E., Huntington H. B. J. Chem. Phys. 3, 764 (1935).
2. Абрикосов А. А., Астрон. журн. 31, 112 (1954); ЖЭТФ 39, 1797 (1960); ЖЭТФ 41, 569 (1961); ЖЭТФ 45, 2038 (1963).
3. Трубицын В. П. ФТТ 7, 3363 (1966); ФТТ 8, 862 (1966).
4. Ashcroft N. W. Phys. Rev. Lett. 21, 1748 (1968).
5. Бровман Е. Г., Каган Ю., Холас А. ЖЭТФ 61, 2429 (1971); ЖЭТФ 62, 1492 (1972).
6. Гинзбург В. Л. УФН 103, 87 (1971).
7. Dias R. P., Silvera I. F. Science (2017), doi: 10.1126/science.aal1579.
masterok
Ученые уже достаточно давно выдвинули теорию, что в ядрах гигантских газовых планет, там, где царят высокие температуры и огромные давления, даже базовые законы физики подвергаются кардинальным изменениям. В таких чрезвычайных условиях водород сжимается до такого состояния, что это газообразное вещество переходит в металлическую форму. В течение многих лет была предпринята череда попыток получения металлического водорода в лабораторных условиях, но все эти попытки, к сожалению, так и не увенчались успехом.
Зачем человек пытается получить такую форму водорода? Металлический водород, согласно некоторым предположениям, должен являться сверхпроводником при комнатной температуре, он должен сохранять свою металлическую форму даже после снятия высокого давления, под которым он образовался, и т.п.
И лишь недавно группе французских ученых удалось провести эксперимент, результаты которого указывают на образование металлического водорода в недрах исследовательской установки.
Единственным доступным способом получения металлического водорода сейчас является сжатие газообразного водорода сверхвысоким давлением. Этот же способ был использован и французскими учеными, которые зарегистрировали переход водорода из одной формы в другую при давлении в 425 ГПа.
Данное достижение стало следствием использования учеными двух новинок. Первой из этих новинок является форма наконечника алмазной "наковальни", который имеет тороидальную форму с углублением в центральной части. Такая форма наконечника, в отличие от использовавшихся ранее плоских наконечников, позволяет в теории получить давление до 600 ГПа.
Второй составляющей успеха ученых стал инфракрасный спектрометр, основой которого стал синхротронный источник SOLEIL. Этот спектрометр, спроектированный и изготовленный для данного эксперимента, обладает очень высокой чувствительностью, что позволило измерить оптические свойства водорода в инфракрасном диапазоне.
Когда давление на водород, охлажденный до температуры 80 К (-193 градуса Цельсия), было поднято до отметки в 425 ГПа, водород начал поглощать все попадающее на него инфракрасное излучение, что указывает на образование так называемой "запрещенной зоны" и служит указателем на появление металлической формы водорода.
Полученные французами результаты буквально раскололи все научное сообщество на два противоположных лагеря, точно так, как и после подобных результатов, полученных еще в 2017 году. Сторонники одного лагеря, который более многочисленный в настоящее время и в который входит множество именитых ученых, полностью согласны с выводами французских ученых и пророчат им даже получение Нобелевской премии. Сторонники второго лагеря, естественно, указываю на целый ряд неточностей и допущений, что, по их мнению, делает недостоверными полученные результаты.
Как бы там ни было на самом деле, расставить точки над "i" могут лишь результаты повторных экспериментов, проведенных другими независимыми группами ученых. А в том, что такие эксперименты будут проведены, и сомневаться не стоит, слишком велик интерес ученым к металлической форме водорода, который должен обладать целым рядом необычных и удивительных свойств.
Ученым из Гарварда удалось получить металлический водород
Изображение алмазных наковален, сжимающих образец молекулярного водорода. При высоком давлении водород переходит в атомарное состояние, как показано справа. Источник: Dias & Silvera, 2017
В 1935 году ученые Юджин Вигнер и Бэлл Хантингтон предсказали возможность перевода водорода в металлическое состояние под воздействием огромного давления — 250 тысяч атмосфер. Немного позже эта точка зрения была пересмотрена, специалисты повысили оценку давления, которое требуется для фазового перехода. Все это время условия перехода считались достижимыми, и ученые пробовали «взять планку», необходимую для перехода водорода в новую фазу. Впервые металлический водород пытались получить в 1970-х. Повторные попытки были предприняты в 1996, 2008 и 2011 году. Ранее сообщалось, что в 1996 году ученым из Германии удалось на долю микросекунды перевести водород в металлическое состояние, хотя не все согласны с этим.
Что касается давления, необходимого для получения металлического водорода, то с развитием квантовой механики и физики вообще стало понятно, что давление должно быть примерно в 20 раз более высоким, чем считалось ранее — не 25 ГПа, а 400 или даже 500 ГПа. Считается, что большие количества металлического водорода присутствуют в ядрах планет-гигантов — Юпитера, Сатурна и крупных внесолнечных планет. Благодаря гравитационному сжатию под газовым слоем должно находиться ядро из металлического водорода. Понятно, что для того, чтобы получить гигантское давление, нужны особые технологии и методы. Добиться желаемого получилось благодаря использованию двух алмазных наковален.
Прочность наковальни была усилена напылением из оксида алюминия, которое оказалось непроницаемым для атомов водорода. Образец водорода был сжат между заостренными концами двух алмазных наковален и при давлении в 495 ГПа ученые добились перехода образца в металлическую фазу.
Источник: Dias & Silvera, 2017
Во всяком случае, образец сначала потемнел, а затем стал отражать свет. При относительно низких показателях давления образец был непрозрачным, ток он не проводил. Эксперимент, проведенный Исааком Силвера (Isaac Silvera) и Ранга Диас (Ranga Dias), был повторным. Впервые добиться перехода водорода в металлическую фазу ученым удалось в середине 2016 года. Но результаты эксперимента нуждались в подтверждении, повторном опыте. Поскольку результаты изначального опыта подтвердились, их можно считать корректными.
К текущему результату ученые шли несколько лет. Только на то, чтобы достичь давления, при котором водород разбивается на индивидуальные атомы, у Силвера и Диас ушло три года. Давление, о котором идет речь — 380 ГПа.
После этого увеличение давления подразумевало необходимость усиления прочности алмазных наковален, которые использовались в эксперименте. Для этого стали напылять тончайшую пленку из оксида алюминия. Без усиления прочности алмазы, которые являются наиболее твердыми минералами на Земле, начинают разрушаться при увеличении давления выше показателя в 400 ГПа.
Учеными была проделана большая работа по изучению алмазов. Причин разрушения могло быть несколько — от дефектов структуры кристалла до влияния самого сжатого до огромной плотности водорода. Для того, чтобы решить первую проблему, специалисты тщательным образом проверяли структур кристалла под микроскопом с большим увеличением. «Когда мы просмотрели на алмаз под микроскопом, мы обнаружили дефекты, которые делают этот минерал уязвимым к внешним факторам», — заявил Силвера. Вторая проблема была решена при помощи напыления, противодействующего утечке атомов и молекул водорода.
Пока что сложно сказать, какую форму металла получили англичане — твердую или жидкую. Сами они затрудняются сказать, хотя считают, что водород перешел в фазу жидкого металла, поскольку это предсказано расчетами. В чем они уверены, так это в том, что образец водорода после сжатия стал в 15 раз более плотным, чем до начала этой процедуры. Температура водорода, который поместили в алмазную наковальню, составила 15К. После перехода элемента в металлическую фазу его нагрели до 83 К, и он сохранил свои металлические свойства. Расчеты показывают, что металлический водород может быть метастабильным, то есть сохранять свои свойства даже после того, как внешние факторы, которые привели к переходу элемента в металлическую фазу, будут ослаблены.
Зачем человеку металлический водород? Считается, что в таком состоянии он проявляет свойства высокотемпературного сверхпроводника. Кроме того, метастабильные соединения металлического водорода могут использоваться в качестве компактного, эффективного и чистого ракетного топлива. Так, при переходе металлического водорода в молекулярную фазу высвобождается примерно в 20 раз больше энергии, чем при сжигании килограмма смеси кислорода и водорода — 216 Мдж/кг.
«Для получения металлического водорода нам понадобилось огромное количество энергии. А если вы снова переведете атомарный металлический водород в молекулярное состояние, вся эта энергия высвободится, так что мы можем получить самое мощное ракетное топливо в мире, что совершит революцию в ракетостроении», — заявили авторы исследования. По их мнению, новое топливо, при условии его использования, позволит легко достичь других планет. Времени на путешествие к ним будет затрачено гораздо меньше, чем в настоящее время, с использованием современных технологий.
Читайте также: